
Integrating Planning into Production Scheduling: A Formal View

Roman Barták

Charles University in Prague, Faculty of Mathematics and Physics
Institute for Theoretical Computer Science

Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic
bartak@kti.mff.cuni.cz

Abstract
The paper describes an approach for integrating planning
capabilities into production scheduling. We give an abstract
view of production scheduling that motivates the integration
and we compare the existing solving technologies in respect
to their power for planning and scheduling integration. A
new formal model of production scheduling is proposed and
its realization in the Visopt ShopFloor system is described.

Introduction
Traditional planning deals with the problem of finding
activities to satisfy a given goal. Traditional scheduling
solves the problem of allocating known activities to limited
resources and to limited time. In many real-life problems
both tasks should be accomplished together so integrating
planning and scheduling is a hot research topic especially
in the planning community. This integration usually means
adding time and resource restrictions to the planning
problem. Because solving traditional planning problems is
hard, adding time and resource constraints may make the
problem even harder. Therefore, some researchers propose
to keep planning and scheduling separated (Srivastava and
Kambhampati 1999). In particular, the planning problem is
solved first, which generates a set of activities, and the
scheduling problem is solved next, which allocates the
activities to resources and time. This is useful, if the
planning space is large – if it is hard just to find a valid
plan. However, in many real problems it is pretty easy to
find a valid plan but it is more complicated to find a good
plan in respect to available resources and time. Moreover,
sometimes a planning decision – an introduction of an
activity – is tightly coupled with a scheduling decision – an
allocation of the activities to time and resources. For
example, assume a set-up activity whose existence depends
on the neighboring production activities. Introduction of
such an activity depends directly on the allocation of the
production activities. In such a case, the integration of
planning and scheduling is inevitable.
 In (Barták 1999b) we argued for a more tighten
integration of planning and scheduling where the time and
resource constraints play an important role in guiding the
planner. The basic idea is to post the time and resource
constraints as soon as the planner introduces some activity.
These constraints then help the planner to decide among

the alternative activities in a forward or backward chaining
style of planning.
 In this paper we describe a new formal model of a
tightly integrated planning and scheduling problem. In
particular, we deal with the production scheduling
problems that require some planning capabilities. Briefly
speaking, the problem requires the activities to be
introduced during the scheduling process. We formulate
the problem in a constraint satisfaction framework that, as
we believe, is appropriate to solve such type of problems.
We also give some details how to deal with the dynamic
formulation of the problem in the constraint satisfaction
framework. In particular, we describe how variables and
constraints can be introduced dynamically during variable
labeling. The proposed techniques have been implemented
and tested in the Visopt ShopFloor scheduling system.
 The paper is organized as follows. In the next section we
will introduce an abstract production scheduling problem
and we will explain why integration of planning into
scheduling is necessary to solve such a problem. Then, we
will overview available technologies for solving planning
and scheduling problems and we will highlight their
advantages and drawbacks. After that, we will propose a
formal constraint model of the problem and we will
present two possible ways how to solve this model. Before
conclusion we will discuss some difficulties and
challenges of the implementation of the proposed
formalism.

Motivation
The goal of production scheduling is to generate a plan (a
schedule) of production for a specified time period. This
plan should satisfy the demands and it should be as
profitable as possible. The demands describe items that
should be produced (including their quantity) as well as
time when the item must be ready. Some demands have
hard deadlines so the demanded quantity must be ready at
a given time. Other demands model a forecast of future
demands so it is possible to postpone them if there is not
enough resource capacity. The system decides which
demands will be satisfied by using information about costs,
penalties, and load of resources.
 Items are produced on resources with a limited capacity
– we call them main resources. The production in a

resource is described as a sequence of non-overlapping
activities. The sequencing of activities may be further
restricted by a transition scheme that describes allowed
transitions between the activities. The transitions also
specify transition times between the activities and they
may also specify positioning of some non-production
activities like set-up or cleaning activities. Figure 1 shows
a transition scheme restricting the sequencing of activities.

Figure 1. Activities are connected in a transition scheme (left)
that restricts the possible transitions as well as a minimal and
maximal number of identical activities in a continuous
subsequence. This scheme restricts the feasible sequences of
activities (right).

The activities produce and consume items. If an activity
consumes some item then there must exist another activity
that produces this item and vice versa. Note that it is
possible to have several consumers and several producers
of the item so there is a many-to-many relation between
the activities (Figure 2). Note also that the demands can be
seen as the final consumers of the items. We call the above
producer-consumer relation a resource dependency
because it describes the dependencies between the
resources. The resource dependency specifies which
activities can be connected and what is the transport time
between the activities. In fact, it is a generalization of the
precedence constraints used in the traditional scheduling.

Figure 2. Items are flowing (arrows) between the activities
(rectangles). This item flow defines the precedence constraints.

So far, it might seem like a typical scheduling problem.
However, notice the following significant difference from
the traditional scheduling problems. When specifying the
activities, the user does not describe the actual activities to
be scheduled, that is the activities satisfying the current
demands. The user specifies the activities that can be used
in the schedule – this is called a domain model in planning.
It is the responsibility of the scheduling system to select
the appropriate activities which satisfy the demands, form
valid resource schedules according to the transition
scheme, and form valid item flows according to the
resource dependencies. Thus the scheduling system must

solve a type of integrated planning and scheduling
problem.
 For simplicity reasons we use here only the resources
processing a single activity at time. However one may
assume an extension of the problem where other types of
resources appear. An example problem of the above type is
described in (Barták 2003b).

Available Technology
One of the strongest trends in planning in the recent years
is extending the traditional planning framework by
scheduling constraints. This is reflected for example in the
recent planning competition (Long and Fox 2002) where
the tasks to be solved included several scheduling features.
The main approach used in the planning community to
model scheduling features is based on attaching some
numerical attributes to activities. These numerical
attributes can model activity duration as well as resource
constraints. While time is modeled explicitly so the system
“knows” about the meaning of time attributes, resources
are still modeled ad-hoc. It means that the solving
algorithm is not aware about the resource nature of the
numerical attribute so some general solving approach
should be applied. This is a big drawback as the solver
cannot exploit fully the scheduling technology. Moreover,
the current planners that are able to handle some
scheduling constraints are still primarily planners with the
capabilities to handle the planning task primarily. As we
sketched in the previous section, in some problems the
planning task is not very difficult. The problem is made
difficult by the time restrictions and resource sharing.
Thus, the scheduling technology should play a more
important role there.
 Surprisingly, the traditional scheduling research seems
to be almost untouched by the recent trends in planning
and artificial problems like job-shop or open-shop are still
of major interest in the scheduling community. There exist
generalizations of the academic scheduling problems like
Resource Constrained Project Scheduling Problem which
are more suitable for the real-life applications. However,
these problems are still not going beyond the traditional
scheduling task which is allocation of known activities to
known resources. The dynamic features are introduced by
on-line scheduling but note that this is different from the
problem sketched in the previous section. In the on-line
scheduling, the activities are coming from the external
environment while our problem expects the activities to be
planned by the solver. As far as we know, there is no
formal scheduling model that covers planning capabilities
and the majority of the research papers on such models are
written by the practitioners which are exposed to real-life
problems. Thus, the papers describe particular applications
rather than general frameworks.
 If we look into technologies used to solve both planning
and scheduling problems we can find out that the common
technology applied to both areas is constraint satisfaction.
In the traditional formulation of the constraint satisfaction

A A A B C C

C C A A A

C C B A A A

produce A (3-4)

produce B (1-2)

produce C (2-4)

producer

consumer

problem (CSP), the variables, their domains, and the
constraints must be specified before the problem is being
solved. This fits perfectly the scheduling task so it is not
surprising that constraint satisfaction is extensively used
there (Baptiste, Le Pape and Nuijten 2001). However, the
static formulation of constraint satisfaction complicates its
usage in the planning problems which are dynamic in their
nature. Thus constraints are used there typically in the plan
extraction phase where the constraint satisfaction problem
can be formulated statically (Do and Kambhampati 2000).
We believe that constraint satisfaction is a good bridge
technology especially for solving scheduling problems
enhanced by some planning features. Nevertheless, if we
choose constraint satisfaction as the integration technology
then a more dynamic approach to CSP is necessary.
 Constraint satisfaction is a technology that is already
used to solve real-life problem so, not surprisingly, there
exist extensions of its static formulation to cover dynamic
problems. Dechter and Dechter (1998) proposed a concept
of Dynamic CSP which is a sequence of traditional
constraint satisfaction problems, where every problem is a
result of changes in the preceding problem. This concept is
appropriate to handle on-line scheduling problems where
the problem modifications are coming from the external
world but it does not bring many advantages for solving
the planning problems.
 The original formulation of Dynamic CSP by Mittal and
Falkenhainer (1990) motivated by the configuration
problems seems more appropriate for the planning
problems. Their idea is to use an activation constraint that
can activate some variables so these variables will
participate in the solution. Variable activation can be seen
as selecting some activity in the plan. Nevertheless, this
approach is still static in the sense that all the variables are
introduced in advance but some of them remain inactive.
Thus, this approach is not fully appropriate for general
planning problems where the number of such dummy
variables can be huge. However, this approach could be
useful when the number of dummy variables is low. For
example, dummy activities are used in scheduling when
there are some alternative schedules/plans that must be
selected during the scheduling process (Pegman 1998).
 Nareyek (1999) proposed a concept of Structural
Constraint Satisfaction to solve the highly dynamic
problems typical for planning. His approach is based on
the idea of extending the abstract parts of the constraint
network into less abstract parts containing new variables
and constraints. This approach is similar to hierarchical
task networks and hence it is very useful to solve planning
problems. However, the Structural CSP should be
implemented from scratch so it is very hard to extend the
existing constraint solvers into Structural CSP.
 Surprisingly relatively small attention is given to using
constraint logic programming (CLP) for solving planning
problems. The progress in constraint satisfaction push the
users to apply CLP in the same way as CSP, that is define
the constraint satisfaction problem first and then use search
(labeling) for assigning values to the variables. However,
recall that CLP was originally proposed as an extension of

logic programming where the constraints substituted
unification (Gallaire 1985). Constraints are used there to
prune the search space but search is done within the logic
programming framework not in a special labeling
procedure. Thus, it is natural to have a different set of
variables and constraints in different search branches. We
believe that constraint logic programming is one of the
most appropriate frameworks for modeling and solving
integrated planning and scheduling problems. It allows a
natural dynamic introduction of variables and constraints
as search proceeds and there already exist off-shelf CLP
systems so one can focus on the problem solving rather
than on the implementation of the underlying technology.

A Formal Model
In this section we will give a more precise description of
the addressed problem and we will show how it can be
encoded using constraints. However, note that the actual
implementation does not necessarily follow the constraints
presented here. We present the constraints to show what
restrictions must be satisfied rather than to introduce a
particular implementation of the constraint model.

Resources
A resource is specified as a finite set of activities that can
be processed by the resource. Let us denote by Activities(r)
the set of activities that can be processed by the resource r.
We expect that the sets of activities are disjoint for
different resources, formally:

r≠s ⇒ Activities(r)∩Activities(s)=∅.

It may seem that the above feature forbids modeling of
alternative resources per activity. Such activity is modeled
as a set of “identical” activities in alternative resources and
these activities are connected to other activities via
alternative item flows (see next section). Actually, this is a
standard way of modeling alternative resources per
activity.
 For each activity, the user specifies its duration as a
positive integer number. Let us denote by Di the duration
of the activity i. The activity occupies the resource from its
start time till its completion time and no other activity can
be processed at that time. Such resources are often called
unary or disjunctive resources.
 The transition scheme is described by a table of
transition times between each pair of activities. Let us
denote by Ti,j the transition time when going from the
activity i to the activity j. The transition time is an interval
starting with a non-negative integer, for example [3,sup]
denotes a minimal transition time 3 and no maximal
transition time. If the transition is not allowed then the
transition time equals sup. Moreover, for each activity i a
minimal Mini and maximal Maxi number of activities that
can be processed in a continuous sequence are specified. If
Maxi>1 then Ti,i specifies the transition time between the
activities in a sequence of identical activities. The

possibility to restrict the number of identical activities in a
continuous sequence is useful for example for modeling
setup, changeover, or transition activities that are
processed exactly once between two production activities –
Maxi=1. Notice also that these activities are handled like
other activities. In particular, they may consume and
produce items which is useful to model transition activities
producing some low-quality items (for example items with
a color that is between two pure colors) or to model
changeover activities connected to activities in other
resources (for example mould change in the injection
machine requires a crane). Such feature is often omitted in
the traditional approaches to scheduling where such
activity is modeled as a transition time between two
activities (this is possible in our framework as well).
 As we already mentioned, the task is to generate a
schedule for a fix time period. Assume that this period is
described by an interval [0,MaxT]. A valid schedule for the
resource r is a sequence of activities that can be processed
by the resource with start times assigned to integers.
Assume that the length of this sequence is n, act(i) denotes
the i-th activity in the sequence, and start(i) denotes its
start time. Then the following resource constraints must be
satisfied by the valid schedule for the resource r:

1. ∀i=1…n: act(i)∈Activities(r)
2. ∀i=1…n: 0 ≤ start(i) ≤ MaxT
3. MaxT ≤ start(n)+Dact(n) or

∃b∈Activities(r) MaxT ≤ start(n)+Dact(n)+max(Tact(n), b)
4. ∀i=1…n-1:

 start(i)+Dact(i) +min(Tact(i), act(i+1)) ≤ start(i+1)
 start(i+1) ≤ start(i)+Dact(i)+max(T act(i), act(i+1))

5. If l is a maximal length of any continuous
subsequence of activities i then:
 l ≤ Maxi.
If the subsequence of activities i is not the last one in
the resource schedule then also:
 Mini ≤ l.

The first constraint ensures that only activities that can be
processed by a given resource are included in the resource
schedule. The second constraint ensures that the activities
start within the scheduled period. It is not possible to
schedule the activities before time zero (in past) and we are
not interested in the activities starting behind the schedule
horizon (after MaxT). The third constraint ensures that a
complete schedule is produced. It means that either the last
activity completes after the end of the scheduled period or
there could be another activity after the last activity that
can start after the end of the scheduled period. This ensures
continuous production if the transition times have a tighten
upper bound. The fourth and fifth constraints ensure that
the sequence of activities satisfies the transition scheme.

Dependencies
As we already mentioned, the activities may consume and
produce items. If an activity produces some item then there

must be another activity that consumes the item and vice-
versa. Thus the item flow naturally models dependencies
between the resources. We denote by InQItem,a a quantity of
Item consumed by the activity a and by OutQItem,a a
quantity of Item produced by the activity a. Quantity is a
nonnegative integer. If quantity is zero then the item is not
consumed or produced by the activity.
 Assume that the activity a produces Item (OutQItem,a>0)
and the activity b consumes the Item (InQItem,a>0). We
specify the time necessary for moving the Item from a to b
as DelayItem,a,b. More precisely, delay is a difference
between the start time of the consuming activity (b) and
the completion time of the producing activity (a). Delay
can be an interval, an integer number, or a value sup
indicating that the Item cannot be moved between the
activities. Note that even if one activity produces the item
and another activity consumes the same item, it is still
possible to forbid the transport between the activities if
there is no transport line between the resources. This is
useful to model real connections in factories.
 We denote by q(Item,r,i,s,j) the quantity of Item moved
from the i-th activity of the resource r to the j-th activity of
the resource s. We call the set of such moved quantities
item flows in the schedule. In the following we assume that
act(r,i) denotes the i-th activity of the resource r and
start(r,i) denotes its start time. These are the same variables
as introduced in the previous section; we just attached an
identification of the resource to them. The item flows are
valid if the following dependency constraints hold:

1. q(Item,r,i,s,j)>0 ⇒

start(r,i)+Dact(r,i)+min(DelayItem,act(r,i), act(s,j)) ≤ start(s,j)
 &
start(s,j) ≤ start(r,i)+Dact(r,i)+max(DelayItem,act(r,i), act(s,j))

2. ∀s,j,Item: InQItem,act(s,j) = Σr,i q(Item,r,i,s,j)
3. ∀r,i,Item: Σs,j q(Item,r,i,s,j) ≤ OutQItem,act(r,i)

 if there is no activity b such that
 MaxT ≤ start(r,i)+Dact(r,i)+max(DelayItem,act(r,i), b)
then Σs,j q(Item,r,i,s,j) = OutQItem,act(r,i).

The first constraint ensures that if there is a non-empty
item flow between two scheduled activities than the time
distance between these activities is correct according to the
specified delay. This is actually a conditional temporal
constraint between two activities. The second constraint
ensures that the consumed quantity of some item is
produced somewhere. The third constraint ensures the
same condition on the produced quantity of the item, so
this quantity should be consumed somewhere. However,
because we generate a schedule for a fix time period, it is
not necessary to find consumers of all produced items
provided that the consumers may exist in future (after
MaxT). The third constraint says that if all the consuming
activities must be within the schedule period then the
produced quantity of Item must be consumed completely.
 Dependencies describe real item flows in the plant.
Decision about a non-empty item flow between activities
corresponds to the decision whether there is a temporal

constraint between these activities. The actual temporal
constraint is posted within the dependency constraint (1)
while the dependency constraints (2) and (3) ensure that
necessary temporal constraints are introduced. If the
temporal part of the dependency constraint (1) is violated
then the item flow is set to zero (constraint propagation).
This realizes the idea of active decision postponement.
 Note that temporal constraints that are not directly
related to an item flow, like resource synchronization, can
still be modeled. For example, assume that two activities
must run in parallel on two different resources. This can be
modeled by introducing a new artificial item produced by
one of these activities and consumed by another activity.
The delay for moving the item between the activities
equals to the negative duration of the activities.

Demands
In the above model we specified only the activities as the
objects producing and consuming items. However, the
final consumers of the item are demands describing the
orders from customers. So the demands can be seen as a
special type of consuming-only activities. Let us denote by
Demands the set of all demands. We expect that the set of
demands is disjoint with the set of activities processed by
the resources. Each demand i∈Demands is specified by its
delivery time DTi when the demand should be satisfied and
by a maximal allowed delay Delayi. The delivery time is an
integer within the interval [0,MaxT] because otherwise the
demand is out of scope of the scheduled period. The delay
is a non-negative integer and it specifies how much the
delivery can be postponed. The item in the demand is
specified in an expected way – using InQItem,i for demand i.
We denote by start(i) the time when the demand i is
satisfied. This time must satisfy the following constraint:

∀i∈Demands: DTi ≤ start(i) ≤ DTi + Delayi.

The demands participate in the dependencies like other
activities so they must satisfy the dependency constraint
(1). If the demand i is scheduled within the scheduled
period – start(i) ≤ MaxT – then the dependency constraint
(2) must be satisfied as well. It means that the requested
quantity must be available for delivery. Notice that some
demands can be postponed after the schedule end, namely
the demands i such that MaxT<DTi +Delayi. For such
demands, it is not necessary to produce the requested
quantity because these demands can be satisfied in future.

Features and Extensions
The above formal description of resources, dependencies,
and demands fully specifies the problem to be solved. The
main difference of the proposed formalism from traditional
scheduling problems is that the set of activities in the
schedule is not known in advance. Notice that the user just
specifies the possible activities and their interaction via a
transition scheme and dependencies. The set of demands is
known in advance and it initiates the production. However,
neither the number of activities nor their actual

composition is known in advance. The actual activities are
decided during the scheduling process. Thus, we are
solving a production scheduling problem integrated with
planning. Note also that the introduction of the planning
capabilities into the scheduling process makes the model
significantly more general because the model covers
features that the traditional scheduling cannot cover. In
particular, the actual activities to satisfy a demand are
selected during scheduling so it is possible to model
alternative production sequences (via alternative item
flows). The traditional scheduling requires the production
sequence to be selected before the scheduling starts which
could make the schedule less efficient. The proposed
model also allows sharing of activities between several
demands which influences the choice of the production
sequence and makes the schedule more compact.
Moreover, it is possible to introduce activities for
processing of the by-products produced by some activities.
The activities consuming by-products may satisfy the
demands more effectively than producing the demanded
item from scratch. Thus, recycling is covered by the
proposed model while the traditional scheduling
approaches cannot model recycling fully. Last but not
least, it is possible to schedule activities which are not
directly related to the existing demands. For example, it is
possible to introduce changeover activities that consume or
produce some items. Basically, the transition scheme is
responsible for introduction of such activities.
 The presented model is intentionally simplified to show
primarily the main features of the proposed formalism for
integrating planning into production scheduling without
overwhelming the reader. For example, it is possible to
attach time windows to the activities or to specify the first
activity in the resource schedule describing the initial state
of the resource. It is also possible to use more general
counters in the transition scheme. These counters may
force some specific activity, for example cleaning, after
processing a given number of counted activities. Note that
introduction of counters in the above model of resources is
straightforward thanks to the transition scheme. However,
the counters cannot be modeled in the traditional task-
centric view of the scheduling problems (Brusoni et al
1996). Actually, we are not aware about any scheduling
system that can handle the counters or at least the above
transition scheme. For details on counters see (Barták,
2002b). Also, for simplicity reasons we did not include any
optimization in the above framework. For example, it is
possible to attach a cost to each activity and a penalty for
delaying satisfaction of the demand. Then the task is to
find a schedule minimizing the total cost. Note that using
the optimization criteria may force the system to produce
items for demands even if the demands may be postponed.
If there are no penalties for delaying the deliveries, the
system may tend to postpone them because it simplifies the
problem – fewer activities are necessary. For details on the
cost model see (Barták, 2002a).

Realization
We proposed the above framework using a terminology of
constraint satisfaction. It means that we define the decision
variables, namely act(i), start(i), and q(Item,r,i,s,j), and the
constrains restricting the values of these variables.
However, notice that the variables are not known in
advance because the number of activities is unknown in
advance. Thus the nature of the problem integrates
planning – introduction of activities – with scheduling –
allocation of activities to time and space.

A Static Solver
The difficulty of the unknown set of decision variables can
be resolved by using a standard technique of dummy
activities that is applied in a less extent for example by
Pegman (1998). The idea is as follows. For each resource
we can estimate the maximal number n of activities by
dividing MaxT by the smallest activity duration (it is
possible to compute a more precise estimate by assuming
the transition scheme). This number (n) defines the length
of the resource schedule. Because the resource schedule
will not be probably fully filled by the activities we should
introduce a dummy activity that fills the empty end of the
resource schedule. The duration of the dummy activity
equals to the duration of the shortest activity (it is possible
to use any duration, for example one) and the dummy
activity produces and consumes no items. The dummy
activity can be processed at any time that is even after the
schedule period (MaxT). Thus, there is no upper bound
defined for the start time of the dummy activities – the
resource constraint (2) is modified to relax the upper
bound of the dummy activities in the following way:

 ∀i=1…n:
 0 ≤ start(i) &
 act(i)≠dummy ⇒ start(i) ≤ MaxT

Moreover, a transition with a zero transition time is
allowed from any activity to the dummy activity but there
is no transition from the dummy activity to another activity
– the dummy activity represents the dead end in the
sequence of the activities. It is allowed to have an arbitrary
number of dummy activities in a sequence (Maxdummy=sup)
and the transition time between the dummy activities is
zero (Tdummy,dummy=0). In a valid resource schedule, the
dummy activities are collected at the end of the schedule
and they do not bring any ambiguity into scheduling. We
mean that the start times of the dummy activities are fully
specified by the start time of the last “real” activity in the
schedule.
 The above method is very close to the timetabling
approach where the slots are defined in advance and these
slots are filled by activities during scheduling. We can use
the metaphor of slots in our framework as well. The only
difference is that the slots in our approach are not fixed in
time so in addition to the activity variable there is a time

variable for each slot. Nevertheless, the order of slots is
fixed thanks to the resource constraint (4) that requires the
slots to form a non-overlapping sequence in time.
 For discussion on the timetabling approach to
scheduling see (Barták 1999a). The advantage of the
timetabling approach is that we get a standard constraint
satisfaction problem where all the variables and constraints
are known. Thus it is possible to use any constraint
satisfaction technique to find a solution of the problem. On
the other side, this approach is impractical for large
problems because it requires a huge number of variables
and constraints. In particular, a lot of variables are
necessary to model the dependencies between the slots.
We present this approach mainly to demonstrate the
constraint satisfaction nature of the formal framework.
 Note finally that instead of the dummy activities it is
possible to deactivate the variables in the non-used slots at
the end of the schedule similarly to the technique proposed
by Mittal and Falkenhainer (1990). However, it does not
solve the problem with memory consumption because all
the slots (variables) must be introduced and the deactivated
variables will not be assigned during variable labeling.

A Dynamic Solver
Because the static view discussed in the previous section is
practically unusable, we have developed a dynamic solver
as part of the Visopt ShopFloor system for solving the
production scheduling problems (Barták, 2002a). The
basic idea of the dynamic solver is quite simple – the
variables and constraints are introduced on demand to
minimize the memory consumption and unnecessary
computation. We will discuss now what variables and
constraints should be introduced and when they should be
introduced.
 If we summarize the input to the system then we know
the set of demands and we know the description of the
activities and their interactions (a transition scheme and
dependencies). Thus, before we start solving the problem
we can introduce the variables specifying the actual
delivery time for the demands – the variables
start(demands,i). Also, for each resource r we can
introduce the first slot – the variables start(r,1) and
act(r,1). We expect that the demands should be satisfied in
the schedule so the variables q(Item,r,1,demands,j) are
introduced together with the dependency constraint (1).
For simplicity reasons, we call these variables q variables.
The dependency constraint (2) is also introduced for the
demands but note that we did not introduce yet the q
variables going to slots other than the first slot. Thus the
dependency constraint (2) is open in the sense that other q
variables can be added to the constraint later. This is
realized by the following mechanism. If the demand is not
fully covered by the existing q variables (their sum is
smaller than InQ for a given demand) then additional q
variables connecting the demand to other slots are
introduced. However, these slots are not present in the
system so they should be added. In particular, if there is a
variable q(Item,r,i,demands,j) then at least i slots of the

resource r should be present in the system. If this is not
true then the necessary slots are introduced to the system.
 The mechanism of introducing q variables can be
generalized to the slots as well. If a slot i of the resource r
is filled by an activity, which corresponds to assigning a
value to the variable act(r,i), then we know the consumed
and produced items in the slot. Thus, we can introduce the
variables q(Item,r,i,s,j) and q(Item,s,j,r,i) that are not yet
present in the system. These variables connect the slot with
slots in other resource which may force introduction of
new slots and so on. This mechanism significantly
decreases the number of q variables in the system because
only the q variables for relevant items are introduced.
Again, together with the q variables the corresponding
dependency constraints are posted.
 When deciding about the value of the variable act(r,i)
the existing variables q(Item,r,i,s,j) and q(Item,s,j,r,i) are
assumed. It means that we are trying to fill the slot by an
activity which satisfies a request from demands or other
activities. In particular, if there is a request to produce
some item then the activity producing the item is preferred.
Usually there are several such requests so one of them is
selected (a choice point in the labeling procedure is
introduced) and the other incompatible requests are made
zero. When the variable q(Item,r,i,s,j) is made zero by
filling the i-th slot of the resource r by some activity
incompatible with the request then the variable
q(Item,r,i+1,s,j) is introduced . This corresponds to
shifting the request to the next free slot as Figure 3 shows.
Note that the incompatible q variables are made zero using
the dependency constraints (2) and (3) that are posted
when the activity in a given slot is known.

Figure 3. When the dependency is selected for the slot, then the
incompatible dependencies are moved to next free slot.

So far we described the mechanism of introducing new
slots when there is some request represented by the q
variables. However, the slot may be also introduced due to
a tighten transition scheme which requires activities even if
there are no requests to produce or consume an item. We
use the following mechanism to introduce a new slot
according to the transition scheme. Assume that currently
the last slot in the resource r has an index i. If
max(start(i)+Dact(i))<MaxT then we know that the activity
in the slot i completes before the end of the schedule
period so there is a space for at least one more activity. In
such a case we introduce the (i+1)-th slot to the system
together with the resource constraints (3), (4), and (5)
connecting

i-th and (i+1)-the slots. Note that the above process can be
realized even if the activity in the i-th slot is not known
yet.
 In the above paragraphs we sketched the basic principles
of dynamic introduction of new variables and constraints
to the system. In practice, this could be realized using
agents attached to the existing variables. These agents are
evoked when the variable domain changes and they are
checking some predefined condition on the domain, for
example whether there is exactly one value in the domain.
If the condition is satisfied then the agent introduces new
variables and constraints (perhaps together with the new
agents attached to the variables) and silently disappears.
Note, that the variables and constraints introduced by the
above mechanism are removed when the respective
condition is revoked during backtracking. This is natural in
the CLP framework where decisions are revoked
automatically during backtracking.
 We have already mentioned how to decide about the
value of the variables act(r,i). Actually, this decision is a
part of the labeling procedure which works like labeling in
standard constraint satisfaction problems. The goal of
labeling is to assign values to the variables and the only
difference from the standard labeling is that the set of the
variables to be labeled extends as the labeling proceeds.
Adding new variables naturally influences the variable
ordering in the labeling process so the schedule is being
built in the order from demands to activities (introduction
of dependencies) and from past to future (introduction of
slots). This corresponds to the order of gradual
introduction of variables. Note also that some variables
may be left unassigned, in particular the variables
describing the slots and demands that are postponed after
the schedule end.
 Notice finally that we do not distinguish between
planning and scheduling in the above solving process so it
is a total integration of planning into scheduling. In some
sense, we can say that deciding the values of the activity
and q variables corresponds to planning while deciding the
values of the start time variables corresponds to
scheduling. It is possible to interleave labeling of these
variables or to decide the values of the activity and q
variables first (planning and resource scheduling) and then
to assign values to the start time variables (time
scheduling). This depends on the selected scheduling
strategy. Naturally all decisions are revocable via
backtracking in case of reaching an infeasible state.

Discussion on challenges
Because the proposed framework is different both from
existing planning and scheduling approaches, it brings
many challenges. The main challenge is how to exploit the
existing planning and scheduling technologies there.
Because planning is relatively restricted in the proposed
framework, we see the main challenge in the integration of
existing global scheduling constraints like edge-finder
(Baptiste and Le Pape 1996) to our framework. Note that

KK--11 KK--11 KK

these constraints play a very important role in scheduling
because they prune the search space significantly (Baptiste,
Le Pape, Nuiten 2001). In our opinion, one of the biggest
drawbacks of the current planning systems that integrate
some scheduling features is impossibility to use these
global scheduling constraints. Because in our framework
we are working with the requests for activities rather than
with the activities assigned to the resource, we cannot use
the existing global constraints directly as well.
Nevertheless, we believe that it is possible to reformulate
either the global scheduling constraints to fit our
framework or to extend our framework to exploit these
constraints. Another difficulty is the dynamic introduction
of the requests so the global constraints should be open in
the sense of accepting new variables. We have studied
such open global constraints in (Barták 2003a) and it
seems that many global constraints can be opened in the
above sense. The trade-off for some open global
constraints is the decreased filtering power (less values are
pruned). Thus, another challenge is to find out
(automatically) when the constraint can be closed (no more
variables will be coming) so the stronger domain filtering
can be applied.

Conclusions
The main contribution of this paper is a new formal
framework of production scheduling problems integrated
with planning. We showed how such problems can be
formulated by means of constraint technology and we
presented both static and dynamic approach to solve the
constraint model. We argued for the less memory
demanding dynamic approach that dynamically extends the
constraint model by adding new variables and constraints
as the solving process progresses. This dynamic approach
has been implemented in the scheduling engine of the
Visopt ShopFloor system.
 Despite the fact that we focused on the production
scheduling, we believe that the proposed techniques are
applicable to other integrated planning and scheduling
problems. In particular, the problems where complex
resources and activity dependencies play a significant role
are highly relevant for the proposed framework.

Acknowledgments
Research is supported by the Czech Science Foundation
under the contract no. 201/04/1102. The system Visopt
ShopFloor has been developed for Visopt B.V.

References
Baptiste, P. and Le Pape, C. 1996. Edge-finding constraint
propagation algorithms for disjunctive and cumulative
scheduling. In Proceedings of the Fifteenth Workshop of
the U.K. Planning Special Interest Group.

Baptiste, P., Le Pape, C., Nuijten, W. 2001. Constraint-
based Scheduling: Applying Constraints to Scheduling
Problems. Kluwer Academic Publishers, Dordrecht.

Barták, R. 1999a. Conceptual Models for Combined
Planning and Scheduling. Electronic Notes in Discrete
Mathematics, Volume 4, Elsevier.

Barták, R. 1999b. On the Boundary of Planning and
Scheduling. In Proceedings of the Eighteenth Workshop of
the UK Planning and Scheduling Special Interest Group
(PlanSIG), 28-39, Manchester, UK

Barták, R. 2002a. Visopt ShopFloor: On the Edge of
Planing and Scheduling. In P. van Hentenryck (ed.):
Proceedings of the 8th International Conference on
Principles and Practice of Constraint Programming (CP
2002), LNCS 2470, Springer Verlag, Ithaca, 587-602.

Barták, R. 2002b. Modelling Resource Transitions in
Constraint-based Scheduling. In W.I. Grosky, F. Plášil
(eds.): Proceedings of SOFSEM 2002: Theory and Practice
of Informatics, LNCS 2540, Springer Verlag, pp. 186-194.

Barták, R. 2003a. Dynamic Global Constraints in
Backtracking Based Environments. Annals of Operations
Research 118, 101-119, Kluwer.

Barták, R. 2003b. Real-life Manufacturing Problems: A
Challenge. In J. Hoffmann and S. Edelkamp (eds.)
Proceedings of ICAPS'03 Workshop on the Competition:
Impact, Organization, Evaluation, Benchmarks. Trento, p.
38-42.

Brusoni, V., Console, L., Lamma. E., Mello, P., Milano,
M., Terenziani, P. 1996. Resource-based vs. Task-based
Approaches for Scheduling Problems. In Proceedings of
the 9th ISMIS96, LNCS Series, Springer Verlag.

Dechter R. and Dechter A. 1998. Belief maintenance in
dynamic constraint networks. In Proceedings of AAAI-88,
pp. 37-42.

Do M.B. and Kambhampati S. 2000. Solving planning-
graph by compiling it into CSP. Proceedings of the Fifth
International Conference on Artificial Planning and
Scheduling.

Gallaire, H. 1985. Logic Programming: Further
Developments, in: IEEE Symposium on Logic
Programming, Boston, IEEE.

Long D. and Fox. M. 2002. International Planning
Competition 2002. Toulouse, France.
http://www.dur.ac.uk/d.p.long/competition.html

Mittal, S. and Falkenhainer, B. 1990. Dynamic Constraint
Satisfaction Problems. Proceedings of AAAI-90, USA, 25-
32.

Nareyek, A. 1999. Structural Constraint Satisfaction.
Proceedings of AAAI-99 Workshop on Configuration.

Pegman, M. 1998. Short Term Liquid Metal Scheduling.
Proceedings of PAPPACT98 Conference, London, 91-99.

Srivastava B. and Kambhampati S. 1999. Scaling up
Planning by teasing out Resource Scheduling. Technical
Report ASU CSE TR 99-005, Arizona State University.

