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Intreduction

= biological motivation

— all organisms — DNA — proteins

= proteins
— cells function and structure
— basic blocks — amino acids

— linear sequence of amino acids
("linear sequence over 20-letter subset of the English alphabet”)

" peptides
— short sequences



Tandem Mass Spectrometry (MS/MS)

= method for unknown protein sequences identification from an “in vitro” sample
— proteins are splitted to peptides (one spectrum for each peptide is captured)
— peptides are splitted to fragments
— mass to charge ratio (x axis); intensity of occurrence (y axis)
— y-ions (“from the right”); b-ions (“from the left”)
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Interpretation of Spectra

» database approach

— search database of already known protein sequences

— theoretical spectra are generated from stored sequences and
compared with experimental spectra

= typical problems
— noise (up to 80% of peaks)
— single amino acids (or groups) with similar masses can be mistaken
— some peaks important for identification (y or b-ions) are missing

— posttranslational modifications (PTMSs)



Angle Distance (d,)

= cosine similarity approaches are commonly mentioned in literature

» high-dimensional boolean vectors; compact representation <7, 13, 18, 23, 27, 34>
» bad indexability
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Parametrised Hausdorff Distance (d,,p)

» for each number in the compact representation, the number with minimum
difference in the other vector is found

= the average of n' roots from the set of minima is computed
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Metric Access Methods (MAMS)

= DB index structures

= Metric

— qualifies the distance (or similarity) between
theoretical and experimental spectra

= M-tree (Metric tree)

— dynamic and balanced tree

— organizes objects (vectors) to
n-dimensional ball regions




Parametrised Hausdorff Distance (d,,p)

= increasing n in n" root function

+ the impact of noise peaks is lower
(i.e., the similarity between the spectra is modeled better)

+ the distance is semimetric (n = 2)

— the indexability is worse
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Indexability of d» and d,
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"dp — the indexability is better with increasing T-error tolerance

— about 35% of all pairwise distances in d,=1 (uncorrectable)




Dealing with PTMs (in progress)

o
Bﬁm@ . a —— 1 modif, (M-tree)
+a additional — 2 modif. (M-tree)
b - ions y - ions noise peaks ©— - - - 1 modif, (seq. scan)
. . L :
b1 E ﬁnm Y, (m SO+ S(]) . 2 modif (seq. scan)
—_—o— VN T T T T T T T T T T s T e e
b, PIE EOOBE v - A\
b, EHEHR TDE v * derived from S, £ .,
b, HEREWD [DE % . _ Oy T~ Xmx—x_y
>, BEEEND DE » ¥ computedinS, o e S
b, EHEFHIE Y, _
I f I I I I I I I I I
b b b b b 0 1 2 3 4 5 6 7 8 9 10
. I .Y, .Y, by, Y, by, 5 Y5 s Y6 Triangle error [%]
o8 I A I I I I
) o 3 i ) -
AN AL A B 805
so L1 11 QL il FETEL] N N
S S A A < NN
P P Be. N A\
: : o & = © % °
S+S| R AT ERE AT &
o ol %l | kxl] kb ikl ik ki H & :
Voo N e 8o
m,- a m. - a m.-a 5 —e— 1 modif, (M-tree)
| P = —— 2 modif. (M-tree)
&
3_
I I I I I I I I I I I
O 1 2 3 4 5 6 7 8 9 10
Triangle error [%]




Conclusions

= parametrised Hausdorff distance (dp)
— models the similarity among spectra very well
— can be utilized by MAMs

= angle distance (d,)

— we verified that it has limitations for utilization by MAMs
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