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How to solve constraint satisfaction problems?

So far we have two methods to solve CSPs:
– search

• complete (finds a solution or proves its non-existence)
• too slow (exponential)

– explores “visibly” wrong valuations
– consistency techniques

• usually incomplete (inconsistent values stay in domains)
• pretty fast (polynomial)

Share advantages of both approaches - combine them!
– label the variables step by step (backtracking)
– maintain consistency after assigning a value

Do not forget about traditional solving techniques!
– linear equality solvers, simplex …
– such techniques can be integrated to global constraints!



A core constraint satisfaction method:
– label (instantiate) the variables one by one

• the variables are ordered and instantiated in that order
– verify (maintain) consistency after each assignment

Skeleton of the search algorithm
procedure Labelling(G)

return LBL(G,1)
end Labelling

procedure LBL(G,cv)
if cv>|nodes(G)| then return nodes(G)
for each value V from Dcv do

if consistent(G,cv) then
R ¬ LBL(G,cv+1)
if R ¹ fail then return R

end if
end for
return fail

end LBL

A „hook“ for consistency 
procedure

Golomb&Baumert (1965), Bitner&Reingold (1975) BacktrackingGolomb&Baumert (1965), Bitner&Reingold (1975)



Look-back techniques
“Maintain” consistency among the already instantiated variables.

– „look back“ = look to already labelled variables
What’s result of consistency maintenance among labelled variables?

– a conflict (and/or its source - a violated constraint)
Backtracking is a basic look-back method.

Backward consistency checks
procedure AC-BT(G,cv)

Q ¬ {(Vi,Vcv) in arcs(G), i<cv}       % arcs to labelled variables.
consistent ¬ true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
consistent ¬ not REVISE(Vk,Vm)

end while
return consistent

end AC-BT

Backjumping & comp. uses information about the violated constraints.

When a value is deleted,
the domain is empty



Forward checking
It is better to prevent failures than to detect them only!
Consistency techniques can remove incompatible values for future (=not yet 
instantiated) variables.
Forward checking ensures consistency between the currently instantiated 
variable and the variables connected to it via constraints.

Forward consistency checks

procedure AC-FC(G,cv)
Q ¬ {(Vi,Vcv) in arcs(G), i>cv}     % arcs to future variables
consistent ¬ true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
if REVISE(Vk,Vm) then

consistent ¬ not empty Dk
end if

end while
return consistent

end AC-FC

Empty domain implies
inconsistency

McGregor (1975),Van Hentenryck (1989)



Partial look-ahead
We can extend the consistency checks to more future variables!
The value assigned to the current variable can be propagated to all future 
variables.

Partial look-ahead consistency checks

Notes:
In fact DAC is maintained (in the order reverse to the labelling order).

Partial Look Ahead or DAC - Look Ahead
It is not necessary to check consistency of arcs between the future variables 

and the past variables (different from the current variable)!

procedure DAC-LA(G,cv)
for i=cv+1 to n do

for each arc (Vi,Vj) in arcs(G) such that i>j & j³cv do
if REVISE(Vi,Vj) then

if empty Di then return fail
end for

end for
return true

end DAC-LA

Haralick&Elliot (1980)



Full look-ahead
Knowing more about far future is an advantage!
Instead of DAC we can use a full AC (e.g. AC-3).

Full look ahead consistency checks

procedure AC3-LA(G,cv)
Q ¬ {(Vi,Vcv) in arcs(G),i>cv}               % start with arcs going to cv
consistent ¬ true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
if REVISE(Vk,Vm) then

Q ¬ Q È {(Vi,Vk) | (Vi,Vk) in arcs(G),i¹k,i¹m,i>cv}
consistent ¬ not empty Dk

end if
end while
return consistent

end AC3-LA
Notes:

– The arcs going to the current variable are checked exactly once.
– The arcs to past variables are not checked at all.
– It is possible to use other than AC-3 algorithms (e.g. AC-4)

Gaschnig (1974), Sabin&Freuder (1994)



Comparison of solving methods (4 queens)

Backtracking is not very good
• 19 attempts

Forward checking is better
3 attempts

And the winner is Look Ahead
2 attempts



Constraint propagation at glance

• Propagating through more constraints removes more inconsistencies
(BT < FC < PLA < LA), of course it increases complexity of the labelling step.

• Forward Checking does no increase complexity of backtracking, the constraint 
is just checked earlier in FC (BT tests it later).

• When using AC-4 in LA, the initialisation is done just once.
• Consistency can be ensured before starting search

– Algorithm MAC (Maintaining Arc Consistency)
• AC is checked before search and after each assignment

• It is possible to use stronger consistency techniques (e.g. use them once before 
starting search).

1 2 3 4 5 6 7 8

Past (already labelled) variables Future (free) variablescv

backtracking forward checking look ahead



Variable ordering

Variable ordering in labelling influences significantly efficiency of 
constraint solvers (e.g. in a tree-structured CSP).

Which variable ordering should be chosen in general?
FAIL FIRST principle

„select the variable whose instantiation will lead to a failure“
it is better to tackle failures earlier, they can be become even harder
– prefer the variables with smaller domain (dynamic order)

• a smaller number of choices ~ lower probability of success 
• the dynamic order is appropriate only when new information appears 

during solving (e.g., in look ahead algorithms) 

„solve the hard cases first, they may become even harder later“
– prefer the most constrained variables

• it is more complicated to label such variables (it is possible to assume 
complexity of satisfaction of the constraints)

• this heuristic is used when there is an equal size of the domains
– prefer the variables with more constraints to past variables

• a static heuristic that is useful for look-back techniques



Value ordering

Order of values in labelling influences significantly efficiency (if we 
choose the right value each time, no backtrack is necessary).

What value ordering for the variable should be chosen in general?
SUCCEED FIRST principle

„prefer the values belonging to the solution“
– if no value is part of the solution then we have to check all values
– if there is a value from the solution then it is better to find it soon
Note: SUCCEED FIRST does not go against FAIL FIRST !
– prefer values with more supports

• this information can be found in AC-4
– prefer a value leading to less domain reduction

• this information can be computed using singleton consistency
– prefer a value simplifying the problem

• solve approximation of the problem  (e.g. a tree)
Generic heuristics are usually too complex for computation.
It is better to use problem-driven heuristics that propose the value!



So far we assumed search by labelling, i.e. assignment of 
values to variables.

– assign a value, propagate and backtrack in case of 
failure (try other value)
• this is called enumeration

– propagation is used only after instantiating a variable

Example:
• X,Y,Z in 0,…,N-1 (N is constant)
• X=Y, X=Z, Z=(Y+1) mod N

– problem is AC, but has no solution
– enumeration will try all the values
– for n=107 runtime 45 s. (at 1.7 GHz P4)

Can we use faster labelling?

0   1   2

0   1   2 0   1
   2

X
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Enumeration



Enumeration resolves disjunctions in the form X=0 Ú X=1 … X=N-1
– if there is no correct value, the algorithm tries all the values

We can use propagation when we find some value to be wrong!
– that value is deleted from the domain which starts propagation 

that filters out other values
– we solve disjunctions in the form X=H Ú X¹H
– this is called step labelling (usually a default strategy)
– the previous example solved in 22 s. by trying and refuting value 0 

for X
Why so long?

– In each AC cycle we remove just one value.

Another typical branching is bisection/domain splitting
– we solve disjunctions in the form X£H Ú X>H, where H is a value 

in the middle of the domain

Other branching strategies
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• If the constraint network is acyclic then we can find a solution 
using backtrack-free search (AC is enough)!

• However, constraint networks are not usually acyclic!
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If we can make a constraint network acyclic, we can solve the problem with 
backtrack-free search.

How to remove cycles?
– instantiate variables on cycles (instantiation = removal from a graph)
– We can instantiate just variables in a cycle-cutset!
– cycle cutset = a set of vertices such that their removal splits all cycles

Algorithm Cycle Cutset
procedure cycle-cutset(G)

C ¬ find-cycle-cutset(G)
while ex. assignment of variables in C satisfying all constraints do

LC ¬ a(nother) assignment of variables in C satisfying all constraints
enforce DAC from C to the remaining variables
if all domains are non-empty then

LR ¬ assignment of remaining variables (out of C) using backtrack-free 
search
return LC+LR

end if
end while
return fail

end cycle-cutset

Dechter&Pearl (1988) Cycle cutset



Cycle cutset: properties

During labelling of the cycle-cutset there is thrashing.
Example 1:

– X,Y,Z – order of variables
– assume that there is no compatible value in Z for X=a
– hence, each time we use X=a, we get a failure
We can make the problem arc consistent before search!

Example 2:
– X,Y,Z – order of variables
– (a,c), (b,d) ÎCXZ, (a,d)ÏCXZ, (p,c) ÏCYZ, (p,d), (q,c) ÎCYZ

- each time we use X=a, Y=p together, we get a failure
- making the problem AC does not discover this problem
we need maintaining arc consistency during search

What about combining MAC with the ideas of CC?
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MAC Extended
• less instantiations

– we instantiate (during search) only a small subset of variables
• less filtering

– we maintain only partial arc consistency (that can be extended to 
complete arc consistency)

Algorithm MACE
1) make the problem arc consistent (if inconsistent then failure)
2) split variables to two sets:

a cycle-cutset C
a set U of variables outside any cycle

(note that U is not necessarily a complement to C)
3) remove U from the network (U will not participate in AC)
4) while C ¹ 0 do

4a) select a value for some variable in C
4b) make the problem arc consistent

if inconsistent then go to 4a (or to the previously instantiated variable)
4c) remove variables with singleton domains (put them to U)
4d) remove variables outside any cycle (put them to U)

5) re-connect variables from U to the network
and make the problem arc consistent

6) find instantiation of other variables using backtrack-free search

Sabin&Freuder (1997)
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1. Make problem AC
2. Find C and U
3. Disconnect U
4. Assign value to C
5. Make problem AC
6. Disconnect 

variables outside 
cycles

7. Reconnect U
8. Backtrack-free 

search
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CC and MACE need a cycle-cutset (smaller CC is better)
No polynomial time algorithm for finding minimal CC is known.
Some heuristics:

– put to CC variables according to their degree (higher degree first)
– “  + include only variables that are in some cycle
– put to CC variables according to number of cycles they participate in

Cycle-cutset algorithm
procedure find-cycle-cutset(G)

(V,E) = G
Q ¬ order elements in V by descending order of their degrees in G
CC ¬ {}
while the graph G is cyclic do

V ¬ first element in Q
CC ¬ CC È {V}
Q ¬ Q - {V}
remove V and edges involving it from the constraint graph G

end while
return CC

end find-cycle-cutset

Looking for cycle cutset
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