
 1

Propagating Deletions in Tabular Constraints

Roman Barták*

Charles University, Faculty of Mathematics and Physics
Institute for Theoretical Computer Science

Malostranské nám. 2/25, Prague, Czech Republic
bartak@ktiml.mff.cuni.cz

Abstract. In the paper we propose a new filtering algorithm for extensionally
defined binary constraints – so called tabular constraints. The algorithm
combines a compact representation of the constraint domain with the principles
of AC-3.1 and AC-2001 algorithms. We concentrate on the practical issues like
covering large real-life constraints and integration to existing constraint solvers.
The experimental results show a significant speed-up over the existing models
of extensionally-defined constraints.

Introduction

Constraint propagation is intensively studied by researchers because of its importance
for reducing the search space when solving hard combinatorial problems. Among the
constraint propagation techniques, arc consistency (AC) is probably the most studied
technique and many arc consistency algorithms have already been proposed. Despite
the existence of AC algorithms with optimal worst-case time complexity, namely AC-
4 and its improvements AC-6 and AC-7, a simple AC-3 is usually preferred in
existing constraints solvers like ILOG Solver, CHIP, ECLiPSe, or SICStus Prolog.
The reason is a good practical efficiency of AC-3 and an easier integration of various
filtering algorithms for individual constraints including non-binary constraints into the
AC-3 schema.

Recently, two new versions of AC-3 algorithm, AC-3.1 [8] and AC-2001 [3], have
been independently proposed to achieve the optimal worst-case time complexity
without complex data structures typical for AC-4, AC-6, and AC-7. These algorithms
are still fine grained so they need to keep additional information about individual
values. However, this information is not communicated between the constraints so the
proposed techniques can be more easily integrated into existing constraint solvers
based on the AC-3 schema.

We are not aware that the above-mentioned integration of AC-3.1 or AC-2001 to
existing constraint solvers has already been done so our paper is probably the first
description of such integration. Moreover, we do not cover just the implementation of
the existing algorithm; the paper describes a new filtering algorithm for compactly
represented constraints. In particular, we are trying to overcome the main difficulty of

* Supported by the Czech Science Foundation under the contract No. 201/04/1102.

 2

AC-3.1 and AC-2001 which is still their memory consumption. Note also that while
AC-3.1/AC-2001 keep information about supporters for individual values, our
algorithm keeps the same information in the description of the constraint domain.
Because the constraint domain can be seen as a symmetrical representation of value
supporters, we can see our algorithm as an extension of the AC-3.1 and AC-2001
towards AC-7 [2].

The theoretical research, as described above, usually sees the constraint in a
general way that is the constraint is an arbitrary relation between the variables. In
practice, it means an ad-hoc representation of the constraint domains which is
memory and time expensive. Currently, there exist two techniques how to overcome
the above difficulties of the ad-hoc representations: the first technique converts the
extensional representation into an intentional one, the second technique compacts the
extensional representation.

The paper [6] is a recent representative of the first technique. The propagation
rules are automatically generated and expressed as indexicals [5] which has the
advantage of good memory efficiency if the semantics of the constraint is “clear”. The
disadvantage is a non-trivial pre-processing step which cannot be often done during
runtime due to implementation issues. Moreover, the decomposition of the original
constraint cannot exploit the advantages of optimal AC-3.1 and AC-2001 algorithms.

The paper [1] represents the second technique of a compact extensional
representation of ad-hoc constraints using a set of rectangles. The presented approach
is efficient when the (binary) constraint domain can be decomposed into a small
number of rectangles. However, the filtering algorithms presented in [1] are less
efficient when only few values are pruned from domains. We further extend the work
[1] by proposing a new filtering algorithm that propagates value deletions rather than
computing value supports from scratch.

To summarize our contribution, we present a new view of optimal AC-3.1 and
AC-2001 algorithms based on a compact representation of the constraint domain.
Thus, it is not necessary to work with individual value pairs and the filtering of
constraint domains decomposable into a relatively small number of rectangles can be
even more efficient.

The paper is organized as follows. We first introduce some notions describing the
extensionally defined constraints and propagators for these constraints. Then we
present a compact representation of the extensionally defined constraint domain that
is adapted from [1]. The new contribution is in Section 3 where a new filtering
algorithm for such domains is introduced and its soundness and completeness is
proved. Finally, we present the experimental evaluation of the proposed algorithm
showing that the new algorithm is significantly more efficient than the former
approach from [1].

Preliminaries

We survey here the terminology introduced in [1] to describe formally the constraints
and their consistency. Constraint is a relation restricting possible combinations of
values for the constraint variables. Constraint domain is a set of tuples satisfying the

 3

constraint. If C denotes the constraint and Xs is an ordered set of the variables
constrained by C then C(Xs) denotes the constraint domain. For example, if C is a
constraint X+Y=2 over non-negative integers, then C({X,Y}) = {(0,2),(1,1),2,0)} is
its constraint domain. We say that the constraint domain has a rectangular structure if
C(Xs) = ×X∈Xs C(Xs)↓X, where C(Xs)↓X is a projection of the constraint domain to
the variable X. Notice that the (binary) constraint domain has a rectangular structure
if the domain forms a rectangle with possible vertical and horizontal strips of removed
value pairs, hence the name rectangular structure.

Fig. 1. A constraint domain (shadow rectangles), its projection to the variable Y
(C({X,Y})↓Y), and a reduced constraint domain

Assume that C(Xs) is a domain of the constraint C and D(X) is a domain of the
variable X – a set of values. We call the intersection C(Xs) ∩ (×X∈Xs D(X)) a reduced
domain of the constraint (Figure 1). Note, that the reduced domain consists only of
the tuples (v1,…,vn) such that ∀i vi∈D(Xi). We say that a constraint is consistent if
every value of any variable constrained by C is a part of some tuple satisfying the
constraint. Actually, the constraint is consistent in respect to the current domains of
the constrained variables if the projections of the reduced domain to these variables
are equal to the current domains of respective variables. Thus, it is possible to make
the constraint consistent by projecting the reduced constraint domain to the
constrained variables:

∀Y∈Xs: D(Y) ← (C(Xs) ∩ (×X∈Xs D(X)))↓Y.

The algorithms attempting to make the constraint consistent by narrowing variables’
domains are called propagators. The propagator is complete if it makes the constraint
consistent that is all locally incompatible values are removed. The propagator is sound
if it does not remove any value that is a part of a tuple satisfying the constraint and
consisting of values from the current variables’ domains. The propagator is
idempotent if it reaches a fix point that is the next application of the propagator to the
narrowed domains does not narrow them more.

When domain of any constraint variable is changed, the propagator is evoked by
the constraint solver to make the constraint consistent or to check that the constraint is
still consistent. By using this technique, derived from AC-3, it is possible to achieve a
local consistency of the network of constraints (called generalized arc consistency). If
the domains of the constraint variables become singleton then it is not necessary to

C
(X

,Y
)↓

Y

X

Y

D(Y)

D(X)

Reduced
constraint domain

 4

call the propagator again. However, the propagator may be deactivated even sooner
which improves the practical time efficiency of the solvers [1]. Assume that the
domain of X is {1,2,3} and the domain of Y is {5,6,7}. Then a sound propagator for
the constraint X<Y deduces no domain narrowing. This is because every combination
of values from the variables’ domains satisfies the constraints – the constraint is
entailed. We say that the constraint is entailed if the constraint is satisfied for any
combination of values from variables’ domains. Visibly, the constraint is entailed if
and only if the reduced constraint domain has a rectangular structure.

Compact Constraint Domains

When users specify a binary constraint domain, they usually use a table of compatible
pairs. Typically, for a value of one variable called a leading variable, they specify a
range of compatible values of the other variable called a dependent variable. Range is
a finite set of disjoint intervals, for example {1..5, 8..15, 30..sup}. Such a table can be
formally described as a set T={(xi,dyi) | i=1..n}, where xi are pair-wise different values
of the leading variable and dyi is a range of values of the dependent variable that are
compatible with the value xi. Paper [1] proposes a compact representation of the table
T based on the observation that the ranges dyi are often identical in real-life problems.
Formally, the compacted set is defined as follows:

CT = {(dxi,dyi) | dxi = { x | (x,dyi)∈T } & dxi ≠ ∅ }.

We call dxi the x-component of (dxi,dyi) in CT and, similarly, dyi is the y-component.
Note that it is easy to obtain CT from T by collecting all elements of T with the
identical y-component into a single element of CT. Figure 2 shows an example of
such a compacted form.

Fig. 2. Representation of the constraint domain using a set of non-overlapping areas with a
rectangular structure

The set CT has some interesting features that can be exploited by the filtering
algorithm. First, each element of CT describes an area with a rectangular structure.
Hence we call the elements of CT rectangles. Second, the projections of these
rectangles to the leading variable are pair-wise disjoint. Thus, we can see the original
constraint as a disjunction of entailed constraints where the domains of these
constraints are defined by the elements of CT.

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1 1

2 1

3

2

 5

Filtering Algorithm

The filtering algorithm proposed in [1] is basically a constructive disjunction of
constraints with domains defined by the elements of CT. This algorithm, called GR
(General Relation), computes the reduced constraint domain and its projection to both
constrained variables. After any change of the variable domain, the algorithm does the
above computation from scratch so it corresponds roughly to the REVISE procedure
of AC-3. The main inefficiency behind this approach is that a lot work is done even if
a small amount of values has been pruned. The paper [3] proposes a new approach,
called AC-2000, based on idea of checking support just for the values that lost a
support (a value compatible with a given value has been removed). We call this
technique propagation of deletions. By using an additional data structure, it is
possible to effectively check whether the value lost a support which leads to the
worst-case time optimal algorithm called AC-2001. The same idea is independently
presented in [8] under the name AC-3.1.

 Based on the above observations we propose a new filtering algorithm for
compactly represented extensional constraint domains. The algorithm propagates
deletions by exploring only the values that lost some support. Instead of attaching a
special data structure to each value, like AC-2001 and AC-3.1 do, we use the
representation of the reduced constraint domain. Thus, in a single data structure we
keep the supporters for both constrained variables so we can exploit the symmetry of
the constraint in a similar sense like AC-7 [2] (if a supports b then b supports a).

The propagator is proposed in such a way that it can be easily integrated into
existing constraint solvers, in particular we designed the algorithm for the clpfd
library [4] of SICStus Prolog. We use a global data structure called a state [5] to pass
information between the subsequent calls of the propagator. In particular, we keep the
reduced constraint domain and the domains of both variables from the last call of the
propagator in the state data structure of the propagator.

The algorithm is formally described in Figure 3 and Figure 4 illustrates its run.
Before the propagator is evoked for the first time, the projections of the constraint
domain CT to both variables are computed in the procedure INIT. These projections
are assumed to be the initial domains of the constrained variables that are stored in the
propagator’s state. Then the propagator, realised in the function FILTER, is called
explicitly to propagate the actual domains of the variables. We also expect the
propagator to be called any time, when domain of any involved variable is changed.
First, the propagator computes which values have been removed from the domain of
the dependent variable – a set DiffY (line 2). Then, it checks which rectangles in CT
are affected by this deletion (3-9). Actually, the values y∈DiffY are removed from the
y-components of the rectangles in CT (6). If the y-component of any rectangle
becomes empty by this removal (7) then the x-component is removed from the
domain of the leading variable X via DelX (10) and the rectangle is no more assumed
to be an element of CT. This can be done because the x-components of the rectangles
are disjoint so the values in the x-component of the removed rectangle lost their only
support. A similar process is done for the leading variable (11-18). However, because
the y-components of the rectangles are not necessarily disjoint so the values collected
in DelY may still have another support in X, we cannot remove the values in DelY
immediately. This additional support is looked for in the last loop (19-21). The values

 6

for which the support is not found there can be safely deleted (22). Notice also that
the propagator computes the reduced domain of the constraint so this domain can be
used in the subsequent calls. Actually, the structure CT keeps the updated information
about the supporters.

Last but not least, the propagator is able to check the constraint entailment. If there
is exactly one rectangle in CT (23) then the constraint is entailed. However, this
entailment detector is not complete because CT may consist of more rectangles with
identical y-components (see Figure 4). It is possible to extend the propagator to detect
entailment completely but we think that it does not pay off here.

The above filtering algorithm can be further optimized during implementation. For
example, the loop at lines 3-9 is processed only when DiffY≠∅. Similarly, the loop at
lines 12-18 is processed only when DiffX≠∅. Finally, the loop at lines 19-21 can be
safely exited when DelY becomes empty.

Theorem 1. The proposed filtering algorithm is sound, complete, and idempotent.

Proof: The proof is based on the observation that the propagator keeps the reduced
constrained domain. If the propagator removes a value a from dom(X) then this value
has no support in Y because the only rectangle containing pairs (a,b) for some b has
been removed (7). Note that there is at most one such rectangle in CT for the value a
because the x-components of the rectangles are disjoint. Similarly if b is deleted from
dom(Y) then it lost a support in one rectangle that was deleted from the reduced
constraint domain (16) and no support in another rectangle has been found (19-21).
Hence, the propagator is sound.

The INIT procedure computes the projection of CT to both variables so at the
beginning only locally consistent values are in the domains. Assume (for
contradiction) that after finishing the propagator, there is an inconsistent value a in
dom(X). Thus, there is no supporter of a in Y so there is no rectangle in CT
containing a pair (a,b) for some b. Because originally the value a was locally
consistent, the rectangle containing (a,b) must have been removed from CT during
filtering. However, if the rectangle was removed then all values of its x-component
have been removed as well (7). Similarly, if locally inconsistent value b remains in
dom(Y) then there is no rectangle containing a pair (a,b) for some a in CT. The
original rectangle containing (a,b) has been removed (16) and because there is no
another rectangle in CT containing b in its y-coordinate (19-21), b has been removed
as well (22). Hence, the propagator is complete.

If the repeated call to the algorithm narrows the domains then the newly removed
values must be locally inconsistent due to soundness of the propagator. However,
because the propagator is complete, all such values have already been removed.
Hence the repeated call cannot narrow the domains and the propagator is idempotent.

 7

procedure INIT(X,Y, CT)
 DomX ← ∅
 DomY ← ∅
 for each (DX,DY) in CT do // union the projections of all rectangles to X and Y
 DomX ← DomX ∪ DX
 DomY ← DomY ∪ DY
 end for
 dom(X) ← dom(X) ∩ DomX // dom(X) is the actual domain of the variable X
 dom(Y) ← dom(Y) ∩ DomY // dom(Y) is the actual domain of the variable Y
 call FILTER(X, Y, (DomX, DomY, CT))
end INIT

procedure FILTER(X,Y, State)
1 (OldDomX, OldDomY, CT) ← State
2 DiffY ← OldDomY – dom(Y) // values deleted from Y since the last call to FILTER

3 DelX ← ∅
4 TmpCT ← ∅
5 for each (DX,DY) in CT do
6 RY ← DY – DiffY
7 if RY==∅ then DelX ← DelX ∪ DX // values of X that lost support in Y
8 else TmpCT ← TmpCT ∪ {(DX,RY)}
9 end for
10 NewDomX ← dom(X) – DelX

11 DiffX ← OldDomX – dom(X) – DelX // values deleted from X
12 DelY ← ∅
13 NewCT ← ∅
14 for each (DX,DY) in TmpCT do
15 RX ← DX – DiffX
16 if RX==∅ then DelY ← DelY ∪ DY // values of Y that lost support in X
17 else NewCT ← NewCT ∪ {(RX,DY)}
18 end for

19 for each (DX,DY) in NewCT do // try to find another support for DelY
20 DelY ← DelY – DY
21 end for

22 NewDomY ← dom(Y) – DelY
23 Entailed ← (|NewCT|==1)
24 State ← (NewDomX, NewDomY, NewCT)
25 dom(X) ← NewDomX
26 dom(Y) ← NewDomY
end FILTER

Fig. 3. Filtering algorithm GRA for propagating deletions

 dom(X) dom(Y) CT
after INIT 2..9 2..6 { ({2,8,9},{2,5,6}), ({3,4,7},2..6), ({5,6},{3,4})}
deletion 2..6 5..6
line 10 2..4 5..6 {({2,8,9},{5,6}), ({3,4,7},{5,6})}
line 22 2..4 5..6 {({2},{5,6}), ({3,4},{5,6})}

Fig. 4. Example of propagation for the constraint from Figure 2

 8

Experiments And Discussion

We compare our algorithm with the original GR propagator with entailment detector
from [1] and with the built-in relation and case constraints in SICStus Prolog.
The GR propagator and our new filtering algorithm are implemented in Prolog and
they both use an identical representation of the constraint domain – the set CT. The
relation constraint is implemented by means of a more general case constraint
which is implemented in C. We use the original table T to describe the domain for the
relation constraint and the table CT to describe the domain for the case
constraint. Note that both these constraints achieve the same so called domain
consistency as our filtering algorithm and the GR propagator. Unfortunately, the
filtering algorithms behind the case and relation constraints are not published so
we can do just an empirical comparison without a deep analysis of the results. The
tests run in SICStus Prolog 3.11.0 under Windows XP Professional on 1.7 GHz
Mobile Pentium-M 4 with 768 MB RAM. The running time is measured in
milliseconds via the statistics predicate with the walltime parameter [7].

To explore efficiency of the proposed algorithm, we use the set of abstract
benchmarks proposed in [1]. The basic idea of these benchmarks is to apply domain
pruning into a single randomly generated constraint until the domain of one of the
constrained variables becomes singleton. The variables alternate in pruning to
suppress the leading or dependent role of the variable.

The constraint domain is generated as follows. For each value of the leading
variable an interval of compatible values of the dependent variables is generated. The
length of this interval is identical for all the values and it is one of the parameters of
the benchmark. Thus, only the position of the interval is introduced randomly. As
Figure 5 shows, the size of the representation depends nicely on this parameter which
is the main reason why we chose this approach rather than a completely random
constraint domain. The other parameter of the benchmark is the size of the domain of
the variables. We use the domain size 10 000 because we study the propagators for
large domains. We tested all interval lengths between 1000 and 9000 with the step
1000 and for each length we generated ten problems. The presented results are
average running times over these ten problems.

0
2000
4000
6000
8000

10000
12000

1000 2000 3000 4000 5000 6000 7000 8000 9000

length of the compatible interval

si
ze

 o
f r

ep
re

se
nt

at
io

n

relation

GR/case

Fig. 5. Size of the constraint domain representation as a function of the length of interval used
by the problem generator.

 9

The experiments in [1] also showed that the efficiency of the propagator depends on
the style of domain pruning and on the number of values deleted in a single pruning
step. We present the comparison for two pruning styles, namely domain splitting and
arbitrary deletions where the number of deleted values is chosen randomly. We also
did some experiments where the number of deleted values is given as a parameter.
These experiments confirmed our conclusions presented below.

Domain splitting

The domain splitting propagation style prunes the variable domain by splitting it into
two parts and pruning one of them. This pruning style is used by some search
procedures to decompose the search space. It is also known under the notion of
shaving that is widely used in scheduling applications (during shaving, a part of the
domain is deleted at the domain borders). In our experiments, we randomly generate a
cutting point in between the current lower and upper bound of the domain and then
we randomly prune the part above or below the cutting point. Figure 6 shows the
running time of the propagators as a function of the interval length. We denote the
new filtering algorithm as GRA (General Relation Advanced) there.

1

10

100

1000

10000

1000 2000 3000 4000 5000 6000 7000 8000 9000

length of the compatible interval

ru
nn

in
g

tim
e

(m
s)

case

relation

GR

GRA

Fig. 6. The running time (a logarithmic scale in milliseconds) as a function of the interval
length for domain splitting.

The running time of the GR propagator is comparable to the relation constraint.
Actually, it is always slightly faster. Surprisingly, the case constraint is the worst
propagator here despite the fact that it uses the same compact representation as the
GR propagator. The hands-down winner here is our new filtering algorithm with a
significant speed-up over all other propagators.

Our new filtering algorithm is designed to work best when a small number of
values is deleted but the experiment shows that it works very well in average. We also
did experiments where the size of the shaved area is given relatively to the size of the
actual domain (in particular, 5%, 10%, 20%, 40%). While the GR propagator was
faster than the relation and case constraints only when large portions of the
domain were pruned together or when the domain was highly compacted [1], the new
filtering algorithm was significantly faster in all the tests.

 10

Arbitrary deletions

Probably the most typical pruning style in (random) problems is removing the values
from all over the domain. To model such situation, we randomly select a random
number of values from the variable domain and we prune all these values together.
Figure 7 shows the comparison.

4500

5000

5500

6000

6500

7000

7500

8000

1000 2000 3000 4000 5000 6000 7000 8000 9000

length of the compatible interval

ru
nn

in
g

tim
e

(m
s)

case

relation

GR

GRA

Fig. 7. The running time (in milliseconds) as a function of the interval length for arbitrary
deletions.

The efficiency of the GR propagator is week in comparison to the relation
constraint when random deletions are used. The hypothesis mentioned in [1] is that
the reason is that the GR propagator is not designed for pruning individual values but
for pruning large intervals of values. One of the motivations of our research was to
confirm this hypothesis by redesigning the GR propagator to handle better deletions
of individual values. As the above experiment showed, the runtime of the new
filtering algorithm is now comparable to the relation constraint and it is faster
than the case constraint (depending on the size of the constraint representation).
The experiment also showed that the new filtering algorithm behaves similarly to the
GR propagator (they have a similar efficiency curve in Figure 7) but the new filtering
algorithm is about 20% faster. The experiments with a controlled number of deleted
values (a given percent of variable domain is pruned, in particular 5%, 10%, 20%,
40%) showed that the gap between the GR propagator and the new propagator is
enlarging when the number of deleted values is decreasing. Thus the original
hypothesis seems correct. Moreover, we can see that taking care about the deleted
values rather than looking for supporters of the values in domains pays-off even if
large portions of the domain are pruned.

The presented results show that the new filtering algorithm is significantly better than
the GR propagator in all the experiments. As expected, the speed-up is higher when a
smaller number of values is deleted in a single step but there is a significant speed-up
even in an average case. The new filtering algorithm is also much faster than the
built-in relation and case constraints when domain splitting (shaving) is used
and its speed is comparable to these constraints in the other experiment – arbitrary

 11

deletions. This is a quite good result if we take in account that the built-in constraints
are implemented in a low-level C while our filtering algorithm is implemented in
Prolog with no low-level optimisation. To confirm these good results, we did some
preliminary experiments with random CSP where the constraint domain is made from
random rectangles (to get a given tightness). In these experiments, our new filtering
algorithm also beat all other tested propagators.

Conclusions

The paper presents a new filtering algorithm for compactly represented extensionally
defined binary constraints. The algorithm is based on propagating deletions which
makes it much more efficient than the existing GR propagator. Also the compact
representation of the constraint domain makes the algorithm useful for very large
domains, which differentiates the proposed approach from existing AC-3.1 and AC-
2001 algorithms. Moreover, the algorithm can be naturally extended to n-ary
constraints. Last but not least, rather than implementing the algorithm as a separate
system, we developed the algorithm in such a way that it can be easily integrated into
existing constraint solvers.

References

1. R. Barták and R. Mecl. Implementing Propagators for Tabular Constraints. In Recent
Advances in Constraints. LNAI 3010, Springer-Verlag, 44-65, (2004).

2. Ch. Bessière, E.C. Freuder, and J.-Ch. Régin. Using constraint metaknowledge to reduce
arc consistency computation. Artificial Intelligence, 107, 125-148, (1999).

3. Ch. Bessière and J.-Ch. Régin. Refining the Basic Constraint Propagation Algorithm. In
Proceedings of IJCAI-01, 309-315, (2001).

4. M. Carlsson, G. Ottosson, B. Carlsson. An Open-Ended Finite Domain Constraint Solver.
In Proceedings Programming Languages: Implementations, Logics, and Programs, (1997).

5. M. Carlsson and Ch. Schulte. Finite-Domain Constraint Programming Systems. Tutorial at
CP 2002, (2002).
ftp://ftp.sics.se/pub/isl/papers/FD Systems.pdf

6. K.C.K. Cheng, J.H.M. Lee, and P.J. Stuckey. Box constraint collections for adhoc
constraints. In F. Rossi (ed.): Proceedings of the 9th International Conference on Principles
and Practice of Constraint Programming, LNCS 2833, Springer-Verlag, (2003).

7. SICStus Prolog 3.11.0 User's Manual, SICS, (2003).
8. Y. Zhang and R. Yap. Making AC-3 an Optimal Algorithm. In Proceedings of IJCAI-01,

316-321, (2001).

