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Hybrid System

I Dynamic system that exhibits both continuous and discrete
behavior

I Example: Thermostat

ON

T<=T1

OFF

T>=T2

T=T1

T=T2

Ṫon = c1(T − T0) + c2

Ṫoff = c1(T − T0)
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Definition of Hybrid System

Hybrid System: H = (Modes, Variables, Flow , Init, UnSafe, Jump)

I Modes: Finite set of discrete modes

I Variables: Finite set of n continuous variables

I State: pair of mode and a continuous state: real valuation of
all variables

I Flow: Function Modes x Rn → Rn assigns a vector field to
each mode. The dynamics in mode m is ẋ = Flow(m, x)

I Init: Set of admissible initial states of H

I UnSafe: Set of states that should not be reached

I Jump: Relation on State pairs. If two states are in jump
relation, there is possible discrete transition between them
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What can we model with Hybrid Systems?

I Various traffic protocols within project AVACS
http://avacs.org

I Aircraft collision avoidance protocol
I ETCS European Train Control System

I Embedded systems
I Consumer and household products
I Office, telecommunications devices
I Medicine measurement and treatment devices

I Networking and locking protocols

I Physical systems with impact
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Verification of Hybrid System

Evolution: Sequence of states, where two successive states are
either:

I In Jump

I There is continuous trajectory given in Flow between these
states

Safety property: there is no evolution from initial state to unsafe
state

Verification: Algorithm that for each safe Hybrid System finishes in
finite time and proves its safety

Correctness of algorithm should not be hampered by floating-point
rounding errors (reliable computing)
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Basic Verification Algorithm
I We split continuous statespace into multidimensional intervals

- boxes
I Box and Mode form abstract state of the Hybrid System. We

explore possible transitions between abstract states. This
involves solving quantified constraints.

I If there is a route from initial to unsafe abstract state, we
refine abstraction by splitting one of the boxes

Invariant: Abstraction covers all error-trajectories in input system.

Mode 1 Mode 2
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Reach Set Constraint

A point in a box B can be reachable

I from the initial set via a flow in B

I from a jump via a flow in B

I from a neighboring box via a flow in B

Init

B
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Reachability Analysis Using Constraints

Single box and initial states

y

x

Init(x0, y0)

8 / 12



Reachability Analysis Using Constraints

Vector field for derivatives

y

x

Init(x0, y0) ∧ Flow(xd , yd , xa, ya)
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Reachability Analysis Using Constraints

Reachable states for this example

y

x

Init(x0, y0) ∧ Flow(xd , yd , xa, ya)
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Reachability Analysis Using Constraints

We create a constraint that overapproximates the reachable set
and solve it, using interval methods

y

x

∃x0, y0, xa, ya, t :
Init(x0, y0) ∧ Flow(xd , yd , xa, ya)∧
x = x0 + t ∗ xd ∧ y = y0 + t ∗ yd
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Reachability Analysis Using Constraints

Splitting reduces overapproximation
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Method Properties

Advantages of this method:

I Possible non-linear Init, Flow, Unsafe and Jump constraint

I Speed of one solving step

I Simple hyper-rectangle representation

I Safe rounding

Disadvantage of the method:

I Potentially big amount of overapproximation
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Tools We Use for Verification

RSolver - algorithm for solving quantified inequality constraints

I Based on constraint propagation

All computations have to be rounding-safe

I Use of interval arithmetic library
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Future Work

Improving abstraction: Use polyhedrons or Taylor Models instead
of boxes

Improving verification algorithm

I Exact solution for certain types of ODEs

I Polyhedral Quantifier Elimination

I Reduce Wrapping Effect

I Increase degree of Taylor constraint

I SAT modulo ODE

I LP Solver on linear jumps/flows etc.
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