

Constraint Programming

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

 Logic-based puzzle, whose goal is to enter digits 1-9 in cells of 9×9 table in such a way, that no digit appears twice or more in every row, column, and 3×3 sub-grid.

A bit of history

1979: first published in New York

under the name "Number Place"

1986: became popular in Japan

Sudoku – from Japanes "Sudji wa dokushin ni kagiru"

"the numbers must be single" or "the numbers must occ

2005: became popular in the western world

9	6	3	1	7	4	2	5	8
1	7	8	3	2	5	6	4	9
2	5	4	6	8	9	7	3	1
8	2	1	4	3	7	5	9	6
4	9	6	8	5	2	3	1	7
7	3	5	9	6	1	8	2	4
5	8	9	7	1	3	4	6	2
3	1	7	2	4	6	9	8	5
6	4	2	5	9	8	1	7	3

SUDOKU

but differences in

to create challenging and udoku puzzles. Unlike uls, Sudoku puzzles ou solve, rendering any al lavout obsolete Complete the grid so that every row, column and every three-by-three bocontains the digits 1 to 0. Solve the paralle by logic and reasoning alone, income maths involved.

-	-							Difficu		
9			1		s		7	5		
		7				2				
	4				1					
			7		9					
5		5		-4			9	6		
	9			-6			8			
	I			3		7	4	2		
	5		2				1	8		

How to find out which digit to fill in?

×	×	6	1	3			
3	9	×				\bigcirc	
2	1	8			4		

 Use information that each digit appears exactly once in each row and column.

What if this is not enough?

Look at columns

 or combine information
 from rows and columns

Sudoku – One More Step

 If neither rows and columns provide enough information, we can note allowed digits in each cell.

 The position of a digit cand be infereed from positions of other digits and resrictions of Sudoku that each digit appears one in a column (row, sub-grid)

	5	6		1	3			
3	9				2		1	
2	1	8				4		
8	\bigcirc		2			6		1
			8	6	1			
					7		4	9
		3				7	9	8
	4					1	2	6
			9	2		3	6	4

Sudoku in General

We can see every cell as a **variable** with possible values from **domain** {1,...,9}.

There is a binary inequality **constraint** between all pairs of variables in every row, column, and sub-grid.

Such formulation of the problem is called a **constraint satisfaction problem**.

Course Content

Constraint Satisfaction Algorithms

- Local search techniques
 - HC, MC, RW, Tabu, GSAT, Genet
- Search algorithms
 - GT, BT, BJ, BM, DB, LDS
- Consistency techniques
 - NC, AC, DAC, PC, DPC, RPC, SC
- Consistency techniques in search
 - FC, PLA, LA
- Constraint Optimisation
 - B&B
- Over-constrained problems
 - PCSP, ProbCSP, FuzzyCSP, VCSP, SCSP, constraint hierarchies

Constraint Modelling

– Tips and tricks, Constraint Logic Programming

• Books

- P. Van Hentenryck: Constraint Satisfaction in Logic Programming, MIT Press, 1989
- E. Tsang: Foundations of Constraint Satisfaction, Academic Press, 1993
- K. Marriott, P.J. Stuckey: Programming with Constraints: An Introduction, MIT Press, 1998
- R. Dechter: **Constraint Processing**, Morgan Kaufmann, 2003
- Handbook of Constraint Programming, Elsevier, 2006

Journals

- **Constraints**, An International Journal. Springer Verlag
- Constraint Programming Letters, free electronic journal

On-line resources

- Course Web (transparencies) http://ktiml.mff.cuni.cz/~bartak/podminky/
- On-line Guide to Constraint Programming (tutorial) http://ktiml.mff.cuni.cz/~bartak/constraints/
- Constraints Archive (archive and links) http://4c.ucc.ie/web/archive/index.jsp
- Constraint Programming online (community web) http://www.cp-online.org/

Artificial Intelligence

- Scene labelling (Waltz 1975)
- How to help the search algorithm?

Interactive Graphics

- Sketchpad (Sutherland 1963)
- ThingLab (Borning 1981)

Logic Programming

- unification \rightarrow constraint solving (Gallaire 1985, Jaffar, Lassez 1987)

Operations Research and Discrete Mathematics

– NP-hard combinatorial problems

Scene Labelling

inferring 3D meaning of lines in a 2D drawing

- convex (+), concave (-) and border (\leftarrow) edges
- we are looking for a physically feasible interpretation

Interactive Graphics

manipulating graphical objects described via constraints

http://www.cs.washington.edu/research/constraints/

Graph Colouring

Assign colours (red, blue, green) to states, such that neighbours have different colours.

CSP Model

- variables: {WA, NT, Q, NSW, V, SA, T}
- domains: {r, b, g}
- constraints: WA \neq NT, WA \neq SA etc.

Can be described as a **constraint network** (nodes=variables, edges=constraints)

Solution WA = r, NT = g, Q = r, NSW = g, V = r, SA = b, T = g

Assign digits 0,...,9 to letters S,E,N,D,M,O,R,Y in such a way that: \Box SEND + MORE = MONEY

□ different letters are assigned to different digits

□ S and M are different from 0

Model 1:

```
E,N,D,O,R,Y in 0..9, S,M in 1..9

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

= 10000*M + 1000*O + 100*N + 10*E + Y
```

Model 2:

```
using "carry" 0-1 variables
E,N,D,O,R,Y in 0..9, S,M in 1..9, P1,P2,P3 in 0..1
D+E = 10*P1+Y
P1+N+R = 10*P2+E
P2+E+O = 10*P3+N
P3+S+M = 10*M +O
```

allocate N queens to a chess board of size N×N in a such way that no two queens attack each other

the core decision: each queen is located in its own column **variables**: N variables r(i) with the domain {1,...,N} **constraints**: no two queens attack each other

 $\forall i \neq j \quad r(i) \neq r(j) \land |i-j| \neq |r(i)-r(j)|$

Some Real Applications

Bioinformatics

- DNA sequencing (Celera Genomics)
- deciding the 3D structure of proteins from the sequence of amino acids

Planning and Scheduling

- automated planning of spacecraft activities (Deep Space 1)
- manufacturing scheduling

CP and Others

Constraint Satisfaction Problem (CSP) consists of:

– a finite set of **variables**

- describe attributes of the solution for example a location of a queen in the chess board
- **domains** finite sets of possible values for variables
 - describe options that we need to decide for example, rows for queens
 - sometimes, there is a common super domain for all the variables and individual variables' domains are defined via unary constraints

a finite set of constraints

- constraint is a relation over a subset of variables for example locationA ≠ locationB
- constraint can be defined in extension (a set of compatible value tuples) or using a formula (see above)

A Solution to a CSP

- A feasible solution of a constraint satisfaction problem is a complete consistent assignment of values to variables.
 - complete = each variable has assigned a value
 - consistent = all constraints are satisfied

Sometimes we may look for all the feasible solutions or for the number of feasible solutions.

- **An optimal solution** of a constraint satisfaction problem is a feasible solution that minimizes/maximizes a value of some objective function.
 - objective function = a function mapping feasible solutions to real numbers

Problem Modelling

How to describe a problem as a constraint satisfaction problem?

Solving Techniques

How to find values for the variables satisfying all the constraints?

Properties of Constraints

- express partial information
 - X is greater than 3, but the exact value of X is not given
- provide a **local view** of the problem
 - connect only a few variables (not all of them)
- can be heterogeneous
 - domains can be different (numbers, strings etc.)
- are **non-directional** (functions)
 - X = Y+2 can be used to compute both X and Y
- are **declarative**
 - do not determine the procedure for satisfaction
- are **additive**
 - the order of constraints is not important, their conjunction is crucial
- are rarely independent
 - share variables

close to real-life problems

- we all use constraints when formulating problems
- many real world features can be captured as constraints

declarative manner

– focus on problem description rather than on problem solving

co-operative problem solving

- a uniform framework for integration of various solving approaches
- simple (search) and sophisticated (inference) techniques

semantic foundations

- clean and elegant modelling languages
- roots in logic programming

applications

not just academic exercise but already used to solve real-life problems

• efficiency

- combinatorial explosion
- many problems are in the NP-complete class

hard-to-predict behaviour

- the efficiency is not known until the model is tried on real data

model stability

- new data = new problem

too local

- through the individual constraints, the complete problem is not "visible" (can be solved via global constraints)
- distributed computations

weak co-operation of solvers

 integrating various solving techniques is hard, usually done via shared variables only

Representation of constraints:

- intentional (algebraic/logic formulae)
- in extension (a set of compatible value tuples, 0-1 matrix)

Representation of a CSP as a (hyper)graph

- nodes = variables
- (hyper)egdes = constraints

Example:

- variables x₁,...,x₆
 with domain {0,1}
- $c_1: x_1+x_2+x_6=1$
- $c_2: x_1 x_3 + x_4 = 1$
- $c_3: x_4 + x_5 x_6 > 0$
- $c_4: x_2 + x_5 x_6 = 0$

The world is not binary ...

but it can be transformed to a binary one!

Binary CSP

CSP + all the constraints are binary

Note: unary constraints can be easily encoded in the domain of a variable

Equivalence of CSPs

Two constraint satisfaction problems are equivalent if they have the same sets of solutions.

Extended Equivalence of CSPs

Problem solutions can be syntactically transformed between the problems.

Can any CSP be transformed to an (extended) equivalent binary CSP?

The world is not binary ...

but it can be transformed to a binary one!

Swapping variables and constraints.

- k- ary constraint c is converted to a dual variable v_c with the domain consisting of compatible tuples
- for each pair of constraints c a c' sharing some variables there is
 a binary constraint between v_c a v_{c'} restricting the dual variables
 to tuples in which the original shared variables take the same value

Example:

- variables x₁,...,x₆
 with domain {0,1}
 - $c_1: x_1+x_2+x_6=1$
 - $c_2: x_1 x_3 + x_4 = 1$
 - $c_3: x_4 + x_5 x_6 > 0$ - c_4: x_2 + x_5 - x_6 = 0

New dual variables for (non-binary) constraints.

- k- ary constraint c is translated to a dual variable v_c with the domain consisting of compatible tuples
- for each variable x in the constraint c there is a constraint between x a v_c restricting tuples of dual variable to be compatible with x

Example:

- variables x₁,...,x₆
 with domain {0,1}
- $c_1: x_1 + x_2 + x_6 = 1$ $- c_2: x_1 - x_3 + x_4 = 1$ $- c_3: x_4 + x_5 - x_6 > 0$ $- c_4: x_2 + x_5 - x_6 = 0$

Transformation Between Encodings

A hidden variable encoding can be transformed to a dual encoding:

- Paths of length 2 between any pair of dual variables are substituted by a binary constraint that combines both relations over the path (r1 and r1 form R11); beware of edges shared between more paths!
- If the original variable becomes isolated (or is connected to a single constraint), then remove the variable.

In each transformation step we obtain an equivalent CSP \Rightarrow "hybrid" encoding

The transformation can also be done in the reverse direction.

Hidden variable encoding can be extended by the dual encoding.

Final Notes on Binarisation

• Why do we do binarisation?

- a unified form of a CSP
- many solving approaches are formulated for binary CSPs
- tradition (historical reasons)

• Which encoding is better?

- hard to say ;-)
- dual encoding: better propagation but constraints in extension
- hidden variable encoding: keeps original variables but weaker propagation

• Binary vs non-binary constraints

- more complex propagation algorithms for non-binary constraints
- exploiting semantics of constraints for more efficient and stronger domain filtering

© 2013 Roman Barták Department of Theoretical Computer Science and Mathematical Logic bartak@ktiml.mff.cuni.cz