
Constraint Programming
Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Search and Optimization Techniques

Let us go back to foundations: DFS = Depth First Search

Observation:
Real-life problems have huge states spaces that cannot be
fully explored.

We can explore just part of the state space!

Ä incomplete tree search

1 2 3 4 5 6 7 8 9

Depth-first search

Do not explore the state space completely.
– Do not guarantee proving that there is no solution and they

do not guarantee finding a solution (completeness)
• sometimes completeness can be guaranteed with time-

complexity trade-off
For many problems, incomplete techniques find solutions faster.

Frequently based on a complete search algorithm such as DFS.
– Cutoff

• after exploiting allocated resources (time, backtracks, credit, …)
• may be global (for the whole search tree) or local (for a given

sub-tree or a search node)

– Restart
• with different parameters (for example with more resources)
• learning can be used before the next iteration

Incomplete search

Bounded Backtrack Search

Limited number of backtracks (cutoff)
– backtracking is counted from the point with other

alternatives
– “limited number of leafs”

After failure, increase the limit by one (restart).

Example: BBS(8)

Implementation:
– count the number of backtracks (failures)
– stop after exceeding the limit

1 2 3 4 5 6 7 8 9

Limited number of alternatives (width) for each node
(cutoff).

– try a given number of alternatives for each node
– Beware, this is still exponential!

After failure, increase the width by one (restart).

Example: IB(2)

Implementation:
– restrict the number of tries in nodes (inner for-loop)

1 3 5 72 4 6 8

Iterative Broadening

Limited depth for tree search (cutoff).
– till given depth, all alternatives are tried
– after exceeding the depth, another incomplete search can

be used
After failure, increase the depth by one (restart).

Example: DBS(3)

Implementation:
– keep the number of instantiated variables
– if the number is larger than a given limit, try just one

alternative – BBS(0)

1 3 5 72 4 6 8

Depth Bounded Search

Limited credit (the number of backtracks) for search (cutoff).
– credit is split among available alternatives
– unit credit means no alternatives (values)

After failure, increase credit by one (restart).
Example: CS(7)

Implementation:
– in each node the (non-unit) credit is uniformly split among

alternative sub-trees
– for a unit credit, just one alternative is tried

1 3 5 72 4 6

4 3

2 2 2 1

1 1 1 1 1 1

Credit Search

When solving real-life problems we frequently have some
experience with “manual” solving of the problem.

Heuristics – a guide where to go
– they recommend a value for assignment (value ordering)
– frequently lead to a solution

But what to do when the heuristic is wrong?
– DFS takes care about the end of branches (leafs of tree)
– it repairs latest failures of the heuristic rather than earlier failures
– so it assumes that heuristic was right at the beginning of search

Observation1:
The number of wrong heuristic decisions is low.

Observation2:
Heuristics are usually less reliable at the beginning of search than
at its end (more information and fewer choices are available there).

Search and heuristics

How to make search more efficient?
– Backtracking is “blind” with respect to heuristics.

Discrepancy = violation of heuristic (different value is used)

Core principles of discrepancy search:
– we change the order of branches based on discrepancies
– explore first the branches with less discrepancies

– explore first the branches with earlier discrepancies

heuristic says „go left“

heuristic says „go left“

is before

is before

Recovery from mistakes

Limited Discrepancy Search

Limited number of discrepancies (cutoff)
– branches with less discrepancies are explored first

After failure increase the number of allowed discrepancies by one
(restart).

– first, follow the heuristic
– then explore paths with at most one discrepancy

Example: LDS(1), heuristic suggests going to left

A note for non-binary domains:
– non-heuristic values are assumed as one discrepancy (here)
– each other non-heuristic value means increase of the number of

discrepancies (e.g. third value = two discrepancies)

6 24 135

Harvey & Ginsberg (IJCAI 1995)

procedure LDS-PROBE(Unlabelled,Labelled,Constraints,D)
if Unlabelled = {} then return Labelled
select X in Unlabelled
ValuesX ¬ DX - {values inconsistent with Labelled using Constraints}
if ValuesX = {} then return fail
elseselect HV in ValuesX using heuristic

if D>0 then
for each value V from ValuesX-{HV} do

R ¬ LDS-PROBE(Unlabelled-{X}, Labelled È {X/V}, Constraints, D-1)
if R¹ fail then return R

end for
end if
return LDS-PROBE(Unlabelled-{X}, LabelledÈ{X/HV}, Constraints, D)

end if
end LDS-PROBE
procedure LDS(Variables,Constraints)

for D=0 to |Variables| do % D determines the allowed number of discrepancies
R ¬ LDS-PROBE(Variables,{},Constraints,D)
if R¹ fail then return R

end for
return fail

end LDS

(Harvey & Ginsberg, IJCAI 1995) Algorithm LDS

In each iteration LDS explores branches from the previous
iteration, i.e., it repeats already done computation and returns
to already explored parts.

Ä ILDS:
• a given number of discrepancies (cutoff)

– “branches with later discrepancies explored first“”
• After failure increase the number of discrepancies by one

(restart)

Example: ILDS(1), heuristic suggests going to left

42 531

(Korf, AAAI 1996) Improved LDSKorf (AAAI 1996)

In each iteration LDS explores branches from the previous
iteration, i.e., it repeats already done computation and returns
to already explored parts.

Ä ILDS:
• a given number of discrepancies (cutoff)

– “branches with later discrepancies explored first“”
• After failure increase the number of discrepancies by one

(restart)

Example: ILDS(1), heuristic suggests going to left

42 531

(Korf, AAAI 1996) Improved LDSKorf (AAAI 1996)

procedure ILDS-PROBE(Unlabelled, Labelled, Constraints, D)
if Unlabelled = {} then return Labelled
select X in Unlabelled
ValuesX ¬ DX - {values inconsistent with Labelled using Constraints}
if ValuesX = {} then return fail
elseselect HV in ValuesX using heuristic

if D<|Unlabelled| then
R ¬ ILDS-PROBE(Unlabelled-{X}, LabelledÈ{X/HV}, Constraints, D)
if R¹ fail then return R

if D>0 then
for each value V from ValuesX - {HV} do

R ¬ ILDS-PROBE(Unlabelled-{X}, LabelledÈ{X/V}, Constraints, D-1)
if R¹ fail then return R

end for
end if

end ILDS-PROBE
procedure ILDS(Variables,Constraints)

for D=0 to |Variables| do % D determines the allowed number of discrepancies
R ¬ ILDS-PROBE(Variables,{},Constraints,D)
if R¹ fail then return R

end for
return fail

end LDS

Difference
from LDS

(Korf, AAAI 1996) Algorithm ILDSKorf (AAAI 1996)

Depth-Bounded Discrepancy Search
ILDS explores branches with later discrepancies first.
Ä DDS:
• Discrepancies allowed to some depth (cutoff)

– at the limit depth, there must be discrepancy (so no
branches from previous iterations are re-visited)

– depth limit also restricts the number of discrepancies
– branches with earlier discrepancies are tried first

• After failure increase the depth limit by one (restart)

Example: DDS(3), heuristic suggests going to left

42 31

Walsh (IJCAI 1997)

So far we looked for any solution satisfying the constraints.

Frequently, we need to find an optimal solution, where solution
quality is defined by some objective function.

Definition:
• Constraint Satisfaction Optimisation Problem (CSOP)

consists of a CSP P and an objective function f mapping
solutions of P to real numbers.

• A solution to a CSOP is a solution to P minimizing /
maximizing the value of f.

• When solving CSOPs we need methods that can provide
more than one solution.

Constrained optimization

The method branch-and-bound is a frequently used
optimisation technique based on pruning branches where there
is no optimal solution.
It uses a heuristic function h that estimates the value of
objective function f.

– admissible heuristic for minimization satisfies h(x) £ f(x)
[for maximization f(x) £ h(x)]

– heuristic closer to f is better

We stop exploring the search branch when:
– there is no solution in the sub-tree
– there is no optimal solution in the sub-tree

• Bound £ h(x), where Bound is the maximal value of f for an
acceptable solution

How to obtain the Bound?
– for example the value of the solution found so far

Branch and bound

Objective function is encoded in a constraint
we “optimize” the value v, where v = f(x)

• the first solution is found using no bound on v
• the next solutions must be better than the last solution

found (v < Bound)
• repeat until no feasible solution is found

Algorithm Branch & Bound
procedure BB-Min(Variables, V, Constraints)

Bound ¬ sup
NewSolution ¬ fail
repeat

Solution ¬ NewSolution
NewSolution ¬ Solve(Variables,Constraints È {V<Bound})
Bound ¬ value of V in NewSolution (if any)

until NewSolution = fail
return Solution

end BB-Min

Branch and bound for constrained optimization

• Heuristic h is hidden in the propagation of constraint v = f(x).
• Efficiency of search depends on:

– good heuristic (good propagation through the objective constraint)
– good solution found early

using an initial bound may help
• We can find the optimal solution fast

– but the proof of optimality takes time (explore the rest of search
tree)

• Frequently, we do not need optimal solution, good solution is enough
– BB can stop after finding a good enough solution

• BB can be speeded up by using using both upper and lower bounds

repeat
TempBound ¬ (UBound+LBound) / 2
NewSolution ¬ Solve(Variables,Constraints È {V£TempBound})
if NewSolution=fail then

LBound ¬ TempBound+1
else

UBound ¬ TempBound
until LBound = UBound

Branch and bound: notes

© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

