
Towards Getting Domain Knowledge: Plans Analysis through Investigation of
Actions Dependencies

Luk áš Chrpa and Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics
Charles University in Prague

{chrpa,bartak}@kti.mff.cuni.cz

Abstract

There are a lot of approaches for solving planning prob-
lems. Many of these approaches are based on ‘brute
force‘ search methods and do not care about struc-
tures of plans previously computed in certain planning
domains. By analyzing these structures we can ob-
tain useful knowledge that can help in finding solu-
tions for more complex planning problems. Methods
described in this paper are based on analysis of action
dependencies appearing in plans. This analysis provides
new knowledge about the planning domain that can be
passed directly to planning algorithms to improve their
efficiency.

Introduction
Many automated planning algorithms are based on ‘brute
force‘ search techniques accommodated with efficient
heuristics guiding the planner towards the solution (Bonet
& Geffner 1999). Hence an important question is how
to find such information or knowledge that can be trans-
formed into efficient planning heuristics. Several heuris-
tics are based on the structure of Planning Graph (Blum
& Furst 1997). These heuristics provided good results on
many problems but on the other hand the analysis of Plan-
ning Graph itself does not seem to reveal complete informa-
tion hidden in the plans structures. An approach in (Hoff-
mann, Porteous, & Sebastia 2004), which is closely re-
lated to plans analysis discussed in this paper, describes
Landmarks - facts that must be true in every valid plan.
Another work (Knoblock 1994) presents a structure called
Causal Graph which describes dependencies between state
variables. Both the Landmarks and the Causal Graphs are
tools based on analyzing literals, giving us useful informa-
tion about the planning domain but almost no information
about the dependencies between the actions. One of the
most influential works from the area of actions dependencies
(McCain & Turner 1997) defines a language for express-
ing causal knowledge (previously studied in (Geffner 1990;
Lin 1995)) and formalizes actions in it. One of the newest
approaches (Vidal & Geffner 2006) based on plan space
planning techniques over temporal domains gives very good

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

results, especially in parallel planning, because it handles
better supports, precedences and causal links. There are
other practical approaches such as (Wu, Yang, & Jiang 2005)
where knowledge is gathered from plans stochastically and
(Nejati, Langley, & Konik 2006) where learning from expert
traces is adapted for acquiring classes of hierarchical task
networks. Finally, the paper (Chrpa 2007) presents a struc-
ture called Graph of Action Dependencies which provides
information about plans structures based on dependencies
of actions.

Another way for improving efficiency of planners rests
in using macro-actions (Korf 1985) that represent sequences
of primitive actions. The advantage of using macro-actions
is clear - shorter plans are explored to find a solution - and
there are some techniques for finding macro-actions (New-
ton, Levine, & Fox 2005; Coles, Fox, & Smith 2007). How-
ever, an efficient procedure for finding macro-actions re-
mains a hard problem and many planners are still unable to
handle well macro-actions together with primitive actions.

In this paper, we study new methods for plans analysis
by investigating actions dependencies. We spotted that ev-
ery action in the plan depends on some previous actions (or
on the initial state) and we propose to formally capture this
dependency relation. We provide a theoretical background
based on this relation mostly aimed on possibilities of find-
ing such actions that can be assembled into macro-actions
without loss of plans validity. We also extend this theoret-
ical background for subplans (usually obtained by assem-
blage of actions). Based on this theoretical background, we
propose methods for acquiring knowledge from plans over
given domains. The first method looks for such actions that
can be assembled and this assemblage can be helpful in find-
ing more complex plans. The second method decomposes
plans into subplans such that the actions in these subplans
can be applied in any order. Both methods are aimed to pro-
viding useful information to automated planners in the form
of heuristics guiding the action sequencing.

The paper is organized as follows. The next section in-
troduces basic notions from the planning theory. Then, we
provide the theoretical background of the problem of actions
dependencies in plans. After that, we describe the meth-
ods for gathering knowledge from plans. Finally, we dis-
cuss exploitation of the proposed methods and possible fu-
ture works.



Preliminaries
Traditionally, AI planning deals with the problem of finding
a sequence of actions transforming the world from some ini-
tial state to a desired state. States is a set of predicates that
are true ins. Action a is a 3-tuple(p(a), e−(a), e+(a)) of
sets of predicates such thatp(a) is a set of predicates repre-
senting the precondition of actiona, e−(a) is a set of nega-
tive effects of actiona, e+(a) is a set of positive effects of
actiona, ande−(a) ∩ e+(a) = ∅. Action a is applicable
to states if p(a) ⊆ s. If action a is applicable to states,
then the new states′ obtained after applying the action is
s′ = (s\ e−(a))∪ e+(a). A planning domain is represented
by a set of states and a set of actions. A planning problem is
represented by a planning domain, an initial state and a set
of goal predicates. A plan is an ordered sequence of actions
which leads from the initial state to any goal state containing
all of the goal predicates. For deeper insight in this area, see
(Ghallab, Nau, & Traverso 2004).

Action dependencies in plans: A theoretical
background

Planning is basically about action sequencing. Clearly, ac-
tions in a valid sequence forming the plan are dependent in
the sense that one action provides predicates serving as pre-
conditions for other actions. In this section, we formally
describe this dependency relation and present some of its
useful features.

Basic description of the problem
Every action needs some predicates to be true before the
action is applicable. These predicates are provided by
the initial state or by other actions that were performed
before. If we have a plan solving a planning problem, we
can identify which actions are providing these predicates
to other actions that need them as their precondition. The
following definition describes this relation formally.

Definition 1.1: Let < a1, . . . , an > be an ordered
sequence of actions. Actionaj is straightly dependent
on the effect of actionai (denoted asai → aj) if and
only if i < j, (e+(ai) ∩ p(aj)) 6= ∅ and there does not
exist anyk1, . . . , kl such thati < k1, . . . , kl < j and
(e+(ai) ∩ p(aj)) ⊆

⋃l

t=1 e+(akt
).

Action aj is dependent on the effect of actionai if and only
if ai →∗ aj where→∗ is a transitive closure of the relation
→. To describe negation of this relation, we will simply use
ai 9

∗ aj .

The relation of straight dependency on the effect of action
(hereinafter→ only) means thatai → aj holds if some
precondition of actionaj is provided by actionai andai is
the last action providing the precondition before actionaj .
Notice that an action may be in the relation→ with more
actions. The following definition formally describes the set
of predicates shared by two actions.

Definition 1.2: Let E(ai, aj) be a set of predicates de-
fined in the following way:

• E(ai, aj) = (e+(ai)∩p(aj))\
⋃j−1

t=i+1 e+(at) iff ai → aj

• E(ai, aj) = ∅ otherwise

Clearly E(ai, aj) is not empty if and only ifai → aj .
We can extend Definition 1.1 to describe that an action is
straightly dependent on the initial state or that the goal is
straightly dependent on some action. However, to model
these dependencies we can also use two special actions in
the style of plan-space planning:a0 = (∅, ∅, s0) (s0 repre-
sents the initial state) andan+1 = (g, ∅, ∅) (g represents the
set of goal predicates). Actiona0 is performed before the
plan and actionan+1 is performed after the plan.

Let us now define the complementary notion of action
independence. The motivation behind this notion is that two
independent actions can be swapped in the action sequence
without influencing the plan.

Definition 1.3: Let < a1, . . . , an > be an ordered
sequence of actions. Actionsai and aj (without loss of
generality we assume thati < j) are independent on the
effects(denoted asai = aj) if and only if ai 9

∗ aj ,
p(ai) ∩ e−(aj) = ∅ ande+(aj) ∩ e−(ai) = ∅.

The following lemma shows formally how the relation=

can be used to modify the sequence of actions.

Lemma 1.4: Let π =< a1, . . . , ai−1, ai, ai+1, ai+2,
. . . , an > be a plan for planning problemP andai = ai+1.
Then planπ′ =< a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an >
also solves planning problemP .

Proof: Assume thatπ solves planning problemP . Let sj

(respectivelys′j) be a state obtained by performing the first
j actions fromπ (respectivelyπ′). It is clear thatsk = s′k
for k ≤ i − 1. From the assumption we know thatπ is
valid which means thatsn is a goal state. Now, we must
prove thats′n is also a goal state. From definition 1.3 we
know thate+(ai) ∩ p(ai+1) = ∅ which means that action
ai+1 can be performed on states′i−1 which results in state
s′i = (s′i−1 \ e−(ai+1)) ∪ e+(ai+1). From definition 1.3
we also know thate−(ai+1) ∩ p(ai) = ∅ which means
that ai can be performed on states′i which results in state
s′i+1 = (((s′i−1 \e−(ai+1))∪e+(ai+1))\e−(ai))∪e+(ai).
Finally, we know thate+(ai+1)∩e−(ai) = ∅ which implies
in s′i+1 = si+1 (si+1 = (((si−1 \ e−(ai)) ∪ e+(ai)) \
e−(ai+1)) ∪ e+(ai+1)). It is clear that after performing the
remaining actions fromπ′ (beginning from the(i + 2)-nd
action) on states′i+1 we obtain states′n = sn which is also
the goal state. 2

The previous lemma showed that any two adjacent actions
independent on the effects can be swapped without loss of
validity of plans. This feature can be easily generalized
for longer subsequences of actions where all actions in the
sequence are pairwise independent on the effects.

Corollary 1.5: Letπ =< a1, . . . , ai, . . . , ai+k, . . . , an >
be a plan solving planning problemP andai+l = ai+m



for every 0 ≤ l < m ≤ k. Let λ be a per-
mutation over sequence< 0, . . . , k >. Then plan
π′ =< a1, . . . , ai+λ(0), . . . , ai+λ(k), . . . , an > also solves
planning problemP .

Proof: The proof can be done in the following way. Ac-
tion ai+λ(0) is shifted to positioni by repeated application
of lemma 1.4. The relationai+l = ai+m remains valid
during these shifts so we can then shiftai+λ(1) to position
i + 1 etc. 2

Remark 1.6: By assembling two primitive actions we ob-
tain a new macro-action which means that the result of ap-
plying the macro-action to some state is identical to the re-
sult of applying the primitive actions to the same state. An
action which is obtained by assembling of actionsai andaj

(in this order) will be denoted asai,j , formally:

• p(ai,j) = (p(ai) ∪ p(aj)) \ e+(ai)

• e−(ai,j) = (e−(ai) ∪ e−(aj)) \ e+(aj)

• e+(ai,j) = (e+(ai) ∪ e+(aj)) \ e−(aj)

This approach can be easily extended for more actions.

The next proposition gives conditions for assembling of
actions (or creating macro-actions).

Proposition 1.7: Let π =< a1, . . . , ai, . . . , aj, . . . , an >
be a plan solving planning problemP andi < j be indexes
of actions inπ. Assume that following conditions hold:

• for everyk such thati < k < j: ai = ak ∨ ak = aj

• for everyk andx such thati < k < x < j: ¬(ai =

ak) ∧ ai = ax impliesak = ax

• for every l andx such thati < x < l < j: ¬(al =

aj) ∧ ax = aj impliesax = al

Then, there exists a planπ′ =< a1, . . . , ai,j , . . . , an > that
also solves planning problemP .

Proof: It is clear that whenai andaj are adjacent then
these actions can be assembled intoai,j without loss of va-
lidity of the plan (see Remark 1.6). If the actions are not
adjacent then we can move the intermediate actions either
beforeai or afteraj so eventuallyai andaj become adja-
cent. The intermediate actions are shifted by repeating the
following steps:

1. let ax be the action directly followingai in the current
plan such thatai = ax, then we can swapai and ax

according to Lemma 1.4

2. let ay be the action directly precedingaj in the current
plan such thatay = aj, then we can swapay and aj

according to Lemma 1.4

3. let ak be the action betweenai andaj with the largest
index k in the current plan such that¬(ai = ak) then
this action can be moved afteraj by repeated application
of Lemma 1.4 (actionak can be swapped with the action
directly following it until ak is moved afteraj)

4. let al be the action betweenai andaj with the smallest
indexl in the current plan such that¬(al = aj) then this
action can be moved beforeai by repeated application of
Lemma 1.4

Recall that any swap operation does not change the result
of the plan which implies thatπ′ is also a valid plan forP . 2

Decomposition of the problem
One of the planning techniques, which seems to be very
contributive, is a decomposition of planning problems into
smaller subproblems. In this subsection we describe the
possibility of plans decomposition into subplans and we
also define relationships between them.

Definition 2.1: Let π be a plan solving planning problem
P = (Σ, s0, g). Subplanπi is a subsequence ofπ (not nec-
essarily continuous) which solves some planning problem
Pi = (Σi, s0i

, gi), whereΣi ⊆ Σ.

Definition 2.1 says what a subplan is. The following
lemma describes a condition that the action subsequence
must satisfy to form a subplan.

Lemma 2.2: Let π =< a1, . . . , an > be a plan solv-
ing planning problemP = (Σ, s0, g), a0 = (∅, ∅, s0)
and an+1 = (g, ∅, ∅). Let πi =< ai1 , . . . , aim

> be
a subsequence ofπ. If there does not exist any action
ak such thataip

→∗ ak and ak →∗ aiq
for any p, q

then πi is a subplan which solves a planning problem

Pi =
(

Σ,
⋃

r∈{0,...,n}\{i1,...,im},u∈{1,...,m} E(ar, aiu
),

⋃

s∈{1,...,n+1}\{i1,...,im},v∈{1,...,m} E(aiv
, as)

)

.

Proof: It is clear that bothπ andπi are plans over the
planning domainΣ. Predicates needed for execution of the
subplanπi can be provided only by the actions (including
the special actiona0) that are in relation→ (on the left hand
side) with any action fromπi. Analogically we know that
predicates obtained by execution of subplanπi are needed
for the other actions fromπ (including the special action
an+1) that are in relation→ (on the right hand side) with
any action fromπi. From the assumption we know that
there is no action both providing some predicates toPi and
requiring some predicates fromPi. 2

Remark 2.3: Let π =< a1, . . . , an > be a plan and
πi =< ai1 , . . . , aim

> be its subplan (defined according
to lemma 2.2). Proposition 1.7 shows how pairs of actions
can be assembled without loss of validity of the plan. By
generalization of this approach we are able to assemble the
whole subplanπi into one actionai1,...,im

without loss of
validity of plan π. It is clear that the assemblage can be
done if for each1 ≤ k < m actionsaik

, aik+1 satisfy the
assumption of proposition 1.7.

Definition 2.4: Let π =< a1, . . . , an > be a plan and
πi =< ai1 , . . . , aim

> be its subplan. An assemblage of the



subplanπi into a single action is calleda condensation of
the subplan.

The condensation of subplans results in a creation of new
actions that are representing these subplans. It is clear that
the planning domain must be extended by such actions.

Remark 2.5: The condensation of subplans results in
a simplification of complex plans and in a creation of new
actions. The procedure of identifying action dependencies
and subplans can now be applied to the extended planning
domain so one can obtain a hierarchical structure of actions
useful for HTN style of planning.

Algorithms for plans analysis
In the previous section, we introduced formally several no-
tions and their properties, namely the relation of action de-
pendency and composition of actions. Now, we shall present
the algorithms for finding action dependencies and identify-
ing actions that can be assembled.

Auxiliary algorithms
First, we need to compute the relation→ that is used in other
methods to be presented later. The idea of the algorithm for
computing the relation→ is straightforward. Each predicate
p is annotated byd(p) which refers to the last action that
created it. We simulate execution of the plan and each time
an actionai is executed, we find the dependent actions by
exploringd(p) for all preconditionsp of ai. Formally:

1. For each predicatep from the initial states0 setd(p) := 0.

2. Fori := 1 to n do

(a) For eachj ∈ {d(p)|p ∈ p(ai)} defineaj → ai and
computeE(aj , ai) := {p|d(p) = j ∧ p ∈ p(ai)}.

(b) Setd(p) := i for everyp ∈ e+(ai).

3. Do step (2a) also for the special actionan+1.

The relation→ can be naturally represented as a directed
acyclic graph so the relation→∗ is obtained as a transitive
closure of the graph, for example using the algorithm from
(Mehlhorn 1984).

Using the relation→∗ we can easily identify actions inde-
pendent on effects. These actions must not be in relation→∗

and they must satisfy some additional conditions that can be
verified in a constant time.

Finally, we need to identify pairs of actions that can be
assembled. Proposition 1.7 gives the conditions that these
actions must satisfy. The pairs of actions to be assembled
are identified from example plans given in the input.

It can be seen that all the algorithms presented in this sec-
tion run in polynomial time (with respect to the number of
actions).

Looking for operators that can be assembled
Planning domains include planning operators rather than
ground actions (Ghallab, Nau, & Traverso 2004) that we as-
sumed in previous sections. Planning operators contain vari-
ables and actions are obtained by substituting appropriate

constants for the variables. We shall now present a method
for assembling planning operators using the techniques from
the previous sections. The idea is as follows. For a pair
of planning operators we explore pairs of actions that are
ground instances of these operators. Based on the number
of such pairs in example plans, we propose whether and how
the planning operators can be assembled.

Let M be a square matrix where both rows and columns
represent all planning operators in the given planning do-
main. FieldM(i, j) contains a set of pairs< N, C > such
that:

• N is a number of such actionsai, aj that are instances
of i-th andj-th planning operator (in order),ai → aj

and both actionsai andaj satisfy the conditions from the
proposition 1.7 in some example plan.

• C is a set of constraints between the actionsai andaj with
respect toi-th andj-th planning operator (namely which
variables are unified in the operators).

In other words, matrixM contains candidates for assem-
bling (or becoming macro-actions). The following algo-
rithm gives the procedure for selecting and processing of
these candidates.

1. Compute matrixM by checking all such actions (except
the special actionsa0 andan+1) that are in the relation→
and satisfy the conditions from the proposition 1.7. (sev-
eral plans over the same domain should be explored).

2. Select a ‘proper‘ candidate. If there is not such candidate
then exit.

3. Assemble the candidate (a pair of planning operators)
with respect to the given constraints. Update the given
plans as well (and also the given domain).

4. Update matrixM . Then continue with step 2.

Meaning of the ‘proper‘ candidate seems to be quite collo-
quial. The best way how to find such a candidate is to detect
if a ratio between the number of candidate actions (stored
in M(i, j)) and the number of instances of the correspond-
ing operators exceeds a defined bound. It is clear that if the
bound is too small, many actions will be assembled that may
lead to very large domains with many operators. In the other
hand, if the bound is too large, almost no actions will be as-
sembled which means that domains may remain unchanged.

Subplans detection
Detection of proper subplans according to lemma 2.2 can
be a very hard problem, because each plan can have many
such candidate subplans. In this subsection, we provide a
method for subplans detection that splits a plan into strips
in such a way that each strip will contain actions that are
all independent and each strip is dependent on the previous
strip.

Let level : A → N0 be a function which assigns each
action a value (i.e.level(ai) = k) in the following way:

• level(a0) = 0

• For eachj < i, whereaj not in relation= with ai

level(aj) < level(ai) holds.



• For each actiona, level(a) is as small as possible.

The computation of the functionlevel is not so difficult, be-
cause it is only needed to check the relation= with previous
actions, beginning from the highestlevel. It is clear that all
actions with the same level are in the relation= that results
immediately from the definitions.

Now, we can decompose plans into subplans in such a
way that every subplan contains such actions that have the
same level. These subplans also have one interesting feature
- all actions can be performed independently of their order
(recall corollary 1.5). Computation of such subplans can be
usually done very quickly (almost in a constant time).

The above decomposition can be contributive when we
have a strip which grows with growing of plans complex-
ity and the growth can be traced by some measurable val-
ues (for instance a number of objects). When such a strip
is detected, we know that we are able to compute the strip
for more complex planning problems more easily. Then the
whole strip can be assembled and added as a single action
to the given domain. This procedure can be applied on more
strips satisfying mentioned conditions.

Let us now summarize the method:

• Detect strips of independent actions by analyzing previ-
ously computed plans in a given planning domain.

• Before start of solving of a new planning problem in the
given domain, compute the strips (representing subplans),
assemble them and put them as a new action into the given
domain

• Solve the new planning problem with the updated domain.

The hope is that if the method can be used, it can signifi-
cantly reduce the search space for more complex plans.

Preliminary evaluation
Depots domain
Depots domain is a well known planning domain from the
third International Planning Competition (IPC). This do-
main was devised in order to see what would happen if
two previously well-researched domains logistics and blocks
were joined together. They are combined to form a domain
in which trucks can transport crates around and then the
crates must be stacked onto pallets at their destinations. The
stacking is achieved using hoists, so the stacking problem is
like a blocks-world problem with hands. Trucks can behave
like ‘tables‘, since the pallets on which crates are stacked
are limited. We used the typed STRIPS version of the do-
main for evaluation of our method for looking for actions
that can be assembled. We solved the first two problems
normally with SGPlan (Hsuet al. 2007) and then we built
the matrix as described in the previous text (see figure 1).
We can see that the proper candidates for the assemblage
are operators LIFT, LOAD and UNLOAD, DROP, because
the ratio between the number of candidates and the number
of instances equals 100%. It means that we can assemble
these operators into LIFT-LOAD and UNLOAD-DROP and
remove the original ones. When this approach was tested
on more complex problems over this domain (SGPlan was
used), the improvement was transparent (for instance, the

Figure 1: Matrix of candidates for assembling from Depots
domain. Values in the left column after ‘/‘ represent the
number of instances of the operators in all analyzed plans.
The fields are filled with pairs representing the number of
candidates for assemblage and the set of variables that must
be equal.

problem 15 from IPC was solved in 0.5sec instead of un-
successful try (more than 600sec) to solve the problem in
the original domain). DRIVE, UNLOAD also seem to be a
proper candidate (ratio 60%) for assemblage but in this case
the original operators cannot be removed because they can
be also used separately. We are not aware about any planner
that can prioritize among the operators, in particular, to try
the macro-operator first and if it does not lead to a solution
then trying the primitive operators.

PSR domain
PSR domain is another well known planning domain from
the fourth IPC. In this domain, planners must resupply a
number of lines in a faulty electricity network. The flow of
electricity through the network, at any point in time, is given
by a transitive closure over the network connections, subject
to the states of the switches and electricity supply devices.
The domain is therefore a good example of the usefulness of
derived predicates in real-world applications. This domain is
quite interesting, because the complexity of finding an opti-
mal plan is polynomial (Helmert 2006). We analyzed several
less complex problems from this domain by the method of
the plans decomposition to the strips mentioned in the pre-
vious text. The analysis showed a very interesting result -
despite the rising plan complexity the number of strips re-
mained the same. In addition, each strip contained such ac-
tions that were instances of only one operator. The structure
is following:

1. WAIT-CB(x)

2. WAIT-CB(x)-CONDEFF(y)-YES

3. WAIT-CB(x)-ENDOF-CONDEFFS

4. OPEN-SD(x)

5. CLOSE-CB(x)

6. WAIT-CB(x)

7. WAIT-CB(x)-CONDEF(y)-NO



8. WAIT-CB(x)-ENDOF-CONDEFFS

By exploring the structure we can see that the problem can
be easily decomposed and we are able to guide the plan-
ner very well. Further analysis reveals that the problems
are based on closing and updating CB(x) slots letting some
SD(x) slots closed. Now, we know what CB(x) slots must be
closed and what SD(x) slots cannot be opened. We are ready
for computation of strips 4 and 5. Strips 1-3 serve for strips
4 and 5, because they provided updated CB(x) slots that are
needed. Analogically, strips 6-8 provide updated CB(x) slots
as well which can serve for the goal. Unfortunately again
these results are mostly theoretical, because there is not such
a planner that can handle the results of above analysis.

Conclusions

In this paper, we presented methods that are able to acquire
some knowledge from plans in a given domain. The first
method looks for such actions that can be assembled and this
assemblage should be helpful while solving more complex
plans. This method gained very good results when plans
contained such planning operators that could not be only
assembled but also fully replaced by the assembled opera-
tors. There is certainly a space for improvement, because
the method can detect such operators that could be assem-
bled but the original operators must remain in the domain.
However, existing planners do not support a possibility for
prioritizing operators which causes worse performance of
these planners on updated domains because of a larger num-
ber of operators. The second method decomposes plans into
subplans such that the actions in these subplans can be per-
formed in any order. This approach takes advantage when
we are able to trace these subplans and appoint some their
aspect with respect to the growing complexity of planning
problems in a given domain. When we are able to acquire
such a knowledge we can significantly improve the planning
procedure. However, there is not yet such a planner that can
fully support this approach.

In future we can investigate more deeply the detection
of subplans that appear frequently in plans but cannot be
revealed with existing methods. As mentioned before it
is a hard problem. Nevertheless we believe that some ap-
proaches for pattern recognition can be used, because when
we visualize the relation→ we might be able to recog-
nize the subplans as patterns that appear frequently in plans.
Another possibility of future research is an investigation
of connection between the plans structures represented by
the relation→ and the complexity of the corresponding
planning problems. This idea is motivated by the research
in the area of causal graphs (Gimenez & Jonsson 2007;
Katz & Domshlak 2007).

Acknowledgements

The research is supported by the Czech Science Foundation
under the contracts no. 201/08/0509 and 201/05/H014 and
by the Grant Agency of Charles University (GAUK) under
the contract no. 326/2006/A-INF/MFF.

References
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis.Artificial Intelligence90(1-2):281–
300.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. InProceedings of ECP, 360–372.
Chrpa, L. 2007. Using of a graph of action dependencies
for plans optimization. InProceedings of IMCSIT/AAIA,
volume 2, 213–223.
Coles, A.; Fox, M.; and Smith, A. 2007. Online identifica-
tion of useful macro-actions for planning. InProceedings
of ICAPS, 97–104.
Geffner, H. 1990. Causal theories of nonmonotonic rea-
soning. InProceedings of AAAI, 524–530.
Ghallab, M.; Nau, D.; and Traverso, P. 2004.Automated
planning, theory and practice. Morgan Kaufmann Publish-
ers.
Gimenez, O., and Jonsson, A. 2007. On the hardeness of
planning problems with simple causal graphs. InProceed-
ings of ICAPS, 152–159.
Helmert, M. 2006. New complexity results for classical
planning benchmarks. InProceedings of ICAPS, 52–61.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning.Journal of Artificial Intelligence
Research22:215–278.
Hsu, C.-W.; Wah, B. W.; Huang,
R.; and Chen, Y. 2007. SGPlan.
http://manip.crhc.uiuc.edu/programs/SGPlan/index.html.
Katz, M., and Domshlak, C. 2007. Structural patterns of
tracable sequentialy-optimal planning. InProceedings of
ICAPS, 200–207.
Knoblock, C. 1994. Automatically generated abstractions
for planning.Artificial Intelligence68(2):243–302.
Korf, R. 1985. Macro-operators: A weak method for learn-
ing. Artificial Intelligence26(1):35–77.
Lin, F. 1995. Embracing causality in specifiing the indirect
effects of actions. InProceedings of IJCAI, 1985–1991.
McCain, N., and Turner, H. 1997. Causal theories of action
and change. InProceedings of AAAI, 460–465.
Mehlhorn, K. 1984. Data Structures and Algorithms 2:
Graph Algorithms and NP-Completeness. Springer-Verlag.
Nejati, N.; Langley, P.; and Konik, T. 2006. Learning
hierarchical task networks by observation. InProceedings
of ICML, 665–672.
Newton, M. H.; Levine, J.; and Fox, M. 2005. Genetically
evolved macro-actions in ai planning. InProceedings of
PLANSIG, 47–54.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal pocl planner based on constraint pro-
gramming.Artificial Intelligence170(3):298–335.
Wu, K.; Yang, Q.; and Jiang, Y. 2005. Arms: Action-
relation modelling system for learning action models. In
Proceedings of ICKEPS.


