

David Hoksza

hoksza@ksi.mff.cuni.cz

Thesis Contributions

- Protein sequence similarity
 - o metric indexing approach
 - o sequential approach
 - o speedup within existing similarity model
- Protein structure similarity
 - o nonalignment-based similarity approach
 - alignment-based similarity approach
 - o similarity modelling itself

Protein structure & Motivation

- Transportation, building, signalling, catabolism, ...
- Molecule consisting of 20 types of amino acids (AA)

- Central dogma of molecular biology
 - $DNA \rightarrow RNA \rightarrow protein$
- Proteins' 3D interactions secure biological function
- protein structure similarity
 → biological function similarity
- protein sequence similarity → protein structure similarity

Protein Structure Similarity

Nonalignment-based approach

- o indexing
- feature extraction
- simple or ad-hoc similarity measure

Alignment-based approach

- sequential scan
- feature extraction
- o alignment
- superposition (3D transformation)
- o similarity measure
 - RMSD, TM-score
- Quality criterion
 - classification accuracy (SCOP hierarchical classification)

Density-Based Feature Extraction

Features

- n-dimensional vectors of real numbers
- AA ≈ viewpoint →
 VPT (viewpoint tag)

sDens

 density of AAs in rings of predefined width

sRad

 widths of rings containing predefined percentage of AAs

D. Hoksza. DDPIn: Distance and Density-Based Protein Indexing, CIBCB 2009, IEEE

Nonalignment-Based Approach

- One-step search
 - database creation
 - 1. AAs \rightarrow feature vectors
 - 2. indexing using weighted L_2 metric and MAM
 - querying
 - 1. AAs \rightarrow feature vectors
 - 2. feature vector \rightarrow query object
 - 3. results' merging
 - 4. SCOP classification
 - Two-step search
 - 2 one-step searches
 - o results' comparison
 - rescoring using Smith-Waterman
 - SCOP classification

algorithm	superfamily	class
PSI	88%	N/A
ProGreSS	97.2%	98.3%
PSIST	97.8%	99.4%
DDPIn	98.9%	100%

D. Hoksza. DDPIn: Distance and Density-Based Protein Indexing, CIBCB 2009, IEEE

Alignment-Based Approach

Alignment-Based Approach

			family	superfamily	fold
	Feature extraction	db-iTM	86.6	95.8	98.2
	\circ AAs \rightarrow feature vectors	db-iTM _{orig}	86.9	95.8	98.2
	 density-based feature extraction 	db - TM_{orig}	85.4	93.4	96.7
	Alignment (amino acid matching)	db-RMSD	79.5	87	95.3
		db-DP	63.4	69.7	83.7
	 Smith-Waterman alignment 	Vorometric-	TM 90.7	94.9	97.6
	 distance between feature vectors 	PPM	88.3	94.5	97.5
	 → scoring matrix modified variable gap penalty system 	Vorolign	86.4	92.4	97.7
		TM-align	83.8	92.6	95.9
		CE	84.6	91.9	94.1
	Superposition + scoring	BLAST	48.9	52.5	52.8
	• RMSD		· · · · · · f · · · · · · 1 · ·	-1	
	• TM-score		superfamily	class	
			0.8%~(938/979)	98.8% (967)	(/979)
	 reducing number of initial states 	PPM 94	4.7%~(929/979)	98.9% (968	8/979)
	iterative dynamic programming with belt-based restriction	DDPIn 38	0.7%(379/979)	74.5%(734)	(979)
	with beit-based restriction	PSIST 23	4%(229/979)	53.5 % (524	(979)

D. Hoksza, J. Galgonek. **Density-Based Classification of Protein Structures Using Iterative TM-score**, BIBMW 2009, **IEEE**

D. Hoksza, J. Galgonek. Alignment-Based Extension to DDPIn Feature Extraction, IJCB, ACTA Press, 2010

Alignment-Based Approach - Indexing

- Indexability measures
 - intrinsic dimensionality
 - objects' distribution
 - ball overlap factor (BOF)
 - ball regions' separation
 - T-error

nontriangular triplets

Semimetrization

- $\circ \quad \mathrm{db}\text{-}\mathrm{i}\mathrm{TM}_{\mathrm{f}} = 1 \mathrm{db}\text{-}\mathrm{i}\mathrm{TM}$
- $\circ \quad db-iTM_{smf}(S_i, S_j) = \\ max(db-iTM_f(S_i, S_j), db-iTM_f(S_j, S_i))$

o reranking

Metrization

o Trigen

measure	intrinsic dimensionality	T-error	BOF
$db\text{-}iTM_{smf}$	131.2	0.000005%	96.8%
db -i $TM_{smf}^{2.5}$	24.3	0.04%	58.1%
$db-iTM_{smf}^3$	17.5	0.10%	44.5%
$-\log(1-db-iTM_{smf})$	6.9	0.15%	44.4%

J. Galgonek, D. Hoksza. On the Effectiveness of Distances Measuring Protein Structure Similarity, SISAP 2009, IEEE

Conclusion

- Protein sequence search
 - indexing
 - data domain exploration

• speeding distance computation

- 20% speedup
- expected speedup growth

Protein structure search

nonalignment-based

best accuracy on all SCOP levels

alignment-based

- best accuracy on superfamily and fold SCOP levels
- indexing possibilities
- comparison with nonalignment-based

Feature Work

- Protein structure similarity
 - indexing
 - application of biological features
- RNA secondary structure similarity

RNA tertiary structure similarity