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Abstract 
Real world is dynamic in its nature, so techniques 
attempting to model the real world should take this 
dynamicity in consideration. A well known Constraint 
Satisfaction Problem (CSP) can be extended this way to a 
so called Dynamic Constraint Satisfaction Problem 
(DynCSP) that supports adding and removing constraints in 
runtime. As Arc Consistency is one of the major techniques 
in solving CSPs, its dynamic version is of a particular 
interest for DynCSPs. This paper presents an improved 
version of AC|DC-2 algorithm for maintaining maximal arc 
consistency after constraint retraction. This improvement 
leads to runtimes better than the so far fastest dynamic arc 
consistency algorithm DnAC-6 while keeping low memory 
consumption. Moreover, the proposed algorithm is open in 
the sense of using either non-optimal AC-3 algorithm 
keeping a minimal memory consumption  or optimal AC-
3.1 algorithm improving runtime for constraint addition but 
increasing a memory consumption. 
 

Introduction   
Constraint programming is a successful A.I. technology for 
solving combinatorial problems modeled as constraint 
satisfaction problems (CSP). Dynamic Constraint 
Satisfaction Problem proposed by Decher and Dechter 
(1988) is an extension to a static CSP that models addition 
and retraction of constraints and hence it is more 
appropriate for handling dynamic real-world problems. 
 Several techniques have been proposed to solve 
Dynamic CSPs, including searching for robust solutions 
that are valid after small problem changes (Wallace and 
Freuder, 1998), searching for a new solution that 
minimizes the number of changes from the original 
solution (El Sakkout, Richards, Wallace, 1998), reusing 
the original solution to produce a new solution (Verfaillie 
and Schiex, 1994), or reusing the reasoning process. A 
typical representative of the last method – reusing the 
reasoning process – is maintaining dynamic arc 
consistency. The goal of maintaining dynamic arc 
consistency is keeping the problem arc consistent after 
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constraint addition or constraint retraction. Adding a new 
constraint is a monotonic process which means that 
domains of variables can only be pruned. Existing arc 
consistency algorithms are usually ready for such 
incremental constraint addition so they can be applied 
when a new constraint is added to the problem. When a 
constraint is retracted from the problem then the problem 
remains arc consistent.  However, some solutions of the 
new problem might be lost because the values from the 
original problem that were directly or indirectly 
inconsistent with the retracted constraint are missing in the 
domains. Consequently, such values should be returned to 
the domains after constraint retraction. Then we are 
speaking about maximal arc consistency. 
 Existing algorithms for restoring maximal arc 
consistency after constraint retraction are usually working 
in three stages: recovery of values deleted due to the 
retracted constraint, propagation of these recovered values 
to other variables, and removal of inconsistent values that 
were wrongly restored in the precedent stages. DnAC-4 
(Bessière, 1991) was one of the first dynamic arc-
consistency algorithms. As the name indicates, the 
algorithm is based on AC-4 (Mohr and Henderson, 1986) 
and, actually, it uses all data structures proposed for AC-4. 
In addition to them, a new data structure justification was 
added to improve the efficiency of constraint retraction, in 
particular to minimize the number of wrongly restored 
values. This data structure keeps a link to the variable that 
caused deletion of the value from the variable domain 
during the AC domain pruning. DnAC-4 inherits the 
disadvantages of AC-4 and therefore DnAC-6 (Debruyne, 
1996) has been proposed to improve space complexity and 
average time complexity. DnAC-6 uses the same principles 
as DnAC-4 but it is integrated with AC-6 (Bessière, 1994) 
rather than using AC-4. DnAC-6 is currently the fastest 
dynamic arc consistency algorithm but it has the 
disadvantage of fine grained consistency algorithms which 
is a large space complexity. To keep low memory 
consumption, AC|DC algorithm has been designed by 
Berlandier and Neveu (1994). AC|DC is built around AC-3 
(Mackworth, 1977) algorithm and it does not use the 
supporting data structures. As a consequence, more 
inconsistent values are restored in the second stage and 
these values must be removed in the third stage by non-
optimal AC-3 algorithm. Mouhoub (2003) proposed an 



improvement of the time complexity for AC|DC by using 
optimal AC-3.1 algorithm (Zhang and Yap, 2001). The 
resulting algorithm AC-3.1|DC has time and space 
complexity comparable to DnAC-6. Recently, Surynek and 
Barták (2004) proposed an improvement of AC|DC called 
AC|DC-2 that uses AC-3 algorithm to preserve low 
memory consumption but improves the propagation stage 
by re-introducing justifications and new timestamps. Table 
1 summarizes the worst-case time and space complexities 
of the existing dynamic AC algorithms. 
 

 DnAC-4 DnAC-6 
AC-3.1|DC 

AC|DC 
AC|DC-2 

Space  O(ed2+nd) O(ed+nd) O(e+nd) 
Time  O(ed2) O(ed2) O(ed3) 

Table 1. Complexity of existing dynamic AC algorithms. 
 
In this paper we propose improvements to AC|DC-2 based 
on smarter usage of AC filtering and better exploitation of 
the timestamps. We will show experimentally that the 
resulting algorithm AC|DC-2i is practically faster than the 
so far fastest DnAC-6 and AC-3.1|DC algorithms. 
Moreover, the algorithm still keeps low memory 
consumption of AC|DC. To further improve time 
efficiency of the proposed algorithm it is possible to use 
optimal AC-3.1 algorithm resulting in AC3.1|DC-2i. This 
algorithm is slightly faster than AC|DC-2i when retracting 
a constraint and much faster when adding a constraint but 
it has the disadvantage of larger memory consumption. 

Formal Background 
A constraint satisfaction problem (CSP) P is a triple 
(X,D,C), where X is a finite set of variables, for each 
xi∈X, Di∈D is a finite set of possible values for the 
variable xi (the domain), and C is a finite set of constraints. 
In this paper we expect all the constraints to be binary, that 
is the constraint cij∈C defined over variables xi and xj is a 
subset of the Cartesian product Di×Dj. Value a of variable 
xi is arc consistent (AC) if and only if for each variable xj 
connected to xi by constraint cij, there exists a value b∈Dj 
such that (a,b)∈cij. A CSP is arc consistent if and only if 
every value of every variable is arc consistent. A CSP is 
maximally arc consistent if it is the largest (according to 
inclusion) arc consistent problem. Arc consistency 
algorithms make the problems maximally arc consistent by 
removing only the values that are not arc consistent from 
respective domains. 
 Dynamic constraint satisfaction problem (DCSP) is a 
sequence P0, P1,…, Pn, where each Pi is a CSP resulting 
from addition or retraction of a constraint in Pi-1. For 
simplicity reasons, we expect that P0 contains no 
constraints; hence it is maximally arc consistent. The task 
of dynamic arc consistency is to make problem Pi 
maximally arc consistent using the information that 
problems P0, P1,…, Pi-1 are maximally arc consistent. 

Improved Algorithm AC|DC-2i 
As we already noted, the existing dynamic arc consistency 
algorithms including AC|DC are working in three stages: 
recovery of values deleted due to the retracted constraint 
(initialization stage), propagation of these recovered values 
to other variables (propagation stage), and removal of 
wrongly restored inconsistent values (filtration stage). 
AC|DC loses efficiency due to restoration of many values 
that are not arc consistent and hence deleted afterwards 
(Debruyne, 1996). Therefore Surynek and Barták (2004) 
proposed to extend AC|DC with additional data structures 
that record a justification and a timestamp for every value 
eliminated from the variable domain. Justification is the 
first neighboring variable in which the eliminated value 
lost all supports. Timestamp is a time when the value has 
been eliminated. Time is modeled using a global counter 
that is incremented after every manipulation of variable 
domains. By using justifications and timestamps AC|DC-2 
determines more accurately the set of values to be restored 
and hence it improves a lot over AC|DC. 
 We propose three extensions to AC|DC-2 that improve 
further the runtime. First, we suggest handling constraints 
in a directional way (like in standard AC-3; do not 
interchange it with directional AC) rather than the less 
efficient non-directional way from AC|DC-2. Second, we 
propose to apply the AC procedure only to newly restored 
values rather than to all values. Finally, we propose to use 
the timestamp in a finer way to further decrease the 
number of wrongly restored values. 
 Figure 1 shows an abstract code for constraint addition. 
It is basically the original AC-3 algorithm extended to 
compute justifications (justif_var) and timestamps 
(justif_time) and to update the global time counter 
(gtime). Moreover, only the values that are restored after 
the given time are checked for consistency (line 2 in 
filter-arc-ac3'). The CSP is represented by variables’ 
domains D and by a set of arcs C describing the constraints. 
 
function propagate-ac3'(revise, time) 
1 queue := revise 
2 while queue not empty do 
3   select and remove an arc (u,v) from queue 
4   queue := queue ∪ filter-arc-ac3'((u,v), time) 
 
function filter-arc-ac3'((u,v), time) 
1 modified := false 
2 for each d∈D[u] s.t. restore_time[u,d]>time do 
3    if d has no support in D[v] wrt (u,v) then 
4      D[u] := D[u] - {d} 
5      justif_var[u,d] := v 
6      justif_time[u,d] := gtime 
7      gtime := gtime + 1 
8      modified := true 
9 if not modified then return (Ø) 
10 return ({(w,u)|(w,u)∈C, w≠u, w≠v)}) 
 
function add-constraint-ac|dc2i(c) 
1 {u,v} := the variables constrained by c 
2 C := C ∪ {(u,v),(v,u)} 
3 propagate-ac3'({(u,v),(v,u)}, 0) 

Figure 1. Constraint addition in AC|DC-2i. 



 As we mentioned, constraint retraction is done in three 
stages: initialization (initialize-ac|dc2i), propagation 
(propagate-ac|dc2i), and filtration (propagate-ac3'). 
We already explained filtration using AC-3. Just notice 
how the time is set in line 2 of retract-constraint-
ac|dc2i so only the restored values will be checked for 
consistency during filtration. 
 During the initialization stage (initialize-ac|dc2i), 
the values that were removed due to the retracted 
constraint (line 3) are restored (the values for restoration 
are taken from the original domain D0). The restored values 
are kept in a queue for the subsequent stage. Notice also, 
that this is the place where the restoration time is set (line 
5). 
 During the propagation stage (propagate-ac|dc2i) we 
are restoring other values in the direct neighborhood of the 
variable whose domain has been extended. Assume that 
domain of variable u was extended and v is connected to u 
using a constraint. Then, we restore values dv in v that: 
• were removed due to the constraint between u and v 

(found using the justification, line 7), 
• have a supporter among the restored values of u (line 9), 
• and this supporter has been deleted before dv (line 10). 

function retract-constraint-ac|dc2i(c) 
1 {u,v} := the variables constrained by c 
2 retract_start := gtime 
3 restored_u := initialize-ac|dc2i(u,v) 
4 restored_v := initialize-ac|dc2i(v,u) 
5 C := C - {(u,v),(v,u)} 
6 revise:= propagate-ac|dc2i({restored_u,restored_v}) 
7 propagate-ac3'(revise, retract_start) 
 
function initialize-ac|dc2i(u,v) 
1 restored_u := Ø 
2 for each d∈(D0[u]-D[u]) do 
3   if justif_var[u,d] = v then 
4     D[u] := D[u] ∪ {d} 
5     restore_time[u,d] := gtime 
6     gtime := gtime + 1 
7     justif_var[u,d] := NIL 
8     restored_u := restored_u ∪ {d} 
9 return ((u,restored_u)) 
 
function propagate-ac|dc2i(restore) 
1 revise := Ø 
2 while restore not empty do 
3   select and remove (u,restored_u) from restore 
4   for each (u,v)∈C do 
5     restored_v := Ø 
6     for each dv∈(D0[v]-D[v]) do 
7       if justif_var[v,dv] = u and 
8        exists du∈restored_u s.t. 
9         du is a support for dv wrt (u,v) and 
10         justif_time[v,dv]>justif_time[u,du] then 
11           D[v] := D[v] ∪ {dv} 
12           restore_time[v,dv] := gtime 
13           gtime := gtime + 1 
14           justif_var[v,dv] := NIL 
15           restored_v := restored_v ∪ {dv} 
16     if restored_v ≠ Ø then 
17       restore := restore ∪ {(v,restored_v)} 
18      revise := revise ∪ {(v,w)|(v,w)∈C}) 
19 return (revise) 

Figure 2. Constraint retraction in AC|DC-2i. 

The last condition above is fine tuning the condition from 
AC|DC-2 – now the deletion time of individual values is 
assumed rather than a minimum among the deletion times 
of all restored values in the variable. Because the new 
condition is stronger than the former one, fewer values are 
restored (but all values that are arc consistent with respect 
to the new problem are restored, see the next section). The 
propagation loop is repeated as long as any domain 
changes. Figure 3 presents a simplified example of three 
stages of constraint retraction (restoration time not shown 
– it is used within stage 3 only). 
 Note finally, that AC|DC-2i uses AC-3 as it is, only the 
justifications and timestamps should be updated upon 
value removal. Hence, AC-3 can be substituted by other 
arc consistency procedures, for example by using optimal 
algorithm AC-3.1 (Zhang and Yap, 2001) to get 
AC3.1|DC-2i. This change further improves time 
efficiency of the algorithm but it also increases space 
complexity due to additional structures required by AC-3.1 
(and other optimal AC algorithms). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Example of constraint retraction. 

 

STAGE 1: constraint A<C is removed 

INITIAL SITUATION 

A:   2   3   4 

B:   2/D6   3/D9   4 

C:   1   2   3/E7   4 

D:   1/B1   2/C5   3/C8   4 

E:   3 

B=D (1) 

C=D (3) 

C≠E (4) 

These values are returned to domains 
because they were deleted when 
propagating via the retracted constraint 

STAGE 2: propagation of domain extensions 

 

A:   2   3   4 

B:   2   3/D9   4 

C:   1   2   3/E7   4 

D:   1/B1   2   3/C8   4 
B=D 

C=D 

C≠E 

E:   3 

A:   2   3   4/C2 

B:   2/D6   3/D9   4 

C:   1/A3   2/A4   3/E7   4 

D:   1/B1   2/C5   3/C8   4 

E:   3 

B=D (1) 

C=D (3) 

A<C (2) C≠E (4) 

order number when the 
constraint is added 

justification for 
value removal

VariableTime 

A:   2   3   4 

B:   2   3/D9   4 B=D D:   1/B1   2   3/C8   4 

 

C≠E 

E:   3 

C:   1/D10   2   3/E7   4 

STAGE 3: re-establishing AC 



Theoretical Analysis 
In this section we will prove formally the correctness of 
AC|DC-2i algorithm and we will also describe time and 
space complexity of AC|DC-2i and AC3.1|DC-2i. 

Soundness and Completeness 
The correctness of the operation of constraint addition 
follows directly from the correctness of AC-3, thus extra 
argumentation is not necessary. 
 Assume now that constraint ci is retracted from the 
problem P = (X, D, {c1,c2,…,cn}). We say that the 
operation of constraint retraction is correct if we obtain the 
maximally arc consistent problem for the problem P’ = (X, 
D, {c1,c2,…,c(i-1),c(i+1),…,cn}). 
 
Proposition 1. Algorithm AC|DC-2i performs a correct 
retraction of a constraint with respect to maximal arc 
consistency. 
 
Proof. To prove the proposition it is sufficient to verify 
that the algorithm restores all values that are necessary to 
be restored, that is the values that have to be present in the 
maximum arc consistent state of the new problem. If the 
algorithm restores some extra values, it does not matter 
because the final filtration stage will remove them. This 
fact directly follows from the correctness of AC-3. 
 Consider the following situation. We have a problem P, 
which is the result of addition of the constraints from the 
set {c1,c2,…,cn}, and we are retracting a constraint ci, that 
restricts the variables u and v. As a reference we will use 
an auxiliary maximally arc consistent problem Q, which 
consists of the constraints {c1,c2,…,c(i-1),c(i+1),…,cn}. Our 
task is to show that all the values that are present in the 
current domains of the variables of problem Q and are not 
present in the current domains of the variables of problem 
P will be restored by AC|DC-2i. 
 We will proceed by mathematical induction according to 
the removal time of the values. Let constraint ci be added 
to problem P at time t0. Next, let t0+t1 be the time when a 
value from a variable different from u or v has been 
removed for the first time (after time t0). Thus the values 
removed from the problem in the time interval 〈t0, t0+t1〉 
came only from the current domains of the variables u and 
v. The reason for elimination of these values has been 
directly the constraint ci together with the current state of 
given domains. All these values are restored within the 
initialization stage, because they have the opposite variable 
as their justification and so they satisfy the condition of 
restoration (line 3 in initialize-ac|dc2i). 
 Now, let us suppose that we need to restore a value d in 
the current domain of a variable x such that value d has 
been removed at time t2, where t2>t0+t1. It means that value 
d is present in the current domain of variable x in problem 
Q while this is not true in problem P. By induction 
hypothesis we can assume that all the values removed 
before time t2 have already been tested for restoration. If 
these values were present in the current domains of 

problem Q they had been correctly restored in problem P. 
Before value d was removed from the current domain of 
variable x it must have lost all supports in some of the 
neighboring variables first. Suppose that y is such a 
variable with no support for d. It is clear that all supports 
for d were eliminated before time t2 from the current 
domain of y. Value d is present in problem Q, thus there 
must be present also some support for d in the current 
domain of y in problem Q. By induction hypothesis such a 
support has been already restored and the restoration of 
their neighbors has been scheduled. Of course, variable x 
and its value d belong among these neighbors and 
therefore it is also scheduled for restoration. When the 
propagation process reaches the restoration of variable x, 
value d will be put back into the current domain of x since 
it satisfies all the conditions for restoration (lines 7-10 in 
propagate-ac|dc2i). 
 AC|DC-2i algorithm correctly restores the maximum arc 
consistency in the problem after constraint retraction. 

 
 
Proposition 2. Algorithm AC|DC-2i performs at most as 
many steps as algorithms AC|DC and AC|DC-2. 
 
Proof. The proposition directly follows from the 
correctness of AC|DC-2i and from the fact that a value has 
to fulfill more conditions in the AC|DC-2i algorithm than 
in AC|DC and AC|DC-2 before it is put back into the 
current domain of a variable. This theoretically shows that 
a propagation chain of the restoration stage is not longer in 
AC|DC-2i than in AC|DC and AC|DC-2. 

 

Time and Space Complexity 
The space complexity of AC|DC is O(nd+e) where n is a 
number of variables, d is a size of domains of the 
variables, and e is a number of constraints (Berlandier and 
Neveu, 1994). The additional data structures 
(justifications, removal times, and restoration times) 
require additional space O(nd) (O(1) for every value) so 
the overall worst-case space complexity of AC|DC-2i is 
O(nd+e), same as AC|DC and AC|DC-2. If we use AC-3.1 
instead of AC-3’ then we need to keep additional data 
structures for AC-3.1 so we obtain the worst-case space 
complexity O(ed+nd) for AC3.1|DC-2i. 
 The worst-case time complexity of AC-3 (Mackworth, 
1977) and hence AC-3’ is O(ed3) which is the complexity 
of the filtration stage of AC|DC-2i. The worst-case time 
complexity of the initialization and the propagation stages 
together is O(ed2) because every pair of values in the 
domains of different variables constrained by a constraint 
is tested at most once there. Thus the overall worst-case 
time complexity of AC|DC-2i is O(ed3), same as AC|DC 
and AC|DC-2. If AC-3.1 is used instead of AC-3 then we 
get better worst-case time complexity of the filtration stage 
O(ed2) and hence the overall worst-case time complexity 
of AC3.1|DC-2i is O(ed2). 
 



Experimental Results 
We have implemented the proposed algorithms AC|DC-2i 
and AC3.1|DC-2i in C++ and compared them with existing 
dynamic arc consistency algorithms AC|DC, AC|DC-2, 
AC3.1|DC, and DnAC-6 on Random CSPs.  
 A Random Constraint Satisfaction Problem (RCSP) 
(MacIntyre et al, 1998) represents probably the most 
frequently used benchmark set in the area of constraint 
satisfaction. Each problem instance is characterized by a 4-
tuple 〈n, d, p1, p2〉, where n is a number of variables, d is a 
uniform domain size, p1 is a measure of the density of the 
constraint graph, and p2 is a measure of the tightness of the 
constraints. We use a so called model B of a Random CSP 
where p1.n.(n-1)/2 random pairs of variables are selected to 
form binary constraints and p2.d2 pairs of values are picked 
randomly as incompatible in each constraint. 
 We did the experiments with RCSP 〈100, 50, 0.5, p2〉, 
where p2 was selected within the phase transition area 
(0.87–0.89). In each experiment, the best algorithm among 
AC|DC, AC|DC-2, AC3.1|DC, and DnAC-6 was chosen 
first and AC|DC-2i and AC3.1|DC-2i were compared to 
this best algorithm then. Note that AC|DC-2i always 
performed better than AC|DC-2. The experiments run on 
2.4 GHz Pentium 4 with 512 MB RAM under Mandrake 
Linux 10 in the following way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Number of constraint checks as a function of tightness 
in RCSP 〈100, 50, 0.5, p2〉. 

First, the constraints were added to the problem one by one 
until a given density (0.5) has been reached (part A in 
graphs). If an inconsistent state has been reached during 
constraint addition then the constraint responsible for 
inconsistency has been removed (part B in graphs). When 
a consistent state has been reached (or after removing the 
constraint that caused inconsistency), we removed 10% of 
randomly selected constraints (part C in graphs). For each 
value of tightness we generated ten random problems. 
Mean values of the runtime (Figure 5) and the number of 
constraints checks (Figure 4) are presented here. 
 The experiments showed that for constraint retraction 
the proposed algorithm AC|DC-2i beats the so far fastest 
dynamic AC algorithms both in the number of constraint 
checks and in the runtime. The reason is that AC|DC-2i 
restores less wrong (inconsistent) values and it applies the 
AC procedure only to newly restored values. In case of 
constraint addition AC|DC-2i suffers from non-optimality 
of AC-3. As the experiments showed, this can be easily 
improved by using AC-3.1 instead of AC-3 resulting in 
AC3.1|DC-2i. 
 To compare further AC|DC-2i and AC3.1|DC-2i 
algorithms we made another experiment where the 
memory consumption of the algorithms was measured. 
Again, we used Random CSP 〈100, d, 0.5, p2〉, but we 
varied the size of the variables’ domains as well as 
tightness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Runtime (in seconds) as a function of tightness in RCSP 
〈100, 50, 0.5, p2〉. 
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We were adding randomly generated constraints until we 
reached the inconsistent state when some of the domains 
became empty. We measured the memory consumption 
just before the constraint causing inconsistency was added. 
At that point the data structures stored the maximum 
number of records and so the memory consumption was 
the largest. Table 2 presents the memory consumption of 
data structures used by the compared algorithms 
(excluding the extensional representation of the 
constraints). As we can see, the memory consumption of 
AC|DC-2i is identical to AC|DC while AC3.1|DC-2i 
requires more memory comparable to AC-3.1|DC but still 
less than DnAC-6. 
 

Domain size 
(d) 20 30 40 50 60 70 80 90 

100*p2 71 79 84 87 89 90 91 92 
AC|DC <1 <1 <1 <1 <1 <1 <1 <1 
AC|DC-2 <1 <1 <1 <1 <1 <1 <1 <1 
AC-3.1|DC 2 3 5 5 7 7 9 10 
DnAC-6 2 4 6 7 9 10 12 13 
AC|DC-2i <1 <1 <1 <1 <1 <1 <1 <1 
AC3.1|DC-2i 2 3 5 5 7 7 9 10 

Table 2. Memory consumption (in MB) depending on the size of 
variable domains for RCSP 〈100, d, 0.5, p2〉. 

Conclusions 
The paper presents an improved algorithm for maintaining 
arc consistency after constraint retracting and constraint 
addition. The algorithm builds on AC|DC-2 which the 
proposed improvements make the so far fastest dynamic 
arc consistency algorithm. Two versions of the algorithm 
are presented: the first one with AC-3 procedure that keeps 
low memory consumption, the second one with optimal 
AC-3.1 procedure that improves further the time 
complexity (especially for constraint addition) but also 
increases the memory consumption. As a consequence, the 
user may choose having either decent memory 
consumption (AC|DC-2i) or a better runtime (AC3.1|DC-
2i). Note finally, that the proposed algorithm is not tightly 
integrated with the AC procedure so it can be easily 
extended to intentionally defined constraints as well as to 
n-ary constraints, provided that the underlying propagators 
give functionally similar to filter-arc-ac3' procedure 
namely updating the justifications and timestamps. 
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