
Artificial	Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Integration

Probability	theory describes	what	an	agent	
should	believe	on	the	basis	of	evidence.

Utility	theory describes	what	an	agent	wants.

Decision	theory puts	the	two	together	to	
describe	what	an	agent	should	do.

What	is	next?
– making	simple	(single)	decisions
– sequential	decision	problems

Decision	networks

How	to	describe	a	general	mechanism	of	making	rational	
decisions?
A	decision	network	(influence	diagram)	represents	
information	about	the	agent‘s	current	state,	its	possible	
actions,	the	state	that	will	result	from	the	agent‘s	action,	and	
the	utility	of	the	state.

Chance	nodes	(ovals)	represent	random	
variables	just	as	in	Bayesian	networks.
Decision	nodes	(rectangles)	represent	
points	where	the	decision	maker	has	a	
choice	of	actions		(a	single	decision	node	
now).
Utility	nodes	(diamonds)	represent	the	
agent‘s	utility	function.

Evaluating	decision	networks

Actions	are	selected	by	evaluating	the	decision	
network	for	each	possible	setting	of	the	decision	
node.
1. set	the	evidence	variables	for	the	current	state
2. for	each	possible	value	of	the	decision	node

a) set	the	decision	node	to	that	value
b) calculate	 the	posterior	probabilities	 for	the	parent	

nodes	of	the	utility	node,	using	a	standard	probabilistic	
inference

c) calculate	 the	resulting	utility	for	the	action
3. return	the	action	with	the	highest	utility
For	problems	with	more	utility	nodes	we	will	use	
multi-attribute	utility	theory.

Constructing	decision	networks
Create	a	causal	model

determine	the	possible	 symptoms,	disorders,	treatments,	and	outcomes	and	then	
draw	arcs	between	them

Simplify	to	a	qualitative	decision	model

we	can	simplify	by	removing	variables	that	are	not	involved	in	treatment	decisions;	
sometime	 variables	will	have	to	be	split	or	joined	to	match	the	expert’s	intuitions

Assign	probabilities

fill	CPTs	in	the	Bayesian	networks
(from	patient	databases,	 literature	studies
or	expert’s	subjective	assessments)

Assign	utilities

a	small	number	of	possible	 outcomes	can
be	enumerated	(can	be	done	by	the	expert	 ,
but	better	if	the	patient	is	involved)

Verify	and	refine	the	model
compare	outputs	with	a	so-called	gold
standard	(a	team	of	best	doctors)

Perform	sensitivity	analysis

check	whether	the	best	decision	 is	sensitive
to	small	changes	 in	the	assigned	 probabilities
and	utilities	 by	systematically	varying	those
parameters	and	running	the	evaluation	again	(small	changes	leading	to	significantly	
different	decisions	 indicate	problems)

Sequential	decision	problems

Suppose	that	an	agent	is	situated	
in	the	3	x	4	environment.
The	environment	is	fully	
observable	so	that	the	agent	
always	knows	where	it	is

The	actions	in	every	state	are	Up,	Down,	Left,	Right
– the	actions	available	in	state	s	are	denoted	A(s)
– actions	are	unreliable

• each	action	achieves	the	intended	effect	with	probability	0.8
• the	rest	of	time,	the	action	moves	the	agent	at	right	angles	to	
the	intended	direction

– probability	 that	[Up,Up,Right,Right,Right]	 reaches	the	
goal	(+1)	from	START	is	0.85 +	0.14	x	0.8=	0.32776.

Markov	decision	process

The	transition	model	describes	the	outcome	of	each	action	in	
each	state	using	the	classical	approach	P(s‘|s,a)	 – probability	
of	reaching	state	s‘ if	action	a is	done	in	state	s.

– we	will	assume	that	transitions	are	Markovian (probability	of	
reaching	s‘ from	s	does	not	depend	on	the	history	of	earlier	
states)

The utility	function	will	depend	on	a	sequence	of	states.
– each	state	has	a	(bounded)	reward R(s)

• Example:	+1	(goal	exit),	-1	(unwanted	exit),	-0.04	(other	states)
– utility	function	 is	(for	now)	the	sum	of	the	rewards	received	at	

visited	states
• it	is	similar	to	looking	for	a	shortest	path	to	the	goal	in	a	stochastic	
environment

Markov	Decision	Process	(MDP)
a sequential	 decision	problem	for	a	fully	observable,
stochastic	environment	with	a	Markovian transition
model	and	additive	rewards

Solution	to	an	MDP

A	fixed	sequence	of	actions	(a	plan)	cannot	be	used	
in	stochastic	environments
– agent	might	end	up	in	a	state	other	than	the	goal

A	solution	must	specify	what	the	agent	should	do	
for	any	state	that	the	agent	might	reach.

A	solution	to	an	MDP	is	a	policy – a	function	
recommending	an	action	for	each	state	– !(s)
– an	optimal	policy	is	a	policy	that	yields	the	highest	
expected	utility

– this	policy	 represents	the	agent	function	explicitly	and	
it	is	therefore	 a	description	 of	a	simple	reflex	agent

Optimal	policies

optimal	policy	yields	the	highest	expected	utility
– it	depends	on	particular	values	of	rewards

Reward of states is -0.04
The agent is heading for the
goal exit but is conservative

Reward of states is negative
Life is so painful that the agent
heads straight for the nearest exist

Reward of states is close to 0
The agent is heading the goal exit
but takes no risks at all

Reward of states is positive
Life is positively enjoyable and the
agent avoids both exits

Utilities	over	time	(horizon)

How	is	the	utility	function	over	a	sequence	of	states	defined?
Similarly	to	multi-attribute	 utility function	U([s0,s1,…,sn])	 (states	
correspond	to	attributes),	but
what	is	the	horizon?

• finite	horizon
– there	is	a	fixed	time	N	after	which	nothing	matters

U([s0,s1,…,sN+k])	 =	U([s0,s1,…,sN])
– The	optimal	action	in	a	given	state	could	change	over	time	(optimal	

policy	is	nonstationary)
• for	N=3	and	state	(3,1)	 the	agents	selects	the	action	Up
• for	N=100	and	state	(3,1)	 the	agent	selects	the	action	Left

• infinite	horizon
– there	is	no	reason	to	behave	differently	 in	the	same	state	at	different	

times
– the	optimal	policy	is	stationary

– infinite	horizon	does	not	necessarily	mean	that	all		state	sequences	are	
infinite;	it	just	means	that	there	is	no	fixed	deadline

Utilities	over	time

Utility	function	behaves	as	an	multiattribute utility	function	
U([s0,s1,…,sn]).
To	obtain	a	simple	expression	we	assume	that	agent’s	
preferences	between	state	sequences	are	stationary

– [s0,s1,s2,…]	and	[s0,s‘1,s‘2,…]	are	preference-ordered	 the	same	
way	as	the	sequences	 [s1,s2,…]	and	[s‘1,s‘2,…]	

– the	agent’s	preference	„tomorrow	and	today“	are	identical
Under	stationaritythere	are	just	two	coherent	ways	to	
assign	utilities	to	sequences:

– additive	rewards
U([s0,s1,s2,…])	 =	R(s0)	+	R(s1)	+	R(s2)	+	…

– discounted	 rewards
U([s0,s1,s2,…])	 =	R(s0)	+	"R(s1)	+	"2 R(s2)	+	…
discount	 factor	" ∈	(0,1)

– describes	the	preference	of	an	agent	for	current	rewards	over	future	 rewards
(close	to	0	=	rewards	in	the	distant	future	are	viewed	as	insignificant;
1	=	discounted	 rewards	are	exactly	equivalent	to	additive	rewards)

– equivalent	to	an	interest	rate	1/ " - 1

Utilities	over	time	(properties)

In	the	reminder,	we	assume	discounted	rewards.
• If	the	environment	does	not	contain	a	terminal	state	(or	if	the	

agent	never	reaches	one)	and	utilities	are	additive	then	
undiscounted	rewards	will	generally	be	+∞ or	-∞

• With	discounted	rewards	the	utility of	an	infinite	sequence	 is	
finite (let	rewards	are	bounded	by	±Rmax)
U([s0,s1,s2,…])	=	'i=0,…,+∞(i R(si)	≤ '	i=0,…,+∞ (i Rmax =	Rmax/	(1- ()

• If	the	environment	contains	terminal	states	and	if	the	agent	is	
guaranteed	to	get	to	one	eventually,	 then	we	will	never	need	to	
compare	infinite	sequences.
– A	policy	that	is	guaranteed	to	reach	a	terminal	state	is	called	a	proper	

policy

» we	can	use	additive	rewards
• Infinite	sequences	 can	be	compared	in	terms	of	the	average	

reward	obtained	per	time	step (better	to	stay	in	state	with	a	
reward	0.1	than	in	a	state	with	a	reward	0.01).

Optimal	policies

The	expected	utility	obtained	by	executing	! starting	in	s is	given	by:
U!(s)	=	E[Σi=0,…,+∞ " i R(Si)]
– St is	a	random	variable	describing	the	state	that	the	agent	reaches	at	

time	t
Optimal	policy	for	the	initial	state	s	is	defined	as:

!*s =	argmax! U!(s)

Does	the	optimal	policy	depend	on	the	initial	state?
– if	two	policies	!*a and	!*b reach	a	third	state	c, there	is	no	good	

reason	for	them	to	disagree	with	each	other	about	what	to	do	next

Let	us	define	the	true	utility	of	a	state	as	just U(s)	=	U!*(s)	
– R(s)	is	the	“short	term”	reward	for	being	in	s,

whereas	U(s)	is	the	“long	term”	total	reward
from	s onward

– Then	choose	the	action	that	maximizes
the	expected	utility	of	the	subsequent	state
!*(s)	=	argmaxa∈A(s)+s‘ P(s‘|s,a)	U(s‘)	

– Notice	that	this	does	not	need	to	be	the	action
going	to	the	state	with	largest	U(s)!

Bellman	equation

The	utility	of	a	state	is	the	immediate	reward	for	
that	state	plus	the	expected	discounted	utility	of	
the	next	state,	assuming	that	the	agent	chooses	
the	optimal	action.
U(s)	=	R(s)	+	(maxa∈A(s),s‘ P(s‘|s,a)	U(s‘)

This	is	called	the	Bellman	equation.
U((1,1))	=	– 0.04	+

" max[
0.8U((1,2))	+	0.1U((2,1))	+	0.1U((1,1)),
0.9U((1,1))	+	0.1U((1,2)),
0.9U((1,1))	+	0.1U((2,1)),
0.8U((2,1))	+	0.1U((1,2))	+	0.1U((1,1))]

Value	iteration
The	Bellman	equation	 is	the	basis	of	the	value	iteration	algorithm	for	solving	MDPs.
There	is	one	problem:	the	equations	are	nonlinear.
We	will	apply	an	iterative	approach

1. We	start	with	arbitrary	initial	values	for	the	utilities	U(s)
2. We	update	the	utility	U(s)	of	each	state	from	the	utilities	 of	its	neighbors	(a	

Bellman	update)

Ui+1(s)	← R(s)	+	"maxa∈A(s) +s‘ P(s‘|s,a)	U(s‘)

.

.

P(s‘|s,a)

P

Convergence	of	value	iteration

How	do	we	know	that	the	value	iteration	algorithm	eventually	converges	to	a	
unique	set	of	solutions	of	the	Bellman	equations?

• The	basic	concept	is	the	notion	of	contraction
(|f(x)	– f(x‘)|	<	c|x – x‘|	,	where	0	≤ c	<	1)
– function	 f	has	only	one	fixed	point
– when	the	function	 is	applied	to	any	argument,	the

value must	get	closer	to	fixed	point
• Let	U	be	a	vector	of	utilities	for	all	the	states,	we	will

use	the	max	norm	to	measure	“length”	of	a	vector.
|U|	=	maxs |U(s)|

• Let	BU	be	the	Bellman	update	of	vector	U,	then
|BUi – BU‘i|	≤ " |Ui – U‘i|	
|BUi – U|	≤ 	" |Ui – U|,	where	U	is	the	vector	of	true	utilities	(the	fixed	point)

• The	number	of	iterations	to	reach	an	error	of	at	most	/
|BU0 – U|	≤ 2Rmax	/	(1- ") the	maximal	distance	from	the	true	utility
|BUN – U|	≤ 	"N 2Rmax	/	(1-") in	each	iteration,	the	error	is	reduces	by	at	least	"
N	=	⎡log(2Rmax	/	1(1- ())/log(1/() ⎤ #iterations	to	reach	an	error	of	at	most	/

• The	terminal	condition to	reach	an	error	of	at	most	/ from	the	true	utility	U
|BUi+1 – BUi|	<	1 (1 – ()	/ (

Policy	loss

What	the	agent	really	cares	about	is	how	well	it	
will	do	if	it	makes	its	decisions	on	the	basis	of	
the	current	utility	function	Ui.
– policy	loss	is	the	most	the	agent	can	lose	by	
executing	!,	instead	of	the	optimal	policy!*:
|U!i – U|

– if	|Ui – U|	<	/ then|U!i – U| <	2/ " /	(1 – ")

In	practice,	it	often	occurs
that	!3 becomes	optimal
long	before	Ui has	converged.

Policy	iteration

It	is	possible	to	get	an	optimal	policy	even	when	the	utility	function	
estimate	is	inaccurate.

– If	one	action	is	clearly	better	than	all	others,	then	the	exact	magnitude	of	
the	utilities	on	the	states	involved	need	not	be	precise.

This	suggests	an	alternative	way	to	find	optimal	policies	– the	policy	
iteration	algorithm	that	alternates	the	following	two	steps:

– policy	evaluation	– given	a	policy	!i,	calculate	U!i
• the	action	in	each	state	is	fixed	by	the	policy	so	we	have	a	simplified	version	of	the	

Bellman	equations

U!i(s)	=	R(s)	+	" Σs‘ P(s‘|s,	! i(s))	U!i(s‘)
• for	small	state	spaces,	policy	evaluation	using	exact	solution	methods	is	often	 the	

most	efficient	approach	– time	comlexity is	O(n3)
• for	large	state	spaces,	we	can	perform	some	number	of	simplified	value	iteration	

steps	to	give	a	reasonably	good	approximation	of	the	utilities

Uj+1(s)	← R(s)	+	" Σs‘ P(s‘|s,	! i(s))	Uj(s‘)
– policy	improvement

! i+1(s)	← argmaxa∈A(s) Σs‘ P(s‘|s,a)	U!i(s‘)

Policy	iteration

Because	there	are	only	finitely	many	policies	for	a	finite	state	space,	
and	each	iteration	yields	a	better	policy,	policy	iteration	must	
terminate.

P(s‘|s,a) P(s‘|s, 4(s))

4,

a
P(s‘|s,a)

P

a

4

Next?

For	fully	observable	environment	(agent	knows	
the	current	state)	we	can	suggest	the	action	
(policy)	maximizing	the	expected	utility	even	if	
the	output	of	the	action	is	uncertain.

U(s)	=	R(s)	+	" maxa∈A(s) Σs‘ P(s‘|s,a)	U(s‘)
What	if	the	environment	is	only	partially	
observable?
– partially	observable	Markov	decision	process	
(POMDP)

POMDP

A	POMDP	has	the	same	elements	as	an	MDP:
– the	transition	model	P(s‘|s,a)	
– reward	function	R(s)
– sensor	model	P(e|s)

The	agent	does	not	necessarily	know	which	state	it	is	in,	
so	it	cannot	execute	the	action	!(s)	recommended	for	
that	state.
How	to	model	an	unknown	state?

– a belief	state
– a probability	distribution	over	all	possible	states	(modelled	
as	a	vector	of	probabilities	of	each	state)

– b(s)	=	probability	of	being	in	state	s in	the	belief	state	b

We	will	look	for	an	optimal	policy	for	belief	states!(b).

Solving	POMDP

How	to	calculate	a	belief	state	b‘	after	applying	action	a to	a	
belief	state	b?

b‘(s‘)	=	5 P(e|s‘)	Σs P(s‘|s,a)	b(s)
b‘	=	FORWARD(b,a,e)
– This	is	essentially	 the	filtering	task	and	it	can	be	solved	

incrementally.

The	optimal	action	depends	only	on	the	agent’s	current	belief	
state	!*(b).
The	decision	cycle	of	a	POMDP	agent	can be	broken	down	
into	the	following	three	steps:

1. given	the	current	belief	state	b,	execute	the	action
a	=	!*(b)

2. receive	percept e.
3. set	the	current	belief	state

b‘	=	FORWARD(b,a,e)	 and	repeat.

From	POMDP	to	MDP
Notice	that	the	next	belief	state	b‘	is	calculated	deterministically	given	the	
current	belief	state	b,	action	a,	and	subsequent	percept	e.

b‘	=	FORWARD(b,a,e)

How	to	calculate	the	next	belief	state	when	the	observation	 is	not	yet	
available?

– The	probability	of	perceiving	e,	given	that	a was	performed	in	belief	state	b:
P(e|a,b)	=	Σs‘ P(e|a,b,s‘)	P(s‘|a,b)

=	Σs‘ P(e|s‘)	P(s‘|a,b)
=	Σs‘ P(e|s‘)	Σs P(s‘|a,s) b(s)

– The	probability	of	reaching	b’	from	b,	given	an	action	s:
P(b‘|b,a)	=	P(b‘|a,b)	=	Σe P(b‘|a,b,e)	P(e|a,b)

=	Σe P(b‘|a,b,e)	Σs‘ P(e|s‘)	Σs P(s‘|a,s) b(s)
where	P(b‘|a,b,e)	=	1,	if	b‘	=	FORWARD(b,a,e),	otherwise	0

The	reward	function	for	belief	states	can	be	defined	as
r(b)	=	Σs b(s)R(s)	

Together P(b‘|b,a)	and	r(b)	define	an	observable	MDP!
– Solving	a	POMDP	on	a	physical	state	space	can	be	reduced	to	solving	and	MDP	on	

the	corresponding	belief-state	space.
– However,	the	MDP	we	obtain	has	a	continuous	(and	usually	multi-dimensional)	

state	space!

Online	agents	for	POMDP

The	presented	techniques	for	MDP	cannot	be	directly	applied	
due	to	infinitely	many	number	of	states.
Instead	of	policies	we	can	use	conditional	plans.

– an	action	is	selected	based	on	observations	and	previous	actions.
Value	iteration	can	be	modified	for	POMDPs	but	it	is	not	very	
efficient.
We	will	use	dynamic	Bayesian	networks	and	look-ahead	
techniques.

– dynamic	Bayesian	network	represents	the	transition	and	sensor	
models

– nodes	are	added	for	actions	and	rewards

nodes with
known values

reward nodes

utility node represents
future rewards

Look-ahead	techniques
The	solving	techniques	are	similar	to	methods	of	game	playing.

– the	opponent	is	equivalent	to	observations
• the	triangular	nodes	represent	

belief	states	and	there	are	arcs	
annotated	by	possible	actions
– belief	state	is	obtained	

deterministically	 from	the	
path	(actions	and	
observations	are	known)

• the	round	(chance)	nodes	
correspond	to	choices	by	the	
environment,	namely	what	
evidence	arrives

• no	special	nodes	for	uncertain	
action	effects	are	necessary	as	
application	of	action	to	a	belief	
state	gives	the	next	belief	state	
deterministically

A	decision	can	be	extracted	from	the	search	tree	by	the	algorithm	similar	to	
the	EXPECTEDMINIMAX	algorithm	 for	game	trees	with	chance	nodes.
The	depth	of	search	tree	can	be	determined	by	the	discount	factor		(the	future	
utility	value	is	small	due	to	discounting).

© 2016 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

