Induction of user preferences

Alan Eckhardt

Department of Software Engineering, Charles University in Prague, Czech Republic

Outline

- Motivation
- User model
- Learning the model
- Experiments
- Conclusion

Motivation – current state

- Classical e-shop
 - Strict criteria on attributes
 - Price 50-100\$
 - Simple ordering by price, name

Showing 1 - 24 of 990 Results

Sort by Price: Low to High

Showing 1 Result

Same answer for every user

-

Computer & Accessories	
Jonartmont	
Electronics	
Computers 9 According	
< Computers & Accessories	
Laptops	
Operating System	
Any Operating System	
Windows 7 (51)	
)isplay Size	
Under 13.9 Inches (17)	
14 to 14 9 Inches (10)	
15 to 15 9 Inches (21)	
(21)	
16 to 17.9 Inches (4)	
Processor Type	
Any Processor Type	
AMD Athlon (3)	
AMD Phenom (3)	
AMD Turion (4)	
Intel Core 2 (14)	
Intel Core i3 (5)	
Intel Core i5 (5)	
Intel Core IS (S)	
Intel Pentium (14)	
> See more	
installed RAM	
🔲 1 GB & Under (1)	
2 GB (6)	
3 GB (12)	
🔲 4 GB (34)	
land Diels Cine	
Idru Disk Size	
121 to 320 GB (37)	
321 to 500 GB (14)	
Shipping Option (What's this	?)
Any Shipping Option	
Prime Eligible	
Free Super Saver Shipping	
Juand	
Tashiba (24)	

amazon.com

```
Toshiba (31)
Asus (9)
Hewlett-Packard (3)
Dell (2)
Lenovo (6)
Compaq (1)
```

Motivation – dream state

- Personalization
 - Results reflect the user, not only the query
- More insight for the user
 - Solve "no object" or "too many objects" problem
 - *How* good is the notebook?
 - Relaxed criteria
 - More complex ordering

Motivation – preference search

- Ordering
 - Instead of restriction
- Specification of ideal attribute values
 - Rather than acceptable values
- Possible visualization of the result set

Motivation – preference learning

- Let's expect even less from the user
 - Instead of direct specification of ideal values learning the most preferred values from a less complex user input
 - A few ratings of objects

-	
	87
	-

Toshiba Portege R600

Toshiba's Portege R600 is one of the best ultraportables on the market, if you're willing to pay the price. Tags: toshiba, portege, r600, ultraportable, laptop Your rating: 本文文公

- Construction of a general user preference model
 - Each user has his/her own preference model
 - Based on his/her ratings

User model

- User model learning is divided into two steps
 - 1. Local preferences normalization of the attribute values of notebooks to their preference degrees o Manufacturer: ACER CD size: 14.1 inches

$$f_i: D_{A_i} \to [0,1]$$

Transforms the space ΠD_A into $[0,1]^N$

RAM size: 2048 MB

59%

Vifi: Yes

- > Processor: Core 2 Duo T7100
- 2. Global preferences aggregation of preference degrees of attribute values into the predicted rating

$$@: [0,1]^{\mathbb{N}} \to [0,1]$$

User model

- Local preferences
 - Transform the space ΠD_{A_i} to monotone space $[0,1]^N$
 - \bigcirc = (1,...,1) is the best object
 - Allow direct comparison of objects

9

User model

- Global preferences $@:[0,1]^{\mathbb{N}} \rightarrow [0,1]$
 - Order all objects according to overall preference
 - Allow recommendation of top-k objects

Learning user model

- Statistical
 - Learned weights for weighted average
 - Using distribution of ratings $5*RAM_U_1 + 1*CPU_U_1 + 3*Price_U_1$
- Instances
 - Uses objects from training set for estimation of rating

9

Specific problems to preference learning

- Small training set
 - Users do not want to invest too much effort
- Different error measures than "standard" machine learning
 - Correct ordering is important
 - Better rated objects are more important
- Transparent preference model needed
 - For using the information in user interface
 - Why is the object recommended by the system?

Specific problems to preference learning

- Error measures
 - WRMSE
 - $\sqrt{\sum_{o \in X} r(o)(\hat{r}(o) r(o))^2} / \sum_{o \in X} r(o)$
 - WTau coefficient
 - Compares two ordered lists and emphasizes better rated objects
 - Top-k score
 - Percentage of correct objects in top-k (without order)

Collaborative filtering

- Similarity of users based on ratings of common rated objects
 - Only users with common rated objects can be evaluated

Combination with other methods

- Similarity of user preference models for collaborative filtering
 - StatColl
 - Similarity of local and global preferences
 - All users can be evaluated, every user has preference model
 - In normal CF, similarity based on ratings
 - Only users with common rated objects can be evaluated

Experiment results

• Enhancing Collaborative filtering

- *StatColl* uses similarity of user models (Statistical)
 - Enables computing the similarity for all users
- StatColl statistically significantly better
- Netflix dataset + IMDb dataset

Experiment results

Tau coefficient is negative for CF, because it has a lot of unpredicted objects

Experiment realization

- PrefWork was used for performing the experiments
 - Easy configuration, alteration, repetition of experiments
 - New methods, datasets, error measures, testing setting, integration of other methods

Conclusion

- Proposal of various methods for preference learning
 - New approaches specific for preferences, addressing problems of preference learning, implemented, ready to use in a web shop - a transparent preference model
- Experimental verifications of several new approaches
 - Statistically significant improvement of various methods
 - Enhancement of existing methods
- PrefWork for performing experiments

Future work

- Extending the e-shop with even more preferences
 - Vaclav Java, Kolomicenko PHP
 - New user interfaces
 - New paradigm for preference use
- New methods for learning for PrefWork
 - From user behavior
 - Learning of preference relations

