

Constraint Programming

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Constraint Modeling

- Exploiting the principles of constraint satisfaction, but **programming them ad-hoc** for a given problem.
 - flexibility (complete customisation to a given problem)
 - speed (for a given problem)
 - expensive in terms of initial development and maintenance
- Exploiting an existing constraint solver.
 - usually integrated to a host language as a library
 - contains core constraint satisfaction algorithms
 - the user can focus on problem modelling
 - It is hard to modify low-level implementation (domains,...)
 - sometimes possible to implement own constraints
 - frequently possible to implement own search strategies

A typical structure of constraint models:

Propose a constraint model for solving the **N-queens problem** (place N queens to a chessboard of size NxN such that there is no conflict).

Where is the problem?

- Different assignments describe the same solution!
- There are only two different solutions (very "similar" solutions).
- The search space is non-necessarily large.

N-queens

N-queens: a better model

Pre-assign queens to columns, use only variables for rows

Solutions (for 4 queens) in the form (X_i, Y_i)

[2,4,1,3] [3,1,4,2]

Model properties:

- fewer variables (= smaller state space)
- fewer constraints (= faster propagation)

Remove symmetrical solutions:

 $X_1 = < \text{ceiling}(N/2)$

a so-called **symmetry breaking constraint**

The problem:

Adam (36 kg), Boris (32 kg) and Cecil (16 kg) want to sit on a seesaw with the length 10 foots such that the minimal distances between them are more than 2 foots and the seesaw is balanced.

A constraint model:

A,B,C in -55	position
36*A+32*B+16*C = 0	equilibrium state
A-B >2, A-C >2, B-C >2	minimal distances

Seesaw problem: a different perspective

A,B,C in -55, A = < 0,		5
36*A+32*B+16*C = 0,		
abs (A-B) >2 ,	A in -40	
abs(A-C)>2,	B in -15	
abs (B-C) >2	C in -55	

• A set of similar constraints typically indicates a structured sub-problem that can be represented using a **global constraint.**

Assignment problem

The problem:

There are 4 workers and 4 products and a table describing the efficiency of producing the product by a given worker. The task is assign workers to products (one to one) in such a way that the total efficiency is at least 19.

	P1	P2	P3	P4
W1	7	1	3	4
W2	8	2	5	1
W3	4	3	7	2
W4	3	1	6	3

A constraint model:

W1,W2,W3,W4 in 14	a product per worker
<pre>all_different([W1,W2,W3,W4])</pre>	different products
$T_{1,W1}+T_{2,W2}+T_{3,W3}+T_{4,W4} \ge 19$	total efficiency

Assignment problem - a dual model

Why do we assign products to workers?

Cannot we do it in an opposite way, that is, to **assign a worker to a product?**

Of course, we can **swap the role of values and variables!**

• This new model is called a **dual model.**

• In this particular case, the dual model propagates earlier (thus it is assumed to be better).

Assignment problem - composing models

We can combine both primal and dual model in a single model to get better domain pruning.

Golomb ruler

- A ruler with M marks such that distances between any two marks are different.
- The **shortest ruler** is the optimal ruler.

- **Hard** for $M \ge 16$, no exact algorithm for $M \ge 24$!
- Applied in **radioastronomy**.

Golo	mb ruler	table - M	licroso	oft Intern	et Expl	orer X	1
Soubor	Úpravy	Zobraz	it Ob	libené I	Vástroje	Nápověda 🧗	
🕒 Zpi	ět - 🕘) - 🔀	2) Hle	dat 👷 Oblibené 왕 Média 🧭 🔗 🌭 🕅 🔹 👋	
dresa	🕘 http://	/www.rese	earch.ib	om.com/pe	ople/s/s	hearer/grtab.html 💌 💽 Přejít 🛛 Odkazy 🌺 Norton AntiVirus 🔙 🗸	
G <mark>o</mark> ogl	le - Golon	nb rule			•	😚 Prohledat web 🛛 😨 Hledej server 🐇 🛛 🕈 💼 🔹 🔗 🛛 🐣	
_							
© 1996	IBM Corport	ation	Pe	erso	ona	al communication	
				-		engths of the shortest known Golomb rulers for up to is are known to be optimal. For the actual rulers see	
	known	optimal	rulers				
			_			nstruction	
•	best rul	ers from	affin	e plane o	constru	ction	
		Table of	of leng	ths of sl	ortest	known Golomb rulers	
marl	s lengt					comments	
шагн 1	0	a lound	by	proveu	by	trivial	
2	1					trivial	
3	3					trivial	
4	6					trivial	L
5	11	1952	WB	1967?	RB	hand search	
6	17			1967?	RB	hand search	
7	25	1952	WB	1967?	RB	hand search	
8	34	1952	WB	1972	WM	hand search	
9	44	1972	WM	1972	<u>WM</u>	computer search	
10	55	1967	<u>RB</u>	1972	\underline{WM}	projective plane construction p=9	
11	72	1967	<u>RB</u>	1972	\underline{WM}	projective plane construction p=11	
12	85	1967	<u>RB</u>	1979	<u>JR1</u>	projective plane construction p=11	
13	106	1981	_	1981	<u>JR2</u>	computer search	
14	127	1967			JS1	projective plane construction p=13	
15	151	1985				computer search	
16	177			1986	<u>JS1</u>	computer search	
17	199	1984?	_		<u>OS</u>	affine plane construction p=17	
18	216	1967		1993	OS DBM	projective plane construction p=17	
19 20	246 283	1967		1994		projective plane construction p=19	
20 21	283 333	1967 1967		1997? 1998	<u>GV</u> GV	projective plane construction p=19	
21 22	355 356	1967 19842	_		GV	projective plane construction p=23 affine plane construction p=23	
22 23	350	1984? 1967		1999	GV	projective plane construction p=23	
	312	1707	100	1111	<u></u>		
23 24	425	1967	RB			projective plane construction p=23	

Golomb ruler – a model

A base model:

Variables X₁, ..., X_M with the domain 0..M*M $X_1 = 0$ ruler start $X_1 < X_2 < ... < X_M$ no permutations of variables $\forall i < j D_{i,j} = X_j - X_i$ difference variables all_different({D_{1,2}, D_{1,3}, ... D_{1,M}, D_{2,3}, ... D_{M,M-1}})

Model extensions:

 $D_{1,2} < D_{M-1,M}$ symmetry breaking

better bounds (implied constraints) for D_{i,i}

$$\begin{array}{ll} D_{i,j} = D_{i,i+1} + D_{i+1,i+2} + \ldots + D_{j-1,j} \\ \text{so } \mathbf{D}_{i,j} \geq \Sigma_{j-i} = (j-i)^*(j-i+1)/2 & \textit{lower bound} \\ X_{M} = X_{M} - X_{1} = D_{1,M} = D_{1,2} + D_{2,3} + \ldots & D_{i-1,i} + D_{j,j+1} + \ldots + D_{M-1,M} \\ D_{i,j} = X_{M} - (D_{1,2} + \ldots & D_{i-1,i} + D_{j,j+1} + \ldots + D_{M-1,M}) \\ \text{so } \mathbf{D}_{i,j} \leq \mathbf{X}_{M} - (\mathbf{M}-1-j+i)^*(\mathbf{M}-j+i)/2 & \textit{upper bound} \end{array}$$

Golomb ruler - some results

• What is the effect of different constraint models?

size	base model	base model + symmetry	base model + symmetry + implied constraints
7	220	80	30
8	1 462	611	190
9	13 690	5 438	1 001
10	120 363	49 971	7 011
11	2 480 216	985 237	170 495

time in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM

What is the effect of different search strategies?

size		fail first			leftmost first	
	enum step		bisect	enum	step	bisect
7	40	60	40	30	30	30
8	390	370	350	220	190	200
9	2 664	2 384	2 113	1 182	1 001	921
10	20 870	17 545	14 982	8 782	7 011	6 430
11	1 004 515	906 323	779 851	209 251	170 495	159 559

time in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM

Constraint satisfaction is a technology for **declarative** solving combinatorial (optimization) problems.

Constraint modeling

 describing problems as constraint satisfaction problems (variables, domains, constraints)

Constraint satisfaction

- local search techniques
- combination of depth-first search with inference (constraint propagation/consistency techniques)
- ad-hoc algorithms encoded in global constraints
- soft constraints to express preferences

© 2020 Roman Barták Department of Theoretical Computer Science and Mathematical Logic bartak@ktiml.mff.cuni.cz