
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Problem Solving: Local Search, AND-OR Search, and On-line Search



Introduction

We know how to use heuristics in search
– BFS, A*, IDA*, RBFS, SMA*
– looking for a sequence of actions in fully observable, 

deterministic, static, known environments

Next:
– What if the path is not important?

• Local search: HC, SA, BS, GA

– What if actions are non-deterministic?
• AND-OR search

– What if the knowledge of world changes?
• on-line search, LRTA*



Local search

So far we systematically explored all paths possibly going to 
the goal and the path itself was a part of the solution.
For some problems (e.g. 8-queens) the path is not relevant 
to the problem, only the goal is important.
For such problems we can try local search techniques.

– we keep a single state only (constant memory)
– in each step we slightly modify the state
– usually, the path is not stored
– the method can also look for an optimal state, where the 

optimality is defined by an objective function (defined for states).
• For example, for the 8-queens problem the objective function can be 

defined by the number of conflicting queens – this is extra 
information about the quality of states.



Local search - terminology

Local search can be seen as a move in the state-space 
landscape, where coordinates define the state and 
elevation corresponds to the objective function.

CHAPTER 4
SEARCH IN COMPLEX
ENVIRONMENTS

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the
objective function. The aim is to find the global maximum.

function HILL-CLIMBING(problem) returns a state that is a local maximum
current← problem .INITIAL

while true do
neighbor← a highest-valued successor state of current
if VALUE(neighbor ) ≤ VALUE(current) then return current
current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor.



Hill climbing

From the neighbourhood the algorithm selects the 
state with the best value of the objective function 
and moves there (hill climbing).

– knows only the neighbourhood
– the current state is forgotten

• # conflicts = 17
• state change = change 

row of a queen
• random selection among 

more best neighbours

CHAPTER 4
SEARCH IN COMPLEX
ENVIRONMENTS

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the
objective function. The aim is to find the global maximum.

function HILL-CLIMBING(problem) returns a state that is a local maximum
current← problem .INITIAL

while true do
neighbor← a highest-valued successor state of current
if VALUE(neighbor ) ≤ VALUE(current) then return current
current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor.



Hill climbing: problems

HC is a greedy algorithm – goes to the best 
neighbour without looking ahead

• local optimum (the state such that
no neighbour is better)
– HC cannot escape local optimum

• ridges (a sequence of local optima)
– difficult for greedy algorithms to navigate

• plateaux (a flat area of the state-space 
landscape)
– shoulder – progress is still possible
– HC may not find a solution (cycling)

CHAPTER 4
SEARCH IN COMPLEX
ENVIRONMENTS

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the
objective function. The aim is to find the global maximum.

function HILL-CLIMBING(problem) returns a state that is a local maximum
current← problem .INITIAL

while true do
neighbor← a highest-valued successor state of current
if VALUE(neighbor ) ≤ VALUE(current) then return current
current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor.



Hill climbing - versions

stochastic HC
– chooses at random from among the uphill moves; the probability of 

selection can vary with the steepness of the uphill move
– usually converges more slowly than steepest ascent
– in some landscapes, it finds better solutions

first-choice HC
– implements stochastic HC until a successor better than the current 

state is generated
– a good strategy when a state has many (thousands) of successors

random-restart HC
– conducts a series of HC searches from randomly generated initial 

states (restart)
– can escape from a local optimum
– if HC has a probability p of success then the expected number of 

restarts required is 1/p
– a very efficient method for the N-queens problem (p » 0.14, i.e., 7 

iterations to find a goal)



Simulated annealing
HC never makes the “downhill” moves towards states with lower value so the 
algorithm is not complete (can get stuck on a local optimum).
Random walk – that is moving to a successor chosen randomly – is complete 
but extremely inefficient.
Simulated annealing combines hill climbing with random walk

– motivation in metallurgy – process to harden metals by heating them to a high 
temperature and then gradually cooling them  (allowing the material to reach a 
low-energy crystalline state)

– the algorithm picks a random move and accepts it if:
• it improves the situation
• it worsens the situation but this is allowed with a probability given by some temperature 

value and how much the state worsens; the temperature is decreasing according to a 
cooling scheme

decreasing “temperature”

the value of objective 
function changing in time

29

Figure 4.3 (a) The 8-queens problem: place 8 queens on a chess board so that no queen
attacks another. (A queen attacks any piece in the same row, column, or diagonal.) This
position is almost a solution, except for the two queens in the fourth and seventh columns
that attack each other along the diagonal. (b) An 8-queens state with heuristic cost estimate
h=17. The board shows the value of h for each possible successor obtained by moving a
queen within its column. There are 8 moves that are tied for best, with h=12. The hill-
climbing algorithm will pick one of these.

function SIMULATED-ANNEALING(problem , schedule) returns a solution state
current← problem .INITIAL

for t = 1 to∞ do
T← schedule(t )
if T = 0 then return current
next← a randomly selected successor of current
∆E←VALUE(current) – VALUE(next)
if ∆E > 0 then current←next
else current←next only with probability e−∆E/T

Figure 4.4 The simulated annealing algorithm, a version of stochastic hill climbing where
some downhill moves are allowed. The schedule input determines the value of the “temper-
ature” T as a function of time.



Local beam search

Keeping just one node in memory might seem to be an 
extreme reaction to the problem of memory limitations.

Can we exploit available memory better?
• Local beam search algorithm

– keeps track of k states rather than just one
– at each step, all the successors of all k states are generated

• if any one is a goal, the algorithm halts
– otherwise, it selects the k best successors and repeats

• This is not running k restarts of HC in parallel!
– useful information is passed among the parallel search threads
– the algorithm quickly abandons unfruitful searches and moves its 

resources to where the most is being made
– can suffer from a lack of diversity

• stochastic beam search helps alleviate this problem (k successors 
are chosen at random with the probability being an increasing 
function of state value)

• resemble the process of natural selection



Genetic algorithms

A variant of stochastic beam search in which successors are 
generated by combing two parent states (sexual 
reproduction)

– begin with a set of k randomly generated states – population
• each state is represented as a string over a finite alphabet (DNA)
• fitness function evaluates the states (objective function)

– select a pair of states for reproduction (probability of selection is 
given by the fitness function)

– for each pair choose a crossover point from the positions in the 
string

– combine offsprings to a new state
– each location is subject to random

mutation with a small probability
30 Chapter 4 Search in Complex Environments

(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation

24

23

20

11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24748552

32752411

24415124

32543213

32252124

24752411

32748152

24415417

Figure 4.5 A genetic algorithm, illustrated for digit strings representing 8-queens states. The
initial population in (a) is ranked by a fitness function in (b) resulting in pairs for mating in
(c). They produce offspring in (d), which are subject to mutation in (e).

+ =

Figure 4.6 The 8-queens states corresponding to the first two parents in Figure ??(c) and the
first offspring in Figure ??(d). The green columns are lost in the crossover step and the red
columns are retained. (To interpret the numbers in Figure ??: row 1 is the bottom row, and 8
is the top row.)

30 Chapter 4 Search in Complex Environments

(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation

24

23

20

11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24748552

32752411

24415124

32543213

32252124

24752411

32748152

24415417

Figure 4.5 A genetic algorithm, illustrated for digit strings representing 8-queens states. The
initial population in (a) is ranked by a fitness function in (b) resulting in pairs for mating in
(c). They produce offspring in (d), which are subject to mutation in (e).

+ =

Figure 4.6 The 8-queens states corresponding to the first two parents in Figure ??(c) and the
first offspring in Figure ??(d). The green columns are lost in the crossover step and the red
columns are retained. (To interpret the numbers in Figure ??: row 1 is the bottom row, and 8
is the top row.)



Genetic algorithm
31

function GENETIC-ALGORITHM(population ,fitness) returns an individual
repeat

weights←WEIGHTED-BY(population , fitness)
population2 ← empty list
for i = 1 to SIZE(population) do

parent1 , parent2←WEIGHTED-RANDOM-CHOICES(population ,weights , 2)
child←REPRODUCE(parent1 ,parent2 )
if (small random probability) then child←MUTATE(child )
add child to population2

population← population2
until some individual is fit enough, or enough time has elapsed
return the best individual in population , according to fitness

function REPRODUCE(parent1 ,parent2 ) returns an individual
n← LENGTH(parent1 )
c← random number from 1 to n
return APPEND(SUBSTRING(parent1 , 1, c), SUBSTRING(parent2 , c + 1,n))

Figure 4.7 A genetic algorithm. Within the function, population is an ordered list of indi-
viduals, weights is a list of corresponding fitness values for each individual, and fitness is a
function to compute these values.

1 2

87

5 6

3 4

Figure 4.8 The eight possible states of the vacuum world; states 7 and 8 are goal states.



Goal

The erratic vacuum world
Recall the vacuum word with the cleaning robot that can move right, 
move left, or suck.
To reach the goal state from state 1, a possible (optimal) plan could be:

[Suck, Right, Suck]

What if the vacuum cleaner is erratic?
Suck action works as follows:
• When applied to a dirty square

the action cleans the square and
sometimes cleans up dirt in an adjacent
square, too.

• When applied to a clean square the action
sometimes deposits dirt on the carpet.

We need to modify the transition model to include non-determinism 
of actions Suck:

Result(1, Suck) = {5,7}

No single sequence of actions solves the problem, but the conditional 
plan does:

[Suck, if State=5 then [Right, Suck] else []]

11

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

Figure 3.2 The state-space graph for the two-cell vacuum world. There are 8 states and three
actions for each state: L = Left, R = Right, S = Suck.

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Figure 3.3 A typical instance of the 8-puzzle.

1 2

3 45 6

7 8



AND-OR search tree

In the classical search tree, the branching describes 
choices of the agent – OR nodes.
We add new type of nodes to the search tree, AND 
nodes, describing non-deterministic outcomes of 
actions.

A solution to AND-OR search 
problem is a subtree of the 
complete search tree that

• has a goal node at every leaf
• specifies one action at each 

of its OR nodes
• includes every outcome 

branch of its AND nodes

32 Chapter 4 Search in Complex Environments

LeftSuck

RightSuck

RightSuck

6 

GOAL

8 

GOAL

7 

1 

2 5 

1 

LOOP

5 

LOOP

5 

LOOP

Left Suck

1 

LOOP GOAL

8 4 

Figure 4.9 The first two levels of the search tree for the erratic vacuum world. State nodes
are OR nodes where some action must be chosen. At the AND nodes, shown as circles, every
outcome must be handled, as indicated by the arc linking the outgoing branches. The solution
found is shown in bold lines.

function AND-OR-SEARCH(problem) returns a conditional plan, or failure
return OR-SEARCH(problem ,problem .INITIAL, [ ])

function OR-SEARCH(problem , state ,path) returns a conditional plan, or failure
if problem .IS-GOAL(state) then return the empty plan
if IS-CYCLE(path) then return failure
for each action in problem .ACTIONS(state) do

plan←AND-SEARCH(problem , RESULTS(state,action), [state] + path])
if plan "= failure then return [action ] + plan ]

return failure

function AND-SEARCH(problem , states ,path) returns a conditional plan, or failure
for each si in states do

plan i←OR-SEARCH(problem , si,path)
if plan i = failure then return failure

return [if s1 then plan1 else if s2 then plan2 else . . . if sn−1 then plann−1 else plann]

Figure 4.10 An algorithm for searching AND–OR graphs generated by nondeterministic en-
vironments. A solution is a conditional plan that considers every nondeterministic outcome
and makes a plan for each one.

OR node
action selection

AND node
non-deterministic 
effects



AND-OR search algorithm

Depth-first search algorithm for AND-OR graph 
search

32 Chapter 4 Search in Complex Environments

LeftSuck

RightSuck

RightSuck

6 

GOAL

8 

GOAL

7 

1 

2 5 

1 

LOOP

5 

LOOP

5 

LOOP

Left Suck

1 

LOOP GOAL

8 4 

Figure 4.9 The first two levels of the search tree for the erratic vacuum world. State nodes
are OR nodes where some action must be chosen. At the AND nodes, shown as circles, every
outcome must be handled, as indicated by the arc linking the outgoing branches. The solution
found is shown in bold lines.

function AND-OR-SEARCH(problem) returns a conditional plan, or failure
return OR-SEARCH(problem ,problem .INITIAL, [ ])

function OR-SEARCH(problem , state ,path) returns a conditional plan, or failure
if problem .IS-GOAL(state) then return the empty plan
if IS-CYCLE(path) then return failure
for each action in problem .ACTIONS(state) do

plan←AND-SEARCH(problem , RESULTS(state,action), [state] + path])
if plan "= failure then return [action ] + plan ]

return failure

function AND-SEARCH(problem , states ,path) returns a conditional plan, or failure
for each si in states do

plan i←OR-SEARCH(problem , si,path)
if plan i = failure then return failure

return [if s1 then plan1 else if s2 then plan2 else . . . if sn−1 then plann−1 else plann]

Figure 4.10 An algorithm for searching AND–OR graphs generated by nondeterministic en-
vironments. A solution is a conditional plan that considers every nondeterministic outcome
and makes a plan for each one.

Looking for noncyclic solutions

Selecting the action

Covering all non-deterministic 
effects



Offline vs. online

So far we have concentrated on offline search
– compute a complete solution
– then execute the solution without assuming percepts

Online search is different in
– interleave computing and acting

• select an action
• execute an action
• observe the environment
• compute the next action

– a good idea in dynamic and semidynamic environments
– helpful in nondeterministic domains (unknown actions 

and unknown results of actions)



On-line search

Online search is useful for agents executing 
actions (useless for pure computation).
The agent knows only the following information:

– Actions(s) – a list of actions allowed in state s
– c(s,a,s‘) – the step cost function (cannot be used until 

the agent knows state s‘)
– Goal-Test(s) – identifying the goal state

We assume the following:
– agent can recognize a visited state
– (agent can build a world map)
– actions are deterministic
– agent has an admissible heuristic h(s)

37

G

S1

2

3

1 2 3

Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.

S

G

S

G

A

A

S G

(a) (b)

Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.



Evaluating on-line algorithms

Quality of online algorithms can be measured by comparing with the 
offline solution (knowing the best solution in advance).

• Competitive ratio
= quality of the online solution / quality of the best solution
– can be ¥, for example for a dead-end state (if some actions are 

irreversible).
Claim: No algorithm can avoid dead ends in all

state spaces.
Proof (adversary argument)

Agent has visited states S and A must make
the same decision in both, but in one situation,
the agent reaches dead-end.

Assume that the state space is safely explorable (some goal state is 
reachable from every reachable state).
– No bounded competitive ratio can be guaranteed

if there are paths of unbounded cost.
– Adversary argument can be used to arbitrarily

extend any path.

Hence it is common to describe the performance of online search 
algorithms in terms of the size of the entire state space rather 
than just the depth of the shallowest goal.

37

G

S1

2

3

1 2 3

Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.

S

G

S

G

A

A

S G

(a) (b)

Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.

37

G

S1

2

3

1 2 3

Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.

S

G

S

G

A

A

S G

(a) (b)

Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.



Online DFS

Opposite to offline algorithms such as A* online algorithms 
can discover successors only for a node that the agent 
physically occupies.
It seems better to expand nodes in a local order as done 
for example by DFS.

38 Chapter 4 Search in Complex Environments

function ONLINE-DFS-AGENT(problem , s ′) returns an action
s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty
untried , a table mapping s to a list of untried actions
unbacktracked , a table mapping s to a list of states never backtracked to

if problem .IS-GOAL(s ′) then return stop
if s ′ is a new state (not in untried) then untried[s ′]← problem .ACTIONS(s ′)
if s is not null then

result[s ,a]← s ′

add s to the front of unbacktracked [s ′]
if untried[s ′] is empty then

if unbacktracked [s ′] is empty then return stop
else a← an action b such that result[s ′, b] = POP(unbacktracked [s ′])

else a← POP(untried[s ′])
s← s ′

return a

Figure 4.20 An online search agent that uses depth-first exploration. The agent can safely
explore only in state spaces in which every action can be “undone” by some other action.

S G

Figure 4.21 An environment in which a random walk will take exponentially many steps to
find the goal.

; s‘ ← null

The state can be visited multiple times in a 
single journey (it is leaved to different states) 
so we need to remember where to go back –
Ariadne's thread

to go back we need a reverse 
action to the actions used to 
reach the state

learns outcome 
of actions



37

G

S1

2

3

1 2 3

Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.

S

G

S

G

A

A

S G

(a) (b)

Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.

Online DFS

• In the worst case, every link is traversed exactly twice (forward and 
backward).

• This is optimal for exploration, but for finding a goal, the agent‘s 
competitive ratio could be arbitrarily bad.
– an online variant of iterative deepening solves this problem

• On-line DFS works only in state spaces where actions are reversible.

state unEX unBT rUP rDN rLF rRG
(1,a) {} (2,a) (2,a) - - (1,b)
(2,a) {} (1,a) - (1,a) - -
(1,b) LF,RG (1,a) (2,b) -
(2,b) DW (1,b) (3,b) - -
(3,b) DW (2,b) - (3,a) -
(3,a) RG (3,b) - - -

(3,a), (2,b)
(3,b)

a            b            c



Local online search

Hill climbing is an on-line algorithm.
– keeps a single state (the current physical state)
– does local steps to the neighbouring states
– in its simplest form cannot escape local optima

• Beware! Restarts cannot be used in online search!
• We can still use random walk.

– A random walk will eventually find a goal or will complete 
its exploration, provided that the space is finite.

– The process can be very slow.
– In the following example, a random walk will take 

exponentially many steps to find the goal (at each step, 
backward progress is twice as likely as forward progress).

38 Chapter 4 Search in Complex Environments

function ONLINE-DFS-AGENT(problem , s ′) returns an action
s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty
untried , a table mapping s to a list of untried actions
unbacktracked , a table mapping s to a list of states never backtracked to

if problem .IS-GOAL(s ′) then return stop
if s ′ is a new state (not in untried) then untried[s ′]← problem .ACTIONS(s ′)
if s is not null then

result[s ,a]← s ′

add s to the front of unbacktracked [s ′]
if untried[s ′] is empty then

if unbacktracked [s ′] is empty then return stop
else a← an action b such that result[s ′, b] = POP(unbacktracked [s ′])

else a← POP(untried[s ′])
s← s ′

return a

Figure 4.20 An online search agent that uses depth-first exploration. The agent can safely
explore only in state spaces in which every action can be “undone” by some other action.

S G

Figure 4.21 An environment in which a random walk will take exponentially many steps to
find the goal.



Learning in online search

We can exploit available memory to remember 
visited states and hence leave local optima.
– H(s) – the current best estimate of path length from 

s to the goal (equals h(s) at the beginning)

local optimum

select the best neighbourhood 
state and update the H-value of 
current state to min(1+9, 1+2)

(strict) local optimum again, but 
we go to the best neighbour and 
update H

we assume the displayed states have 
already been visited and we know their 
H-values

39

1
2

1 11 1 11

1 1 11 1 11

1 1 11 1 11

2

2

3

4

4

4

3

3

3

1 1 11 1 11
3

1 1 11 1 11
5

3

5

5

4

(a)

(b)

(c)

(d)

(e)

8 9

8

9

8 9

8

9

8 9

44

34

Figure 4.22 Five iterations of LRTA∗ on a one-dimensional state space. Each state is labeled
with H(s), the current cost estimate to reach a goal, and every link has an action cost of 1.
The red state marks the location of the agent, and the updated cost estimates at each iteration
have a double circle.

function LRTA*-AGENT(problem , s ′, h) returns an action
s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty
H , a table mapping s to a cost estimate, initially empty

if IS-GOAL(s ′) then return stop
if s ′ is a new state (not in H ) then H [s ′]←h(s ′)
if s is not null then

result[s ,a]← s ′

H [s]← min
b∈ACTIONS(s)

LRTA*-COST(s , b, result[s , b],H )

a← argmin
b∈ACTIONS(s)

LRTA*-COST(problem , s ′, b, result [s ′, b],H )

s← s ′

return a

function LRTA*-COST(problem , s ,a, s ′,H ) returns a cost estimate
if s ′ is undefined then return h(s)
else return problem .ACTION-COST(s, a, s′) + H [s′]

Figure 4.23 LRTA∗-AGENT selects an action according to the values of neighboring states,
which are updated as the agent moves about the state space.

39

1
2

1 11 1 11

1 1 11 1 11

1 1 11 1 11

2

2

3

4

4

4

3

3

3

1 1 11 1 11
3

1 1 11 1 11
5

3

5

5

4

(a)

(b)

(c)

(d)

(e)

8 9

8

9

8 9

8

9

8 9

44

34

Figure 4.22 Five iterations of LRTA∗ on a one-dimensional state space. Each state is labeled
with H(s), the current cost estimate to reach a goal, and every link has an action cost of 1.
The red state marks the location of the agent, and the updated cost estimates at each iteration
have a double circle.

function LRTA*-AGENT(problem , s ′, h) returns an action
s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty
H , a table mapping s to a cost estimate, initially empty

if IS-GOAL(s ′) then return stop
if s ′ is a new state (not in H ) then H [s ′]←h(s ′)
if s is not null then

result[s ,a]← s ′

H [s]← min
b∈ACTIONS(s)

LRTA*-COST(s , b, result[s , b],H )

a← argmin
b∈ACTIONS(s)

LRTA*-COST(problem , s ′, b, result [s ′, b],H )

s← s ′

return a

function LRTA*-COST(problem , s ,a, s ′,H ) returns a cost estimate
if s ′ is undefined then return h(s)
else return problem .ACTION-COST(s, a, s′) + H [s′]

Figure 4.23 LRTA∗-AGENT selects an action according to the values of neighboring states,
which are updated as the agent moves about the state space.

39

1
2

1 11 1 11

1 1 11 1 11

1 1 11 1 11

2

2

3

4

4

4

3

3

3

1 1 11 1 11
3

1 1 11 1 11
5

3

5

5

4

(a)

(b)

(c)

(d)

(e)

8 9

8

9

8 9

8

9

8 9

44

34

Figure 4.22 Five iterations of LRTA∗ on a one-dimensional state space. Each state is labeled
with H(s), the current cost estimate to reach a goal, and every link has an action cost of 1.
The red state marks the location of the agent, and the updated cost estimates at each iteration
have a double circle.

function LRTA*-AGENT(problem , s ′, h) returns an action
s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty
H , a table mapping s to a cost estimate, initially empty

if IS-GOAL(s ′) then return stop
if s ′ is a new state (not in H ) then H [s ′]←h(s ′)
if s is not null then

result[s ,a]← s ′

H [s]← min
b∈ACTIONS(s)

LRTA*-COST(s , b, result[s , b],H )

a← argmin
b∈ACTIONS(s)

LRTA*-COST(problem , s ′, b, result [s ′, b],H )

s← s ′

return a

function LRTA*-COST(problem , s ,a, s ′,H ) returns a cost estimate
if s ′ is undefined then return h(s)
else return problem .ACTION-COST(s, a, s′) + H [s′]

Figure 4.23 LRTA∗-AGENT selects an action according to the values of neighboring states,
which are updated as the agent moves about the state space.

39

1
2

1 11 1 11

1 1 11 1 11

1 1 11 1 11

2

2

3

4

4

4

3

3

3

1 1 11 1 11
3

1 1 11 1 11
5

3

5

5

4

(a)

(b)

(c)

(d)

(e)

8 9

8

9

8 9

8

9

8 9

44

34

Figure 4.22 Five iterations of LRTA∗ on a one-dimensional state space. Each state is labeled
with H(s), the current cost estimate to reach a goal, and every link has an action cost of 1.
The red state marks the location of the agent, and the updated cost estimates at each iteration
have a double circle.

function LRTA*-AGENT(problem , s ′, h) returns an action
s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty
H , a table mapping s to a cost estimate, initially empty

if IS-GOAL(s ′) then return stop
if s ′ is a new state (not in H ) then H [s ′]←h(s ′)
if s is not null then

result[s ,a]← s ′

H [s]← min
b∈ACTIONS(s)

LRTA*-COST(s , b, result[s , b],H )

a← argmin
b∈ACTIONS(s)

LRTA*-COST(problem , s ′, b, result [s ′, b],H )

s← s ′

return a

function LRTA*-COST(problem , s ,a, s ′,H ) returns a cost estimate
if s ′ is undefined then return h(s)
else return problem .ACTION-COST(s, a, s′) + H [s′]

Figure 4.23 LRTA∗-AGENT selects an action according to the values of neighboring states,
which are updated as the agent moves about the state space.

39

1
2

1 11 1 11

1 1 11 1 11

1 1 11 1 11

2

2

3

4

4

4

3

3

3

1 1 11 1 11
3

1 1 11 1 11
5

3

5

5

4

(a)

(b)

(c)

(d)

(e)

8 9

8

9

8 9

8

9

8 9

44

34

Figure 4.22 Five iterations of LRTA∗ on a one-dimensional state space. Each state is labeled
with H(s), the current cost estimate to reach a goal, and every link has an action cost of 1.
The red state marks the location of the agent, and the updated cost estimates at each iteration
have a double circle.

function LRTA*-AGENT(problem , s ′, h) returns an action
s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty
H , a table mapping s to a cost estimate, initially empty

if IS-GOAL(s ′) then return stop
if s ′ is a new state (not in H ) then H [s ′]←h(s ′)
if s is not null then

result[s ,a]← s ′

H [s]← min
b∈ACTIONS(s)

LRTA*-COST(s , b, result[s , b],H )

a← argmin
b∈ACTIONS(s)

LRTA*-COST(problem , s ′, b, result [s ′, b],H )

s← s ′

return a

function LRTA*-COST(problem , s ,a, s ′,H ) returns a cost estimate
if s ′ is undefined then return h(s)
else return problem .ACTION-COST(s, a, s′) + H [s′]

Figure 4.23 LRTA∗-AGENT selects an action according to the values of neighboring states,
which are updated as the agent moves about the state space.



Learning real-time A*

Algorithm LRTA* makes local steps and learns the result of each action as 
well as a better estimate of distance to the goal (H).

39

1
2

1 11 1 11

1 1 11 1 11

1 1 11 1 11

2

2

3

4

4

4

3

3

3

1 1 11 1 11
3

1 1 11 1 11
5

3

5

5

4

(a)

(b)

(c)

(d)

(e)

8 9

8

9

8 9

8

9

8 9

44

34

Figure 4.22 Five iterations of LRTA∗ on a one-dimensional state space. Each state is labeled
with H(s), the current cost estimate to reach a goal, and every link has an action cost of 1.
The red state marks the location of the agent, and the updated cost estimates at each iteration
have a double circle.

function LRTA*-AGENT(problem , s ′, h) returns an action
s , a, the previous state and action, initially null

persistent: result , a table mapping (s, a) to s′, initially empty
H , a table mapping s to a cost estimate, initially empty

if IS-GOAL(s ′) then return stop
if s ′ is a new state (not in H ) then H [s ′]←h(s ′)
if s is not null then

result[s ,a]← s ′

H [s]← min
b∈ACTIONS(s)

LRTA*-COST(s , b, result[s , b],H )

a← argmin
b∈ACTIONS(s)

LRTA*-COST(problem , s ′, b, result [s ′, b],H )

s← s ′

return a

function LRTA*-COST(problem , s ,a, s ′,H ) returns a cost estimate
if s ′ is undefined then return h(s)
else return problem .ACTION-COST(s, a, s′) + H [s′]

Figure 4.23 LRTA∗-AGENT selects an action according to the values of neighboring states,
which are updated as the agent moves about the state space.

if the action has not been applied yet, 
we optimistically assume that it leads 
to state with the best cost, i.e. h(s)

improve the H-function in the previous 
state

select the next action with the best cost (can 
also go back); prefer not-yet explored states



© 2020 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz


