Constraint-Based
Temporal Reasoning

* Introduction to the varieties of graphical
representations of time

— Node elements have variables that take on time
values

— Edges represent temporal ordering or duration
constraints

* Processing temporal data using constraint
reasoning methods

— Inference-based or search-based processing



* Introduction and Background (20 minutes,
Morris)

* Constraint-based temporal reasoning systems
(70 minutes, Bartak)

Extensions to temporal reasoning systems (60
minutes, Venable)

Applications (30 minutes, Morris)

Constraint Plan Graph (late
20th Century)




The Temple of Time 19t Century

= vur 2
TEMPLE of TIME

* Complex Production and Transportation
Scheduling Problems (1910s)

— Separation of planning (sequencing) from
scheduling (assigning resources)
— Refinements to timelines and chronicles

e Gantt Chart
* Timetables

e Early Mathematical Formulations (1950s):

— Linear Programming, Critical Path Method, PERT

* Early graphical representations were used to explain LP
constraints to management (activity-on-arrow diagram)

— DuPont: “find something to do” with UNIVAC1



 MILP and Dynamic Programming Methods for
Scheduling

— Development of hierarchy of scheduling problems
— Numerical Methods for trajectory optimization

* Logical models
— Time and change
— From timeline to real line
— Modal logics of time

— First order representations
* Method of Temporal arguments

* Network flows over time (Dynamic Flows)

— how many cars can the streets of a town
serve?

— Solutions using shortest path algorithms
 Temporal Databases
— Modern version of Chronicles
— Extensions of relational theory
* Model Checking Using Temporal Logics
— Importance of proof methods in verification



* Reasoning about Change
— “After the stock goes above SX, sell.”
 State changes trigger actions.
— “Make mortgage payment at the beginning of each month”
* Time triggers actions.

* Time has a mathematical structure independent of the causal structure of
change.

— Discrete of continuous?
— Linear or branching or parallel or cyclical?
— Bounded or infinite?
— Point or Interval fundamental?
— Granularity
* Event Calculus (Kowalski and Sergot, 1986)
* Time map manager (McDermott 1982)
* Reasoning with multiple granularities

» Representation of constraints (graphically) as relations
on variables

e Constraint processing algorithms:
— Search-based: Variations on Backtracking

— Inference-based: Constraint propagation methods
(consistency-enforcing methods)

— Both support a graph-based view.
* Pioneering works:

— Montanari (1974):Networks of Constraints: Fundamental
Properties and Applications to Picture Processing

— Mackworth (1977): Consistency in Networks of Relations
— Freuder (1978): Synthesizing Constraint Expressions



* James Allen, Maintaining Knowledge about
Temporal Intervals (CACM 1983)

* R. Dechter, I. Mehri, J. Pearl, Temporal
Constraint Networks (AlJ, 1991)

 Virtually everything we talk about for the rest
of this tutorial starts from one or the other of
these papers.

Temporal Reasoning



What is time?

The core mathematical structure for describing time is a set with
transitive and asymmetric ordering relation.

The set can be continuous (real numbers) or discrete (integer
numbers).

The P&S system can use a database of temporal references with a
procedure for verifying consistency and an inference
mechanism (to deduce new information).

We can model time in two ways:

* qualitative
relative relations (A finished before B)

* quantitative

metric (numerical) relations (A started
23 minutes after B)

* Based on relative temporal relations between
temporal references.

* “I read newspapers during breakfast and after
breakfast | walked to my office”

b I Having a breakfast
s

Walking to office

re Wc| IWE

I Reading newspapersl
rs

Temporal intervals (activities) Time points (important events)

Having a breakfast

Reading newspapers



When modeling time we are interested in:
— temporal references
(when something happened or hold)

* time points (instants) when a state is changed
instant is a variable over the real numbers

* time periods (intervals) when some proposition is true
interval is a pair of variables (x,y) over the real numbers, such that x<y

— temporal relations between temporal references
* ordering of temporal references

Typical problems solved:
— verifying consistency of the temporal database
— asking queries (“Did | read newspapers when entering the
office?”)

— finding minimal networks to deduce inevitable relations

Symbolic calculus modelling qualitative relations between instants.
* There are three possible primitive relations between instants t,
and t,:
- [tl < tz]
- [t;>t,]
- [tl = tz]
Relations P = {<,=,>} are called primitive relations.

* Partially known relation between two instants can be modelled
using a set (disjunction) of primitive relations:
— b {<h {=) B {<=h =) <00 {<,=)

* Relation r between temporal instants t and t is denoted
[trt]

* Point algebra allows us to work with relative relations without
placing the instants to particular (hnumeric) times.



* Let R be a set of all possible relations between two instants
= {{L {<} {=} 5L A<=k =) <o) <=2
* Symbolic operations over R:
— set operations N, U
* they express conjunction and disjunction of relations
— composition operation ®
* transitive relation for a pair of connected relations

* [t rt,]and [t, qt;] gives [t, req t;]
using the table

<

VIV ]|O|V

|
VIA|[A|A

>

* The most widely used operations are M and ¢, that allow
combining existing and inferred relations:

— [t,rt,] and [t; g t5] and [t; s t,] gives [t; rM(qges) t,]

“I read newspapers during breakfast and after
breakfast | walked to my office”

e Query: “Did I read
newspapers when
entering the office?”

e [rs<we] A [we<re]

(rre,be ° r-be,ws ° rws,we) M (rre,we ) i :
= ({=,<} of=} *{<}) N {>} TS
={<IN{>r={ > [p[>]>




* Aset of instants X together with the set of (binary) temporal
relations r, &R over these instants C forms a PA network (X,C).

— If some relation is not explicitly assumed in C then we assume
universal relation P.

* The PA network consisting of instants and relations between
them is consistent if it is possible to assign a real number to each
mstafr:tclln such a way that all the relations between instants are
satisfied.

Claim:
The PA network (X,C) is consistent if and only if there exists a set
of primitive relations p;;€r; ; such that for any triple of such
relations p;; € p; ® Py; holds.

Efficient consistency checking:
To make the PA network consistent it is enough to make its
transitive closure, for example using techniques of path
consistency.

— for each k: for each i,j:dor,; €r, ;N (r *r))
— obtaining {} means that the network is inconsistent

* PC verifies consistency but
does not remove redundant
constraints.

* Primitive constraint p; ; is
redundant if there does not
exist any solution where
[t; p;; t;] holds.

* PA network is minimal if it has no primitive
constraints that are redundant.

 To make the network minimal we need 4-
consistency.



Symbolic calculus modelling relations between intervals
(interval is defined by a pair of instants i- and i*, [i<i*])

* There are thirteen primitive relations:

x before y Xt<y" — y

X meets y xt=y —_— v,
x overlaps y X<y <xt A xt<y*t —X o y

x starts y X=y A XT<y* *—y*

x during y Yy <X A Xt<y* . *"T‘

X finishes y Yy <X A XT=y* . *y"—‘

x equals y X=y A xt=y* _—
bi,mi,oi,si,di,fi symmetrical relations

* Primitive relations can be again combined in sets (213 relations).

— Sometimes we select only a subset of possible relations that are useful
for a particular application.

» for example {b,m,bi,mi} means no-overlaps and it is useful to model
unary resources

* set operations N, U and the composition operation

* The lA network is consistent when it is possible to assign real numbers to
x;,x* of each interval x; in such a way that all the relations between intervals
are satisfied.

Claim:
The IA network (X,C) is consistent if and only if there exists a set of primitive
relations p; €r,; such that for any triple of such relations p;; € p; ® p,; holds.

Notes:

— Path consistency is not a complete consistency
technique for interval algebra.

— Consistency-checking problem for IA networks
is an NP-complete problem.

— Intervals can be converted to instants but some interval
relations will not be binary relations among the instants.




e Points in the ends of interval are not fully
translatable to instants.

* “Alight bulb is off and after switching the toggle,
the light becomes on”

— Can be modelled using two intervals on and off
and one interval relation off {m} on.

— Is light on or off at the instant between the intervals?

* Qualitative algebra uses interval and instants as
first-order objects:

p beforei (i after p) p<i’ Pl —
p startsi (i started-by p) p=i p:—i
pduringi (iincludes p) i<p,p<i |_p—|_—i
p finishesi (i finished-by p) p=i :di
p afteri (i before p) i'<p — Pl

“I got up at 6 o’clock. | read newspapers for 30 minutes during the
breakfast. After the breakfast | walked to my office which took me one
hour. | entered the office at 8:00AM”.

When did | start my breakfast?
 360=<bs, “Igotupatb
o’clock”

* bs=<rs, re=<be, “/read
newspapers during breakfast”

* re-rs =30, “l read newspapers
for 30 minutes”

* be =ws, “after breakfast |
walked to my office”

* we-ws =60, “/walking] took
me one hour”

* we =480, “l entered the office
at 8:00AM”

bs =< rs =re-30 =< be-30 = ws-30 = (we-60)-30 = 390

I started my breakfast between 6:00AM and 6:30AM.

[480,480]



* The basic temporal primitives are again time points, but
now the relations are numerical.

* Simple temporal constraints for instants t; and t;:
—unary:a,st <b,
— binary: a; <t—t;<b
where a, b, a

ij
i» b are (real) constants
Notes:

— Unary relation can be converted to a binary one, if we use
some fix origin reference point t,,.

— [a;,b;] denotes a constraint between instants t; a t,.
— It is possible to use disjunction of simple temporal constraints.

Simple Temporal Network (STN)

— only simple temporal constraints r;= [a;,b;] are used

ij

— operations: |
* composition: r; ® ry = [a;+ay, b;+b;]
a’y}, min{b;,b’;}]

— STN is consistent if there is an assignment of values
to instants satisfying all the temporal constraints.

* intersection: r; N r’; = [max{a

ij?

— Path consistency is a complete technique making
STN consistent (all inconsistent values are filtered
out, one iteration is enough). Another option is using
all-pairs minimal distance Floyd-Warshall algorithm.



Relations a; < t—t;< b;; can be expressed as maximal distances

between the time points:
° tj—ti = -3y
This gives a distance graph.

* Negative cycle in the distance graph means inconsistency.

Path consistency

— finds a transitive closure of
binary relations r

— one iteration is enough for STN
(in general, it is iterated until
any domain changes)

— works incrementally

one iteration for STN
PC(X, C)
foreachk:1<k<mndo
for each pairi,j: 1 <i<j<mn,,i#kjs#kdo
rij <= 135 N [1igc « 73]
if rj = @ then exit(inconsistent)
end

Floyd-Warshall algorithm

— finds minimal distances between
all pairs of nodes

— First, the temporal network is
converted into a distance graph
* thereis an arc fromito j with
distance b;;
* thereis an arc from jto i with
distance -a;.
— STN is consistent iff there are no
negative cycles in the graph, that
is, d(i,i)=0

general
PC(C)
until stabilization of all constraints in C do
foreachk:1<k<mndo
foreach pairi,j: 1 <i<j<mi#kj#kdo
cij < ¢ N [cik » ¢l
if ¢;j = @ then exit(inconsistent)
end

Floyd-Warshall(X, E)
for each i and j in X do
if (,7) € E then d(i, j) < I; else d(i,j) «- o0
d(i,i) < 0
for each 4,j, k in X do
d(i,j) < min{d(i, ), d(i, k) + d(k, )}
end




“I got up at 6 o’clock. | read newspapers for 30
minutes during the breakfast. After the breakfast |
walked to my office which took me one hour. |
entered the office exactly at the same time as Peter
who left his home at 7:00AM. Peter is going to
office either by a car, which takes him 15-20
minutes, or by a bus, which takes 40-50 minutes”.

We need to express a disjunction of simple
temporal constraints between the same pair of

temporal points:
40 =< pe-ps =< 50 V15 =< pe-ps =< 20

Temporal Constraint Network (TCSP)

— It is possible to use disjunctions of simple temporal
constraints over the same variable.

— Operations ® and M are being done over the sets of intervals.

— TCSP is consistent if there is an assignment of values to
instants satisfying all the temporal constraints.

— Path consistency does not guarantee in general the
consistency of the TCSP network!

— A straightforward approach (constructive disjunction):
* decompose the temporal network into several STNs (component STNs)
by choosing one disjunct for each constraint
* solve obtained STN separately (find the minimal network)
* combine the result with the union of the minimal intervals



[420,420] £ \{[15,20] [40,50}
ps

© oe Temporal constraint network

Component STNs

[420,420] [15,20] 420,420,
© : _ NP

[420,420] |  [4050]

[360,380]

[0,0]
[30,50]

Minimal TCSP

“Peter got up at 6 o’clock and before leaving home we went
jogging for 40 minutes and had breakfast which took him 20
minutes. Peter is going to office either by car, which takes him
15-20 minutes, or by a bus, which takes 40-50 minutes.”

breakfast

{[15,20], [40,501}

* We need to express that jogging and breakfast do not
overlap in time!

pbe =< pjs V pje =< pbs
* This is a so called a Disjunctive Temporal Problem
(opposite to TCSP, n-ary disjunctions can be used).

* DTN can be solved similarly to TCSP — by decomposition to
component STNs.



“When Peter goes by car then Robert joins him,
otherwise Robert goes by train which takes him 45
minutes.” P~ w o~

() .[40,50]
* We need to express that some points do not

appear in the network by adding branching
(logical) constraints.

 Temporal Network with Alternatives assumes
parallel/alternative branching constraints in
addition to temporal constraints.

— Solution consists of selection of nodes satisfying the
branching and temporal constraints.

”John and Fred work for a company that has local and main
offices in Los Angeles. They usually work at the local office, in
which case it takes John less than 20 minutes and Fred 15-20
minutes to get to work. Twice a week John works at the main
office, in which case his commute to work takes at least 60
minutes. Today John left home between 7:00-7:05 a.m., and
Fred arrived at work between 7:50-7:55 a.m. We also know
that Fred and John met at a traffic light on their way to work.”

{{0,20], (60,)}

General Temporal Constraint
Network combines points and
intervals and supports
constraints from the qualitative
algebra and a from a TCSP.

{051

{s} {f}

{[15,201}

{50,551}



name approach temporal temporal complexity
reference propositions
PA point algebra qualitative time points  {<,=,>} tractable
1A interval algebra qualitative intervals {b,m,0,s,d,f,e,bi, NP-c
mi,oi,si,di,fi}
QA qualitative algebra qualitative time points, IA, PA, interval-to- NP-c
intervals point
STP simple temporal guantitative  time points binary difference  tractable
problem
TCSP  temporal CSP guantitative  time points binary disjunctive  NP-c
difference
DTP disjunctive temporal guantitative  time points n-ary disjunctive NP-c
problem difference
TNA temporal network guantitative  time points precedence, NP-c
with alternatives logical
general temporal CSP  qualitative, time points, TCSP, QA NP-c
guantitative intervals

Extensions of Temporal
Frameworks

Preferences and Uncertainty




* Preferences
— Quantitative
— Qualitative

* Uncertainty
— Controllability
— Conditional temporal problems

* Preferences and Uncertainty

PREFERENCES



* | have to be in my office by Friday morning!

* Some flights on Thursday with the same
(minimum) cost:

New York

Washington

New
Orleans
3:40

12:30

RN
\gé

Charlotte New

11:35 12:30 Orleans
3:40

| ] | ] | ] | ]
| | | | | | | | | ] |
6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30

PREFERENCES IN QUANTITATIVE
TEMPORAL FRAMEWORKS



Two activities of Mars Rover: ,; © 10 ‘1 1
« Taking pictures: / Start_p nd_p
« 1 < duration < 10 0
e O<start<7 4
. Beginning_world
* Analysis: \
* 5 <duration <15 10)
e H<start <10 Start_a End_a
7 12
10
* Additional constraint: 5 15

» -4 < start analysis — end pictures < 4

* One of the solutions

Sometimes hard constraints aren’t expressive enough. We may think that:

> It’s better for the picture to be taken as late as possible and as fast as possible.
> It's better if the analysis starts around 7 and lasts as long as possible.

> It's ok if the two activities overlap but it's better if they don't.

u
Beginning_. woﬂ\
e |

5 15 - timé

preference




[Khatib,Morris,Morris, Rossi 91 ]

Simple Temporal Problem with Preferences

e Simple Temporal Problem
e Set of variables X1,...,Xn;
e Constraints T={l}, I=[a,b] a<=b;

Unary constraint T over variable X : a<=X<=b;
Binary constraint T over X and Y: a<=X-Y<=b;

e C-semiring S=<A, +,x,0, 1>
e A set of preference values

e + compares preference values inducing the ordering on A

o a<=b if atb=b, a,bin A
e x composes preference values

Simple Temporal Constraint with Preferences

¢ Binary constraint
¢ Interval I=[a, b], a<=b
e Function fd4— A

preference

« Asolution is a complete assignment to all the variables
consistent with all the constraints.

« Every solution has a global preference value induced

from the local preferences.

Solving an STPP

Find an optimal
solution

Find the min. optimal
network




The class of STPPs is NP-hard.
Any TCSP can be reduced to an STPP

Beginning_worl \

I=H

"
=
o
—>
v
preference
————>

5 15 > timé

1) The underlying semiring has an idempotent
multiplicative operator (x).

For example:
Fuzzy Semiring <{x| xin [0,1]}, max, min, 0, 1>

2) the preference functions are semi-convex
3) the set of preferences is totally ordered



b

Examples

=

Vyix | f(x) = p}

Semi-convex ! .

=

7
N
1]
]

Non Semi-convex

L_
.
]

:

[

Fuzzy Semiring

<[0,1], max, min, 0, 1>

Beginning_worl

Global preference of a solution:
minimum of the preferences of
its projections

Goal: maximize
> the global preference

Two solutions:
Start_p = 5 End_p= 11 Start_a=7 End_a=12 global preference =0.6

Start_p =7 End_p= 8 Start_a=9 End_a=24 global preference =0.9 ] BEST




[Khatib,Morris,Mortis, Rossi,Sperduti,Venable 2002 ]

* As with hard constraints, two operations on
temporal constraints with preferences:

— Intersection

— Composition

Defined on two constraints on the same variables
For each point in the intersection of the intervals,
take the minimum preference

o.sf- \ §°'45 0.25
© ]
A A

LFu__I_I
56789%0 17 1 ,%678910
) \ \\ Vs /
a=6 min(0.33,0.45)= 0.33 AN S/
N3 / /
a=9 min(o.56,0.25)= 0.25 N >}36 /
\ /
\ v ‘\ ’
Y

5678910



Defined on two constraints sharing one variable
New constraint on the two not shared variables
New Interval: all points that can be obtained by summing a point from each
of the combined intervals
Preferences: for each point maximum of all preference associated with decompositions

If a=8 0.3
0.2
L, _ ﬁl_l_l_l_l_l +_I
ri=0  12=8 min(o.2,0.4)= 0.2 0\1\234567 56789 10
ri=1  rv2=; min(0.3,0.48)= 0.3 /
YiI=2  12=6 min(o.4,0.52)= 0.4
Yi=3  r2=5 min(o.6,0.55)= 0.55

max{0.2,0.3,0.43,0.55/=0.55=f1 ® f2 (8)

N
\_L/ e

intersection
[

Iterate on every triangle until stability 5 10

constraint will
replace the old one

Polynomial: O(n3r3l) n variable, r max range of an interval,
| preference levels



Does PC help?

Given a tractable STPP, path
consistency is sufficient to find
an optimal solution without
backtracking

* Closure of semi-convex functions
under intersection and
composition

* After enforcing path consistency,
if no inconsistency is found, all
the preference functions have the
same maximum preference level
M

* The subintervals mapped into M
form an STP in minimal form such
that an assignment is a solution
of the STP iff it is an optimal
solution of the STPP

STPP in input

Ss

£(Is-S5)

(1) 43210123456 I

After STPP_PC-2
09 09

3 4 IsSs

@ 43210123456 Ts-Se

In fuzzy theory performing an X-cut means considering only
elements that are mapped into a preference greater or equal

than X

Given a tractable STPP and a preference level y, the intervals of
elements with preference above y form an STP: P,

The highest level, opt, at which STP P, . is consistent is such

that an assignment is a solution of P

solution of the STPP

opt Iff it is an optimal



opt

e a

Cut at level 1 |d inconsistent (e.g. due to other constraints not shown) |

Cut at level 0 |ﬂ consistent

....continue until we reach the highest level opt at which cutting gives a consistent STP

Polynomial: O(n3l) n variable, | preference levels
much faster than using path consistency, less general

X-axis number of variables 350

Y-axis time in seconds ek o

den 80%

300 -

Fixed parameters:
Range of first solution:100000

250 -

Max expansion: 50000 20|
Perturbation on a: 5%
Perturbation on b: 5% 150 f

Perturbation on c: 5%

100 |-

Varying:
Density 20%, 40%, 60% ,80%

50

0 » - 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Mean on 10 examples



Time to solve a problem with 40 variables, r=100,
max=50, pa=pb=10% and pc=5%

Density Path-solver Chop-solver
40% 1019.44 sec 0.03 sec
60% 516.24 sec 0.03 sec
80% 356.71 sec 0.03 sec

[Khatib,Morris,Morris, Venable 2003 ]

In Fuzzy CSPs:
Global preference = minimum associated with any of its projections (Drowning Effect)

Fuzzy Optimal: the maximum minimum preference

Pareto Optimal: no other solution with higher preferences
on all constraints

Example: solution S <f,(S,)= 0.2, f,(S,)=0.3, f;(5;)=0.2>
solution §” <f,(5",)=0.8, f,(5’,)=0.9, f;(5’;)=0.2>

Fuzzy Optimals: S, S’ Pareto Optimals: S’

Finds Pareto Optimal solution of an STPP by iterating the following 3 steps:
Applying the alpha-cut solver to the problem

2. Identifying special constraints, the weakest links (the ones that are drowning the
preference of the optimal solutions)

3. Neutralizing the weakest links (by making their preference function irrelevant)
. Polynomial Time



[Pollack,Peintner 04 ]

Disjunctive Temporal Constraint = disjunction of STP constraints

(X;-Y, €la,bD) v .... v (X,-Y, €[a,,b.])

Disjunctive Temporal Constraint with Preferences:

(XY, €la,b], ) v ... v (XY, €la,,b,lf), f:la,b]—[0,1]

Fuzzy Optimization criterion

Algorithm

1. For each preference level y, in increasing order, starting from 0
2. cutthe DTPP at y obtaining DTPy

3. solve DTPy obtaining an STPy

4. move up one preference and start solving DTPy+1 using STPy

Complexity |preferences| x n® x (DTP complexity), n=number of variables

[Pollack,Peintner 2005 ]

Constraints as in STPPs (no restriction on the function shape)

Preferences: positive integers A

Max-plus optimization criterion

Algorithms based on mapping the soft constraint
into the family of hard constraints deriving
from each cut

preference combined by adding them
the higher the better

v

Greedy Algorithm (not complete)

Searches for a consistent STP repeatedly trying to improve by replacing an STP
constraint with one corresponding to a higher preference level

Complete algorithm

Performs a complete search over the space of component STPs, using the greedy
algorithm, pruning, and a divide et impera strategy

Complexity exponential (in practice few iterations needed to find a good solution)

Other techniques

Reduction to a SAT problem [Sheine,Peintner,Sakallah,Pollack 2005]
Weighted Constraint Satisfactions [Moffitt,Pollack 2005]



[Badaloni,Giacomin 2000,2001,2002 ]

* Variables: temporal intervals/ points
* Constraints: subsets of the 13 Allen
relations / of {<,=,>}

* A preference level in [0,1] associated
with each relation in the constraint

« ARz pAfuz SAfuz ACfuz pacfuz p[1],m[0.3]
- . : p[0.3],A0.9] p;m
* Redefinition of the main operations
(composition and intersection)
» Closure of all the algebras w.r.t. them @ @
* Using alpha-cuts, satisfiability and p,p*
computation of minimal network p[0.7],p1[0.1]

remain in the same complexity class

* Combination of qualitative and
guantitative fuzzy constraints:
[Badaloni, Giacomin and Falda in
2004]

[Khatib,Morris,Mortis, Rossi,Sperduti,Venable 2002 ]

It can be difficult to have precise knowledge on the preference
function for each constraint.

Instead it may be easier to be able to tell how good a solution is.

Global information Local Information
some solutions + global ‘ shape of preference
preference values functions



* Inductive Learning: ability of a system to induce the correct structure of a
map t known only for particular inputs

e Example: (x,t(x)).

e Computational task: given a collection of examples (training set) return a
function h that approximates t.

e Approach: given an error function E(h,t) minimize modifying h.
* |nour context :

e x > solution

e t—> rating on solutions given by expert

e Preference function constraint C; parabola ax?+bx+c;

e ErrorE-> E(a,b,c,..,a,b,c,)

¢ Learning technique = gradient descent

Training set

STPP

511712 0.6
786 11 0.8

x

Learning Module

Start_a End_a
/

10 [

5 15

5 15



Works with

> as preference functions
> Semiring <[0,1],max,min,0,1> as underlying structure
> version of the min function
Performs
> on the sum of squares error

E=3 862 (t(s) = h(s))’

t(s) Preference value of solution s in the training set
h(s) Preference value guessed for solution s from the current network

1) Read a solution s and its preference value t(s) from the
training set

2) Compute the preference value of s, h(s), according to the
current network

3) Compare h(s) and t(s) using the error function

4) Adjust parameters of each preference function of
each constraint, in order to make the error smaller

5) Compute the global error; if below threshold, exit,
otherwise back to 1)



> Delta rule:

~

oE .
a,=a; - n—(al,bl,cl, ..... ,av,bv,cv) with v = number of constr.
a.

1

~ oE
b, =b, —na—bi(al,bl,cl, ..... ,av,bv,cv)

c, =¢ —n%(al,bl,cl, ..... ,av,bv,cv)

i
i

» Semi-convexity is maintained during all the learning process

if a<0 then a=0

Varying parameters:
o density (D)
 maximum range of interval expansion (max).
Fixed parameters :
e number of variables n=25
e range for the initial solution r=40
¢ parabolas perturbations pa=10, pb=10 and pc=5.
Displayed: absolute mean error (0<ame<1) on a test set (mean on 30 examples).
¢ 357<=iterations<=3812
¢ 2' 31"<=time required<=8" 18"

Number of
_ _ examples of
D=40 D=60 D=80 training and test
set.
0.017 0.007 0.0077 500
0.022 0.013 0.015 600

0.016 0.012 0.0071 700




Problem: 8 activities to be scheduled in 24 hours
Given:
—  Duration intervals for each activity
—  Constraint graph
Aim: Minimize the ending time of the last activity scheduled.

Procedure:
1)  Solve the hard constraint problem: 900 solutions
2) Rate each solution with a function that gives higher preference to schedules that end sooner: 37
optimal solutions
3) Select 200 solutions for the training set, 8 optimal solutions, and 300 for the test set
4)  Perform learning: 1545 iterations.

Absolute mean error on test set: 0.01
—  Maximum absolute error on test set: 0.04
—  Number of optimal solutions of the learned problem: 252 all rated highly by the original function.
—  Number of unseen optimal solutions recognized by the learned problem: 29.

Results:

UNCERTAINTY



[Vidal,Fargier 04 ]

Informally, an STPU is an STP where some of the variables are not
under the control of the agent, i.e. the agent cannot decide

which value to assign to them.
An STPU:

e Set of executable timepoints (controllable assignment);
e Set of contingent timepoints (uncontrollable assignment);

* Set requirement constraints T,
e Binary

» Temporal interval I=[a,b] meaning a<X,-X;<b

e Set of contingent constraints T,,:

* Binary: on an executable X, and a contingent timepoint X,
* Temporal interval I=[c,d] meaning 0<c<X;-Xp<d

Executable

Start
aiming

End

clouds

Executable

End
aiming

Executable




There is a plan
that will work

whatever happen
In the future

Strong Controllability

!

Dynamic Controllability

!

For every possible

scenario there is
plan

Weak Controllability

I can build a pla
while things

happen that will
be successful.

* Consider the STPU as an STP (forgetting about the distinction between

contingent and executable events)

* The STPU is pseudo-controllable iff in the minimal network of the
associated STP no interval on a contingent constraint is tightened

* Weakly controllable = pseudo-controllable

* Mostly used as a (cheap) initial test

* Not pseudo-controllable = Not weakly-controllable 2 Not dynamically

controllable = Not strongly-controllable



(a) 2_3_,

« It is pseudo-controllable
« Itis not SC
« Itis not WC

Given an STPU P

A control sequence d is an assignment to the executable
timepoints

A situation w is a set of durations on contingent constraints (set
of elements of contingent intervals)

A schedule is a complete assighnment to the variables of P

A schedule is viable if it is consistent with all the constraints.
Sol(P) is the set of all viable schedules of P.

A projection P, corresponding to situation w is the STP
obtained replacing each contingent constraint with its duration
in w. Proj(P) is the set of all projection of P.

A viable strategy S: Proj(P) -> Sol(P) maps every projection P,
into a schedule including w



« [S(P,)], : time assigned to
executable variable x by schedule
S(Py)

« [S(P,)]< : history of x in S(P,,) is the
set of durations corresponding to
contingent events which have
occurred before [S(P,,)],



[Vidal,Fargier 04 |

* There must be an assignment to the controllable
variables consistent with all possible outcomes of the
uncontrollable variables

— Strongly controlling a contingent event induces new
(simple temporal) constraints on executable variables
connected to it

— Solving procedure:
1. Induce all “controllability” constraints only on executable variables

2.  Remove all contingent variables and constraints involving them
3. Solve the STP obtained on executable variables

— Output: minimal STP such all its solutions are strongly
controlling assignments

— Polynomial

v

v

5 8
Induced STP Minimal STP
| |
2
—l —l
-5 1 1 4
I




[Vidal,Fargier 04 ]

* For every possible outcome of uncontrollable
variables, there is a way to choose controllable
variable that is consistent

— No need to check all possible outcomes, the ones
corresponding to the

— Solving procedure:

For all possible combinations of bounds of contingent
constraints:

1. Fix contingent constraints to selected bounds
2. Solve the STP obtained

— Exponential

[Cimatti, Micheli, Roveri 2012, 2013 |

* Recently proposed: alternate method for strong and weak
controllability based on
Satisfiability Modulo Theory (SMT)

* Fragments of first order logics where interpretations are
constrained to satisfy a specific theory (e.g. linear Real
arithmetic) extended with quantifiers

* SMT solver: SAT Solver + Constraint Solver



* Time point = SMT variable, a Real variable in this case
* Consistency > Satisfiability of an SMT formula:

Cr(Xe) = NV (@i — wig) 2 1ig) A (@i — vig) < wi)

— Encoding linear in the size of the temporal problem
— Holds for DTPs, TCSPs, STPs

— Can be improved by
« encodings which give a CNF result
¢ Emphasizing mutual exclusion in TCSP constraints

* Encoding Strong Controllability in quantified SMT formula

Contingent constraints Assignment to contingent variables

VX (CL(X K)o cf(X‘gX‘f))

Requirement constraints Assignment to executable variables

* Quantifiers can be then removed to allow the application of SMT solvers
that don’t support them

* Encoding weak controllability:

vy 37.(L()) — U(Z,7) 3O A-32.9(Z, 7))

P = (e = 0) A < (wn—1))  W(E5) =\ el 7)
k=1 c€Cy

* Encoding by refutation: non constructive

* Restriction to the class of linear strategies: start times of
controllable activities are a linear combination of durations of
uncontrollable events

* - Encoding to SMT for the theory of quantified non-linear
polynomials



* Encoding weak controllability:

Jy.('(y) A =32V (T, 7))

L@) =\ (e > 0) Ay < (un—1k))  W(&, ) = /\ (&, 9)

* Encoding by refutation: non constructive

* Restriction to the class of linear strategies: start times of
controllable activities are a linear combination of durations of
uncontrollable events

* - Encoding to SMT for the theory of quantified non-linear
polynomials

[Morris,Muscettola 01]

* It must be possible determine when to execute a
controllable variable in a sequential fashion, based
only on the time at which previous controllable and
uncontrollable variables have been executed, without
backtracking

* Solving procedure

— Based on the concept of one event having to wait for
another for a given time

— Output: STP + waits
— Two fundamental operations: reductions and regressions
— Polynomial



Inducing DC constraints on executables from
contingent constraints and dynamic controllability

requirements

Like for SC but now the induced constraints can

be ternary

Only when u<0 and v =0
C before or after B

Impose a wait (B,y’ ), y =y-v
on AC

Wait (B,y’ ) on AC means:

Either B occurs and thus C
can be immediately executed
or

C can be safely executed
after T,+y’ regardless if B
has executed or not

Wait - ternary constraint on
A, CandB




u<0 and v =0, since u=-1
and v =1

C before or after B

Impose a wait (B,y’),
y' =3-1=2 on AC
Assuming T,=0
Either

If B occurs at 1 C can be
i2mmediately executed at 1 or

Otherwise C can be safely

executed after TA+2=2
regardless if B has executed
or not

If we do not respect the wait
and we execute C =1 and
then B occurs at 3 > CB is
violated

Since u=-1 and v =1 =>C before or
after B

Impose a wait (B,y’), y' =3-1=2 on
AC

Assuming T,=0 | E—

Either 1 3

If B occurs at 1 C can be (B,:Z) - - -».
immedi_ately executed at 1 or 2 L

Otherwise C can be safely executed 0 : 4

after T,+2=2 regardless if B has :
executed or not : Lt |

If we do not respect the wait and we 10 1
execute C =1 and then B occurs at 3
- CB constraint is violated



« A regression is a propagation of a wait from
one constraint to another

« The regression of the wait is from requirement
constraint to requirement constraint

« However it can be caused by another
requirement or contingent constraint

« Given that

« C has to wait either for B
to occur or for y time units
to pass after A (B,y)

« D has to occur at most v :
time units after C

* Then, it follows that

« D must wait either for B to
occur or for y-v time units
to pass after A




No contingent constraints

involved New wait
Given that (B.1) /

C has to wait either for B (B.2) o

to occur or for 2 time units . L

to pass after A i -1 6

C can occur at most 1 after 0 : 4

° —)
Then, it follows that 2 1

D must wait either for B to
occur or for 1 time unit to
pass after A

[Morris and Muscettola 2001]: O(n3r)complexity is pseudo-

polynomial since it is polynomial if we assume the maximum link

size is bounded

[Morris and Muscettola 2005]: O(n3) new algorithm truly

polynomial

— Reductions and regressions on constraint graph - reductions
on distance graph

— Pseudo-controllability - consistency of the AllMax projection

— Cut-off Bound as in Bellman-Ford replacing termination
dependence on domain size

[Morris 2006]: O(n4) Improves on previous one by targeting

specific edges

[Hunsberger 2010]: O(n4) incremental real-time algorithm

which allows execution directly on the networks

[Morris 2014]: O(n3) yet a further improvement, obtained

by considering specific paths

[Mikael Nilsson, Jonas Kvarnstrom and Patrick Doherty

2014 at ICAPS]: O(n3) incremental algorithm



STPS WITH PREFERENCES AND
UNCERTAINTY

Simple

Temporal

Problem

Prefer&inkg




[Rossi,Venable, Yorke-Smith 11]

An STPPU:
Set of executable timepoints (controllable assignment);
Set of contingent timepoints (uncontrollable assignment);

Set of soft requirement constraints:
e Binary

e Temporal interval |
e Preference function f: | 2A;

Set of soft contingent constraints:
e Binary: on an executable and a contingent timepoint
e Temporal interval |
e Preference function f: I2A

C-Semiring <A,+,x,0,1>

_\Contingent Constraint

Start End

- clouds o gs | Contingent

A

\

Start
aiming

End
aiming

| | R Executable




A solution of an STPPU is a complete
assignment to all the timepoints.

Solution S =(Assighment to executables S,
Assignment to contingents S )
Every solution has a preference value:
Pref(S)=f,(S;) x ... x f(S,)
f. = preference function of i-th constraint
S, = projection of S on i-th constraint
We assume the STP tractability conditions hold

An STP with Preferences and Uncertainty is Optimally SC if there is an
assignment to all the executable time points consistent and optimal with
all the possible scenarios.

Optimal = the assignment to executables completed
with any assignment to contingents has
the best preference value.

Checking Optimal Strong Controllability
From the minimum preference up until inconsistency do:

1. Cut the STPPU P and get STPU Q
2. Checkif Qis Strongly Controllable

3. Merge the results obtained at all preferences levels

Complexity: | preferences| x |variables|3 x |interval size|



An STP with Preferences and Uncertainty is Optimally WC
if there is an assignment to all the executable time points
consistent and optimal with each of the possible
scenarios.

Ignore prefer: n- 1
STPPU Q . gnore preltEs , STPUQ l
Qis Optimally WC iff Q' is WC -

Co-NP-complete

An STPPU is Optimally DC if there exists a means of extending any
current partial control sequence to a complete control sequence in
the future in such a way that the resulting schedule will be optimal.

From the minimum preference up until inconsistency do:

1.

For each preference level:
1. Cut the STPPU P and get STPU Q
2. Checkif Qis Dynamically Controllable

— if so, for each controllable variable we will know how long it has to
wait before executing and ensuring a final preference of at least the
cut level

Verge results obtained at all preference levels
— intersect intervals ensuring controllability
— take the longest waiting time

Complexity: | preferences| x DC Complexity



[Tsamardinos,Vidal, Pollack 03]

* Modeling uncertainty on whether some events will
actually occur

 The main idea of CTPs is to attach to each variable,
representing a time event, a label. The variable will be
executed iff the label is true.

* Label: conjunction of literals. Ex: ABC (A and B and C)

« ACTP
— Is a CSTP if the constraints in E are of STP type
— Is a CTCSP if the constraints in E are of TCSP type
— Is a CDTP if the constraints in E are of DTP type

Sk1

Sk2




WSk, WSk,

A = “road to Sk1

HW . . ’
is viable

HW. = O(A)

WSk2, WSk2,

* Execution scenario s: label partitioning the
variables in V into two sets (activated and non-
activated)

* Scenario projection of CTP Q and scenario s, is
the non conditional temporal problem
(STP,TCSP,DTP) obtained considering only the
activated variables and the constraints among
them



Scenarios and Projections

Pr(ABC) Pr(ABC)
AB

[1,1]
A

true




* There are three notions of consistency :

— Strong Consistency (SC) there is a fixed way to assign values to
all the variables that satisfies all projections

— Solving: Equivalent to the consistency of the problem containing
all variables and constraints (complexity depends on the

underlying problem)

— Weak Consistency (WC) the projection of each scenario is

consistent

— Solving: Identify the set of minimal scenarios, the check the
consistency of the corresponding projections (co-NP-complete)

— Dynamic Consistency (DC) the current partial consistent
assignment can be consistently extended independently of the

upcoming observations.

— Solving: specific property on pairs of projections (difficult,

actual complexity unknown

SC-> DC > WC

WSk, WSk1,

X, HW HW, = O(A)
» Two scenarios: A and
-A

X HW, HW, = O(A)

WSk2, WSk2,

+ Weakly Consistent
* Not Strongly Consistent

* Not Dynamically Consistent



* Labels, associated to variables, act as rules that select different execution
paths

IF L(v) THEN EXECUTE (v)

* Degrees can be added
— to the premise (pt: L(V) — _4): truth level
— to the consequence (cp : V — 4): preference

* IF pt(L(v), deg) > oo THEN EXECUTE (v) : cp(pt(L(v), deg))

also written r(a, cp)

* Anodevin Vis executed with a preference given by cp if the truth degree of
its premise given by pt, through the interpretation function deg, is greater
than a



A
1 _\ WSk WSk,
>
11 time
X, HW, HW, = O(A)  WSk2 WSk2,
pref
Ty WSk3, WSk3,
| >
13 time

* There are three notions of consistency

— «a-Strong Consistency (SC): there is a fixed way to assign
values to all the variables that has preference at least o all
projections

— a-Weak Consistency (WC): the projection of any scenario is
consistent with optimal preference = a

— a-Dynamic Consistency (DC): the current partial solution
can be consistently extended independently of the
upcoming observations to a solution with preference = a

a-SC 2 a-DC =2 a-WC



ICAPS 2014:

— EfficientIDC: A Faster Incremental Dynamic Controllability Algorithm.
Mikael Nilsson, Jonas Kvarnstrém and Patrick Doherty.

— Resolving Uncontrollable Conditional Temporal Problems using Continuous Relaxations.
(Honorable Mention for the Outstanding Paper Award)
Peng Yu, Cheng Fang and Brian Williams.

— Time-dependent Simple Temporal Networks: Properties and Algorithms.
Cedric Pralet and Gerard Verfaillie.

TIME 2014

— Romeo Rizzi, Roberto Posenato and Carlo Comin. A Tractable Generalization of Simple
Temporal Networks and its relation to Mean Payoff Games

— Mikael Nilsson, Jonas Kvarnstrom and Patrick Doherty. Incremental Dynamic
Controllability in Cubic Worst-Case Time

— Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato and Marco
Roveri. Sound-and-Complete Algorithms for Checking the Dynamic Controllability of
Temporal Networks with Uncertainty, Disjunction and Observation

Applications



* Planning, Scheduling and Execution Systems

— Time is introduced in the process of transforming
abstract goals into ordered collection of actions

— Abstract --> Concrete representations

* Processing data

— Time is introduced in the process of abstracting
useful information from structured (timestamped)
or unstructured (e.g. text) data.

— Abstract < Concrete representations

* A family of approaches based on:
— Temporal networks
— Timelines describing fluents over time
— States and activity networks of variables
— Constraint propagation
— Planning as a dynamic constraint problem

* Constraint problem changes over time
» Variables, constraints, domains added or deleted.



* Representation
— Represent activity parameters and temporal events
— Represent constraints among parameters/events
* Reasoning
— Identify when plan candidate is inconsistent
— Eliminate choices not leading to valid plans
* Requirements
— General: arbitrary constraints (domain-dependent)
— Dynamic: constraints, variables and values added/deleted

— Efficient: network changed and queried at each plan step
» Trade-off between efficiency and completeness of reasoning

* Activities represented as intervals
— Each interval specifies activity +takePiC +
— Each interval has start and end
— Interval can have parameters

| ast3 | | ast7 I | astb2 I

Candidate plan is a network of intervals
* Intervals linked by temporal constraints
* Interval parameters linked by constraints

* Gives rise to constraint network /*/ B8 K

X __ 88 A
Feasibility of candidate plan

» |f network is inconsistent, cannot become a valid plan




» Plan is a network of intervals representing activities

Engine + thrusting 5+—\ off /+
Camera ( takePic E
Attitude +pomtAt -'*—'+tumTo @ +—+{omtAt - \+

» Logical predicates describe actions and states

Engine ﬁhr\usgn/gj mﬁh (;;) /*
Camera :@‘ ( |C-B

Attitude (pomtA)HurnT)l@ %mtA) - \‘+




» Parameterized predicates
— Each predicate type has a fixed set of parameters

— Each parameter instance comes from associated
domain

— Parameters described by variables

. g
Attitude 1 pointAt( [2dirp— turnTc(M

il

Engine +mmsﬁn<}j+\ of pr
gt~

* Interval describes activity with duration

— Start and end times ( )
— Predicate and parameter variables

Engine +thrusting +\ off /+
N

A

Camera ‘/ takePic 5

Attitude +pointAt -+tumTo|1t_gﬂ +—‘+1§ointAt IEQTJW
T




« Temporal relations among intervals

— Can be represented as constraints among start/
end times

Engine + thrusting +5+\ off /'+

Camera ( mtakeﬁc @B

Attitude +pomtAt -'+—'+ turnTo 2tgt] +—'+1§omtAt Izt:g_t_]\'+
v

» Enforce that activities for same system do not conflict
— Activities on same timelines are temporally ordered

Engine + thrusting -

Camera Mtakeplc - %

Attitude +pomtAt -"+—'+turnTo - +—+{omtAt - \'+




Fully automated planning usually not possible
Humans allowed to

— Schedule and unschedule activities

— Edit plans: moving activities in time

Automated planner maintains validity of plan

Human-in-loop helps in understanding and
accepting plan.

Underlying representation of time is flexible.
Interfaces for planning usually show single
instantiation (timeline).

How is that instantiation selected?

— Earliest start time? (not always intuitive to
human)

Given a new goal, how should the planner
update the plan?

— Minimum perturbation



* Autonomous systems with a deliberative (planning)
component combine planning with execution.

— The subsystem responsible for carrying out a plan is called
the executive.

— When dispatching plans with flexible temporal constraints,
there is a need for a separate dispatcher.

* Dispatcher notifies executive when an action can or must be
executed.

— Correctness: whatever executive does adheres to
temporal constraints

— Preserves flexibility: dispatcher never tells the executive
that an action can’t be performed at a certain time when it
can.

Option 1. Schedule Off Line Option 2. Schedule On Line

Describe Temporal Plan

Describe Temporal Plan

Test for Consistency

Test for Consistency

Schedule Plan Reformulate Plan

Off line

v v

On line

Execute Plan Dynamic Execution




Option 1. Schedule Off Line

Describe Temporal Plan

Test for Consistency

Schedule Plan

Execute Plan

Option 1. Schedule Off Line

Describe Temporal Plan

Test for Consistency

Schedule Plan

Execute Plan

[40,50]

‘t{l‘r’ [30,40] =49
LS

[10,20]

[60,70]

+ Given an STN, a schedule is an
assignment of times to all variables.

- To generate a schedule from a STN
without search, first transform STN
into a ‘decomposable’ STN, where all
the implied constraints are revealed,
using the all-pairs-shortest-path
algorithm (Floyd-Warshall)

« Then incrementally assign times to
variables (in any order) and
propagate.

+ Problem: changes in task duration can
cause plan failure if scheduling occurs off
line.

» Fixed schedule removes flexibility

+ Solution: Execution adapts through
dynamic scheduling.

+ Assign time to event at execution
time.

« Guarantee that all constraints wil be
satisfied.



* Problem: execution latency
while propagating effects of
assigning times.

+ Solution: generate schedule
with low latency through
removal of redundant edges.

+ Reformulating plans minimizes
latency.

Off line

Reformulate Plan

On line

Execute and event when it is enabled and

active.

Enabled : predecessors of event have been

scheduled.

Active : Current time is within bounds of

event.

Algorithm: when event is enabled and

active, assign time and propagate effects to

immediate successors.

1]
O I"1 ©)
9] )

=2
o

Off line

Dynamic Execution

Option 2. Schedule On Line

Reformulate Plan

€0 O
@ (O INE)
9 o)

t=2

On line

Dynamic Execution




Dispatching STPs (Muscettola, Morris et al.
1998; Tsamardinos 1998; Tsamardinos, Morris
et al. 1998; Wallace and Freuder 2000)

Dispatching DTPs (Tsamardinos 2001)

Executing a Reactive Model-based
Programming Language (RMPL) plan using
Temporal Plan Networks (Kim et al 2001)

— TPNs are like conditional temporal networks.

Temporal Database Management

— Involves tasks of storing, processing and retrieving
time-oriented information

Temporal Abstraction

— Relates to the task of creating interval-based concepts
(abstractions) from time-stamped raw data.

Temporal Data Visualization

— Involves tasks of collecting, navigating and visualizing
time-oriented information.

Medical Natural Language Processing
— Extracting temporal information from medical text



* Interval Algebra:

— Applied to the tasks of temporal abstraction and
query processing to determine qualitative

temporal relationships between medical events
(Shahar, 1997).

 Temporal Constraint Networks:

— Used to facilitate patient-monitoring and
problem-detection, manage medical resources,
and determine consistency of temporal
constraints in clinical guidelines. Also used to
model temporal information in clinical discharge
summaries (Zhou 2007)

I Protocol CCTG-522 I
I 1
Abstracted
intervals
1 Low (Hb) '
II Low (Hb) ; I, . Low (Hb) :
I I; 1 I T 1
Lo (Hb) _ Low (Hb) . :LOW (Hb)l Low (Hb) :
I 1
I_l L I I
ﬁsel Low (Hb) Low (Hb)  Low (Hb) Low (Hb) Low (Hb)  Low (Hb)
gr./100ce
o R I B
7.0
. >
Ty Ty Ts Ty Ts T
Time

Figure 3: Processing of parameter points and intervals by the temporal-abstraction mechanisms. The (primitive)
parameter points that hold at times T7 and T are abstracted into two abstraction points, over which a Low(Hb) state
abstraction is interpreted, by contemporaneous abstraction; these point abstractions are joined into a LOW(HDb) interval
abstraction J; by temporal interpolation. Abstractions I and I are joined by temporal inference into the longer
Low(Hb) interval abstraction I5_as are I3 and Iy into Ig. Interval abstractions I5 and I are joined into a LoW(Hb)

intarval ahetractinn I= hv temnaral intarnnlation A nErerraeNc(HA) oradient ahetractinn durine interval I= can ha



Executing Reactive, Model-based Programs Through Graph-
based Temporal Planning” (Kim, et al) IJCAI 2001.

“Temporal reasoning with medical data--a review with

emphasis on medical natural language processing’(Zhou)
Journal of Biomedical Information 2007

“A framework for knowledge-based temporal
abstraction.” (Shahar) AlJ 1997.

“Flexible dispatch of disjunctive plans.” (Tsamardinos)
Proceedings of the 6th European Conference on Planning
2001

“Reformulating Temporal Plans For Efficient
Execution” (Muscettola, Morris et al.) Principles of Knowledge
Representation and Reasoning, 1998
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