
Constraint Programming
Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Consistency Techniques: Arc Consistency

Introduction to consistency techniques
So far we used constraints in a passive way (as a test).

in the best case we analysed the reason of the conflict.

Can we use the constraints in a more active way?

Example:
A in 3..7, B in 1..5 the variables’ domains
A<B the constraint

– many inconsistent values can be removed
– we get A in 3..4, B in 4..5
Note: it does not mean that all the remaining combinations of the values are consistent (for
example A=4, B=4 is not consistent)

• How to remove the inconsistent values from the variables’
domains in the constraint network?

Node consistency (NC)

Unary constraints are converted into variables’
domains.

Definition:
– The vertex representing variable X is node consistent iff every value in the

variable’s domain Dx satisfies all the unary constraints imposed on the
variable X.

– CSP is node consistent iff all the vertices are node consistent.

Algorithm NC

procedure NC(G)
for each variable X in nodes(G)

for each value V in the domain DX
if unary constraint on X is inconsistent with V then

delete V from DX
end for

end for
end NC

Arc consistency (AC)

Since now we will assume binary CSPs only
i.e. a constraint corresponds to an arc (edge) in the
constraint network.

Definition:
– The arc (Vi,Vj) is arc consistent iff for each value x from the domain Di there

exists a value y in the domain Dj such that the assignment Vi =x a Vj = y
satisfies all the binary constraints on Vi, Vj.

Note: The concept of arc consistency is directional, i.e., arc consistency of
(Vi,Vj) does not guarantee consistency of (Vj,Vi).

– CSP is arc consistent iff every arc (Vi,Vj) is arc consistent (in both directions).

Example:
3..7 1..5

A<B

no arc is consistent

A B 3..4 1..5
A<B

(A,B) is consistent

A B 3..4 4..5
A<B

(A,B) and (B,A) are consistent
A B

Algorithm for arc revisions

How to make (Vi,Vj) arc consistent?
• Delete all the values x from the domain Di that are

inconsistent with all the values in Dj (there is no value y in Dj
such that the valuation Vi = x, Vj = y satisfies all the binary
constrains on Vi a Vj).

Algorithm of arc revision

procedure REVISE((i,j))
DELETED ¬ false
for each X in Di do

if there is no such Y in Dj such that (X,Y) is consistent, i.e.,
(X,Y) satisfies all the constraints on Vi, Vj then

delete X from Di
DELETED ¬ true

end if
end for
return DELETED

end REVISE

The procedure also
reports the deletion
of some value.

Algorithm AC-1
How to make a CSP arc consistent?
• Do revision of every arc.
Beware, this is not enough! Pruning the domain may make
some already revised arcs inconsistent again.
A<B, B<C: (3..7,1..5,1..5) (3..4,1..5,1..5) (3..4,4..5,1..5) (3..4,4,1..5) (3..4,4,5) (3,4,5)

• Thus the arc revisions will be repeated until any domain is
changed.

Algorithm AC-1

procedure AC-1(G)
repeat

CHANGED ¬ false
for each arc (i,j) in G do

CHANGED ¬ REVISE((i,j)) or CHANGED
end for

until not(CHANGED)
end AC-1

Mackworth (1977)

What is wrong with AC-1?
• If a single domain is pruned then revisions of all the

arcs are repeated even if the pruned domain does
not influence most of these arcs.

Which arcs should be reconsidered for revisions?
• The arcs whose consistency is affected by the domain

pruning, i.e., the arcs pointing to the changed
variable.

Omit the arc running out of
the variable whose domain
has been changed
(this arc is not affected by the
domain change).

Variable with
pruned domain

The arc whose
revision caused

the domain reduction

´

We can omit one more arc!

Algorithm AC-2
A generalised version of the Waltz’s labelling algorithm.
• In every step, the arcs going back from a given vertex are

processed (i.e. a sub-graph of visited nodes is AC)
Algorithm AC-2

procedure AC-2(G)
for i ¬ 1 to n do % n is a number of variables

Q ¬ {(i,j) | (i,j)Îarcs(G), j<i} % arcs for the base revision
Q’ ¬ {(j,i) | (i,j)Îarcs(G), j<i} % arcs for re-revision
while Q non empty do

while Q non empty do
select and delete (k,m) from Q
if REVISE((k,m)) then

Q’ ¬ Q’ È {(p,k) | (p,k)Îarcs(G), p£i, p¹m }
end while
Q ¬ Q’
Q’ ¬ empty

end while
end for

end AC-2

Mackworth (1977)

Algorithm AC-3
Re-revisions can be done more elegantly than in AC-2.
1. one queue of arcs for (re-)revisions is enough
2. only the arcs affected by domain reduction are added

to the queue (like AC-2)

Algorithm AC-3
procedure AC-3(G)

Q ¬ {(i,j) | (i,j)Îarcs(G), i¹j} % queue of arcs for revision
while Q non empty do

select and delete (k,m) from Q
if REVISE((k,m)) then

Q ¬ Q È {(i,k) | (i,k)Îarcs(G), i¹k, i¹m}
end if

end while
end AC-3

AC-3 is the most widely used consistency algorithm but it is still not
optimal.

Mackworth (1977)

Looking for (and remembering of) the support
Observation (AC-3):

– Many pairs of values are tested for consistency in every
arc revision.

– These tests are repeated every time the arc is revised.

a
b
c
d

a
b
c
d

a
b
c
d

V1 V2 V3

1. When the arc V2,V1 is revised, the
value a is removed from domain of V2.

2. Now the domain of V3, should be
explored to find out if any value
a,b,c,d loses the support in V2.

Observation:
The values a,b,c need not be checked again because they still
have supports in V2 different from a.

The support set for aÎDi is the set {<j,b> | bÎDj , (a,b)ÎCi,j}
Can we compute the support sets once and then use them during
re-revisions?

´1

´2

Finding support sets
• A set of values supported by a given value (if the value disappears then these

values lost one support), and a number of own supporters are kept.

procedure INITIALIZE(G)
Q ¬ {} , S ¬ {} % emptying the data structures
for each arc (Vi,Vj) in arcs(G) do

for each a in Di do
total ¬ 0
for each b in Dj do

if (a,b) is consistent according to the constraint Ci,j then
total ¬ total + 1
Sj,b ¬ Sj,b È {<i,a>}

end if
end for
counter[(i,j),a] ¬ total
if counter[(i,j),a] = 0 then

delete a from Di
Q ¬ Q È {<i,a>}

end if
end for

end for
return Q

end INITIALIZE

Sj,b - a set of pairs <i,a> such that
<j,b> supports them

counter[(i,j),a] - number of supports
for the value a from Di
in the variable Vj

Computing and counting supporters

Using support sets

Situation:
we have just processed the arc (i,j) in INITIALIAZE

Using the support sets:
1. Let b3 is deleted from the domain of j (for some reason).
2. Look at Sj,b3 to find out the values that were supported by b3

(i.e. <i,a2>,<i,a3>).
3. Decrease the counter for these values (i.e. tell them that they lost one

support).
4. If any counter becomes zero (a3) then delete the value and repeat the

procedure with the respective value (i.e., go to 1).

counter(i,j),_
2
2
1

Sj,_
<i,a1>,<i,a2>
<i,a1>
<i,a2>,<i,a3>

i
a1
a2
a3

j
b1
b2
b3

counter(i,j),_
2
2
1

Sj,_
<i,a1>,<i,a2>
<i,a1>
<i,a2>,<i,a3>

i
a1
a2
a3

j
b1
b2
b3́1´2

1
00

Algorithm AC-4

The algorithm AC-4 has the optimal worst-case time
complexity!

Algorithm AC-4

procedure AC-4(G)
Q ¬ INITIALIZE(G)
while Q non empty do

select and delete any pair <j,b> from Q
for each <i,a> from Sj,b do

counter[(i,j),a] ¬ counter[(i,j),a] - 1
if counter[(i,j),a] = 0 & "a" is still in Di then

delete "a" from Di
Q ¬ Q È {<i,a>}

end if
end for

end while
end AC-4

Unfortunately the average efficiency is not so good
… plus there is a big memory consumption!

Mohr, Henderson (1986)

Other arc consistency algorithms

• AC-5 (Hentenryck, Deville, Teng 1992)
– a generic arc-consistency algorithm
– can be reduced both to AC-3 and AC-4
– exploits semantic of the constraint
– functional, anti-functional, and monotonic constraints

• AC-6 (Bessiere 1994)
– improves memory complexity and average time complexity of

AC-4
– keeps one support only, the next support is looked for when

the current support is lost

• AC-7 (Bessiere, Freuder, Regin 1999)
– based on computing supports (like AC-4 and AC-6)
– exploits symmetry of the constraint

AC-3.1: optimal AC-3
Some observations:

– AC-3 is not (theoretically) optimal
– AC-4 is (theoretically) optimal but (practically) slow
– AC-6/7 are (practically) faster than AC-4, but quite complicated

What is inefficient in AC-3?
– Looking for supports in REVISE starts from scratch!

if „there is no such Y in Dj such that (X,Y) is consistent“ then

AC-3.1
– same run as AC-3
– but for each value, it remembers

the last support in the constraint
and the next time, it starts
looking for a support at this value

procedure EXIST((i,x),j)
y ¬ last((i,x),j)
if yÎDj then return true
while y¬next(y,Dj) & y¹nil do

if (x,y)ÎC(i,j) then
last((i,x),j) ¬ y
return true

end while
return false

end EXIST

Zhang, Yap (2001)

Algorithm AC-2001: another optimal AC-3
Version of AC-3 with the queue of variables (AC-8)

Note:
– The algorithm works with

difference sets – for each
variable we know a set of
values deleted
since the last revision.

procedure AC-2001(G)
Q ¬ {i | iÎnodes(G)} % a queue of nodes for revision
while Q non empty do

select and delete j from Q
for each iÎnodes(G) such that (i,j)Îarcs(G) do

if REVISE2001(i,j) then
if Di=Æ then return fail
Q ¬ Q È {i}

end for
end while
return true

end AC-2001

procedure REVISE2001(i,j)
DELETED ¬ false
for each x in Di do

if last((i,x),j)ÏDj then
if $yÎDj y>last((i,x),j)
& (x,y)ÎC(i,j) then

last((i,x),j) ¬ y
else

delete x from Di
DELETED ¬ true

end if
end for
return DELETED

end REVISE2001

Directional arc consistency

Observation 1:
AC has a directional character but a CSP is not directional.

Observation 2:
AC has to repeat arc revisions and the number of revisions
depends on the number of arcs and on the domain size (the
while loop).

Can we weaken AC somehow so each arc is revised
exactly once?

Definition:
CSP is directional arc consistent for a given order of
variables if and only if each arc (i,j), such that i<j, is
consistent.

Again, each arc is checked once, but only in a one direction.

Algorithm DAC-1

1. Arc consistency is required in one direction only
2. Variables are ordered

Ä no directed cycle!

procedure DAC-1(G)
for j = |nodes(G)| to 1 by -1 do

for each arc (i,j) in G such that i<j do
REVISE((i,j))
if Di=Æ then stop with fail

end for
end for

end DAC-1

Algorithm DAC-1

If arcs are revised in the right order then no revision needs to be repeated!

1 2 3 4 5

1

2

6

5

4

3

How to exploit DAC?

Obviously AC covers DAC (if CSP is AC, then it is DAC).
Is DAC anyhow useful?

– DAC-1 is clearly more efficient than AC-x
– Moreover, there are problems where DAC is enough.

Example: If the constraint network is a tree then we can use DAC to solve
the problem in a backtrack-free way.

• How to order the nodes for DAC?
• How to order the nodes for labelling (search)?

1. Apply DAC in the order of nodes
from the root.

2. Label (assign) the nodes
starting at root.

DAC ensures that for each child
node there is a value compatible
with the parent node.

Relation between DAC and AC

Observation:
A CSP is arc consistent if for some ordering of variables the problem is
directional arc consistent in both directions (according to that ordering).

Can we make the problem AC by applying DAC in both directions?
In general NO, but…

Example:
X in {1,2}, Y in {1}, Z in {1,2}, X¹Z,Y<Z

for ordering X,Y,Z there
is no change in domains

for ordering Z,Y,X the domain
of Z is pruned, but the
problem is not AC

If we first try the ordering Z,Y,X, then we get AC!

{1,2}
X Y

Z
{1,2}

{1}

X¹Z Y<Z

{1,2}
X Y

Z
{2}

{1}

X¹Z Y<Z

From DAC to AC for tree-structured CSPs

If we apply DAC to a tree-structured CSP first for the ordering from the
root and then in the reverse direction from leafs then we obtain AC.

Proof:

together: each value has a support in all child nodes (the first DAC run)
and in the parent node too (the second DAC run) so the value is AC

if some value is deleted during
the second run of DAC (in the
reverse order) then this value is
not a support for any value in the
parent node (so the values in the
parent do not lose supports)

after the first run of DAC we
ensure that each value in a
parent node has a support (a
compatible value) in all child
nodes

´

´ ´
´

a b

p q r u v

a b c
5 4

3 2

1

a b

p q r u v

a b c
1 2

3 4

5

By applying AC we remove many inconsistent values.
– Did we solve the problem?
– Do we know that a solution exists?
NO and NO!

Example:

What is advantage of using AC?
– Sometimes AC directly provides a solution.

• any domain is empty ® no solution exists
• all domains are singleton ® this is a solution

– In general, AC decreases the search space.

Is AC enough to solve CSPs?

CSP is arc consistent
but there is no solution!

X¹ZX¹Y

Y¹Z

{1,2}

{1,2} {1,2}

X

Y
Z

© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

