

SIRET Research Group Department of Software Engineering Faculty of Mathematics and Physics Charles University in Prague Czech Republic

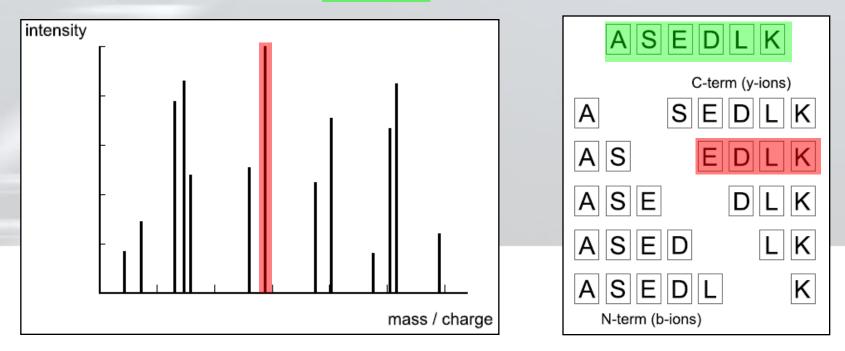
Similarity Search and Tandem Mass Spectrometry

Jiří Novák novak@ksi.mff.cuni.cz

Program of Presentation

Introduction

- Tandem Mass Spectrometry (MS/MS)
 - basic principles
 - interpretation of spectra
- Similarity Search Approaches
 - angle distance (cosine similarity)
 - parametrised Hausdorff distance
 - metric access methods (MAMs)
- Experiments
- Conclusions

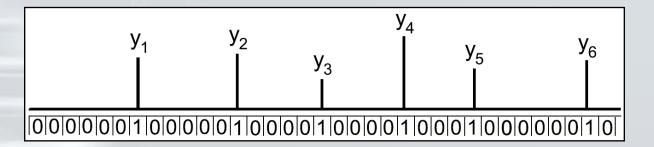

Introduction

- biological motivation
 - all organisms DNA proteins
- proteins
 - cells function and structure
 - basic blocks amino acids
 - linear sequence of amino acids ("linear sequence over 20-letter subset of the English alphabet")
- peptides
 - short sequences

Tandem Mass Spectrometry (MS/MS)

- method for unknown protein sequences identification from an "in vitro" sample
 - proteins are splitted to peptides (one spectrum for each peptide is captured)
 - peptides are splitted to fragments
 - mass to charge ratio (x axis); intensity of occurrence (y axis)
 - y-ions ("from the right"); b-ions ("from the left")

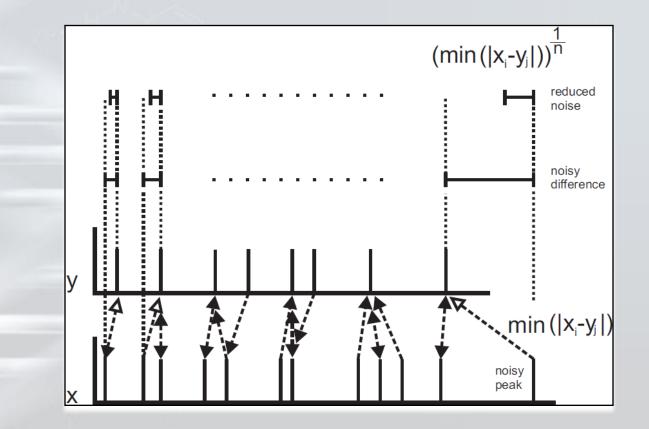
MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLE KFDKFKHLKSEDEMKASEDLK...



Interpretation of Spectra

- database approach
 - search database of already known protein sequences
 - theoretical spectra are generated from stored sequences and compared with experimental spectra
- typical problems
 - noise (up to 80% of peaks)
 - single amino acids (or groups) with similar masses can be mistaken
 - some peaks important for identification (y or b-ions) are missing
 - posttranslational modifications (PTMs)

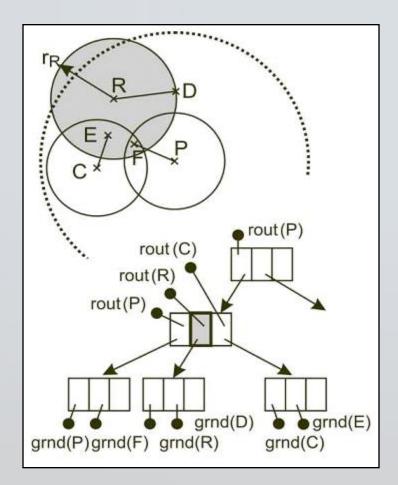
Angle Distance (d_A)


- cosine similarity approaches are commonly mentioned in literature
- high-dimensional boolean vectors; compact representation <7, 13, 18, 23, 27, 34>
- bad indexability

$$\cos(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}\boldsymbol{y}}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|}$$

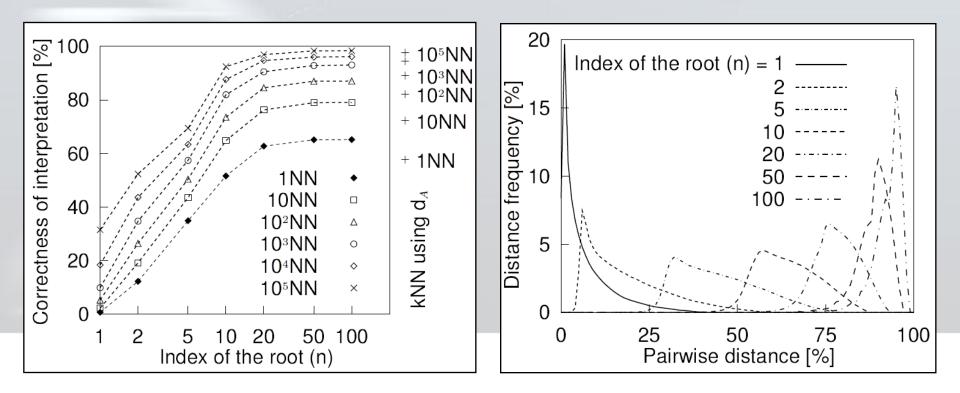
Parametrised Hausdorff Distance (d_{HP})

- for each number in the compact representation, the number with minimum difference in the other vector is found
- the average of nth roots from the set of minima is computed

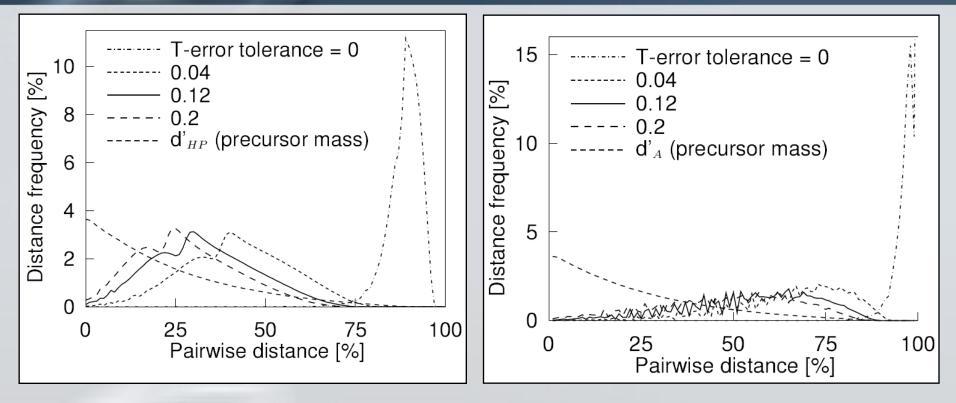


 $d_{HP}(\boldsymbol{x}, \boldsymbol{y}) = (\max(h(\boldsymbol{x}, \boldsymbol{y}), h(\boldsymbol{y}, \boldsymbol{x})))^m \qquad h(\boldsymbol{x}, \boldsymbol{y}) = \frac{\sum_{x_i}}{m}$

$$(\boldsymbol{x}, \boldsymbol{y}) = \frac{\sum_{x_i \in \boldsymbol{x}} \sqrt[n]{\left(\min_{y_j \in \boldsymbol{y}} \{d_E(x_i, y_j)\}\right)}}{|\boldsymbol{x}|}$$

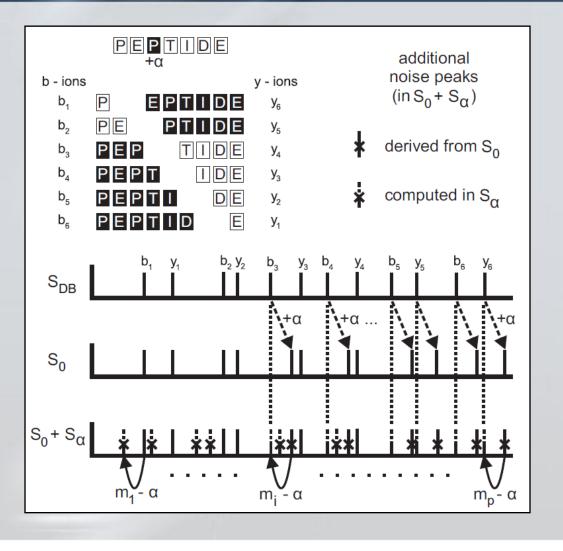

Metric Access Methods (MAMs)

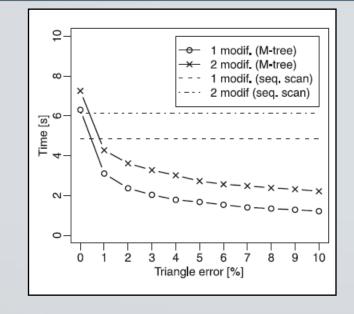
- DB index structures
- Metric
 - qualifies the distance (or similarity) between theoretical and experimental spectra
- M-tree (Metric tree)
 - dynamic and balanced tree
 - organizes objects (vectors) to n-dimensional ball regions

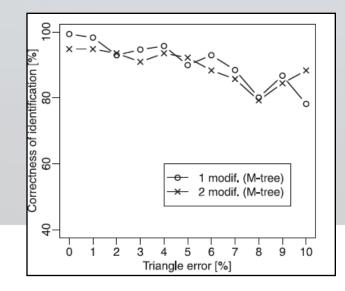


Parametrised Hausdorff Distance (d_{HP})

- increasing <u>n</u> in <u>nth</u> root function
 - + the impact of noise peaks is lower
 (i.e., the similarity between the spectra is modeled better)
 - + the distance is semimetric $(n \ge 2)$
 - the indexability is worse


Indexability of d_{HP} and d_{A}




d_{HP}
 d_A

- the indexability is better with increasing T-error tolerance
 - about 35% of all pairwise distances in $d_A=1$ (uncorrectable)

Dealing with PTMs (in progress)

Conclusions

- parametrised Hausdorff distance (d_{HP})
 - models the similarity among spectra very well
 - can be utilized by MAMs
- angle distance (d_A)
 - we verified that it has limitations for utilization by MAMs

References

- J. Novák, D. Hoksza: Similarity Search and Posttranslational Modifications in Tandem Mass Spectra, accepted at IEEE BIBM 2010, Hong Kong, China
- J. Novák, T. Skopal, D. Hoksza, J. Lokoč: Improving the Similarity Search of Tandem Mass Spectra using Metric Access Methods, SISAP 2010, Istanbul, Turkey. ACM ISBN 978-1-4503-0420-7, pp. 85-92.
- J. Novák, D. Hoksza: Parametrised Hausdorff Distance as a Non-Metric Similarity Model for Tandem Mass Spectrometry, DATESO 2010, Štědronín - Plazy, Czech Republic. CEUR proceedings volume 567, ISSN 1613-0073, pp. 1-12.
- J. Novák, D. Hoksza: An Application of the Metric Access Methods to the Mass Spectrometry Data, IEEE CIBCB 2009, Nashville, Tennessee, USA. ISBN 978-1-4244-2756-7, pp. 220-227.