
Artificial	Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Introduction

There	is	prevalence	of	uncertainty in	real	
environments.
Agents	can	handle	uncertainty	by	using	the	methods	
of	probability,	such	as	Bayesian	networks.
How	can	we	learn	the	proper	model	(how	to	fill	up	
the	conditional	probability	tables)?
We	will	described	methods	for	learning	probability	
models
– statistical	(Bayesian)	learning	

• calculating	the	probability	of	each	hypothesis
– learning	naïve	Bayes	models
– learning	with	hidden	variables

Model	example

Consider	candy	coming	in	two	flavors	– cherry	and	lime	– that	
the	manufacturer	wraps	in	the	same	opaque	wrapper.
The	candy	is	sold	in	very	large	bags,	of	which	there	are	known	
to	be	five	kinds:

h1:	100%	cherry
h2:	75%	cherry	+	25%	lime
h3:	50%	cherry	+	50%	lime
h4:	25%	cherry	+	75%	lime
h5:	100%	lime

The random	variable	H	(for	hypothesis)	denotes	the	type	of	
the	bag	(H	is	not	directly	observable).
As	the	pieces	of	candy	are	opened	and	inspected,	data are	
revealed D1,…,DN,	where	each	Di is	a	random	variable	with	
possible	values	cherry	and	lime.
The	basic	task	is	to	predict	the	flavor	of	the	next	piece	of	
candy.

Bayesian	learning

It	calculates	the	probability	of	each	hypothesis,	given	the	data	
and	makes	predictions	on	that	basis.
The	predictions	are	made	by	using	all	the	hypothesis,	
weighted	by	their	probabilities,	rather	than	by	using	just	a	
single	“best”	hypothesis.
Formally	P(hi|d)	=	! P(d|hi)	P(hi)

where	d are	the	observed	values
A	prediction	about	an	unknown	quantity	X	is	made	using:

P(X|d)	=	Σi P(X|d,hi).	P(hi|d)	=	Σi P(X|hi).	P(hi|d)
Predictions	are	weighted	averages	over	the	predictions	of	the	
individual	hypothesis.

The	hypotheses	themselves	are	“intermediaries”	between	the	
raw	data	and	the	predictions.
The	key	quantities	in	the	Bayesian	approach	are:

– the	hypothesis	prior	P(hi)	
– the	likelihood	of	the	data	under	each	hypothesis	P(d|hi)	

So	which	candy	is	next?

Let	the	prior	distribution	over	the	hypotheses	space	is	given	
�0.1;	0.2;	0.4;	0.2;	0.1�
Under	the	assumption	of	independent	and	identically	
distributed	samples	(big	bags):

P(d|hi)	=	Πj P(dj |hi)
After	10	lime	candies	in	a	row	we	get	P(d|h3)	=	0.510.

Properties	of	Bayesian	learning

The	Bayesian	prediction	eventually	agreeswith	the	
the	hypothesis.

The	posterior	 probability	 of	any	false	hypothesis	will	
eventually	vanish.

The	Bayesian	prediction	is	optimal,	whether	the	
data	set	be	small	or	large.

Any	other	prediction	 is	expected	 to	be	correct	 less	often.

For	real	learning	problems,	the	hypothesis	space	is	
usually	very	large	or	infinite.

We	must	resort	to	approximate	or	simplified	methods.

MAP	learning

A	very	common	approximation	is	to	make	
predictions	based	on	a	single	most	probable	
hypothesis (maximum	a	posteriori	hypothesis).

P(X|d)≈ P(X|hMAP)
In	our	candy	example,	after	three	lime	candies	in	
a	row,	we	get hMAP =	h5.

It	predicts	that	the	fourth	candy	is	lime	with	
probability	1.0	– a	much	more	dangerous	prediction	
than	the	Bayesian	prediction	of	0.8.

Finding	MAP	hypotheses	requires	solving	an	
optimization	problem	instead	of	a	large	
summation	(or	integration)	problem.

Overfitting

We	saw	that	overfittingcan	occur	when	the	hypothesis	
space	is	too	expressive,	so	that	it	contains	many	
hypotheses	that	fit	the	data	set	well.
Bayesian	and	MAP	learning	methods	use	the	prior	to	
penalize	complexity.

– more	complex	hypotheses	 have	a	lower	prior	probability
– the	hypothesis	prior	embodies	a	tradeoff	between	the	
complexity	of	a	hypothesis	and	its	degree	of	fit	to	the	data

If	H	contains	only	deterministic	hypotheses	(P(d|hi)	=	1,	if	
hi is	consistent	and	0	otherwise)	then	hMAP is	the	simplest	
logical	theory	that	is	consistent	with	data.

Therefore,	MAP	learning	provides	a	natural	embodiment	 of	
Ockham’s	razor.

MDL	learning

Choosing	hMAP means	to	maximize	P(d|hi)	P(hi)
This	is	equivalent	to	minimizing	“– log2 P(d|hi)	– log2 P(hi)”

“– log2 P(hi)”	term	equals	the	number	of	bits	required	to	specify	
the	hypothesis	hi

“– log2 P(d|hi)”	is	the	additional	number	of	bits	required	to	specify	
the	data,	given	the	hypothesis	(consider	that	no	bits	are	required	
if	the	hypothesis	predicts	the	data	exactly	– log2 1	=	0)

Hence,	MAP	learning	is	choosing	the	hypothesis	that	provides	
maximum	compression	of	data.
The	same	task	is	addressed	more	directly	by	the	minimum	
description	 length (MDL)	learning	method.

MDL	counts	the	bits	in	a	binary	encoding	of	the	hypotheses	and	
data	and	looks	for	hypothesis	with	the	smallest	number	of	bits.

ML	learning

A	final	simplification	is	provided	by	assuming	a	
uniform	prior	over	the	space	of	hypotheses.
In	that	case,	MAP	learning	reduces	to	choosing	an	hi
that	maximizes	P(d|hi).	This	is	called	maximum-
likelihood	(ML)	hypothesis.
– suppresses	the	subjective	 nature	of	hypothesis	priors
– it	provides	a	good	approximation	 to	Bayesian	and	
MAP	learning	when	the	data	set	is	large	(data	swamps	
the	prior	distribution	 over	hypotheses)

– it	has	a	problem	with	small	data	sets

Parameter	learning

How	to	find	the	numerical	parameters	for	a	
probability	model	whose	structure	is	fixed?

• assume	a	Bayesian	network	with	a	given	
structure

• we	are	interested	in	learning	the	conditional	
probabilities	– parameter	learning

• let	us	assume	that	we	have	complete	data
– each	data	point	contains	values	for	every	variable	
in	the	probability	model	being	learned

Maximum-likelihood	parameter	learning

Suppose	we	buy	a	bag	of	lime	and	cherry	candy	from	a	new
manufacturer	whose	lime-cherry	 proportions	are	completely	unknown.
• The	parameter	% in	this	case	is	the	proportion	of	cherry	candies.

– hypothesis	is	h%
– the	Bayesian	network	consists	of	a	single	node

• After	unwrapping	N	candies,	of	which	c	are	cherries
and	l	(=	N-c)	are	limes,	the	likelihood	of	this	data	is:
P(d|h%)	=	Πj P(dj |h%)	=	%c (1- %)l

• Application	of	ML	learning	is	appropriate	there	as	prior	probabilities	of	
all	hypotheses	are	identical.
– maximizing	P(d|h %)	is	the	same	as	maximizing

L(d|h%)	=	log	P(d|h%)	=	Σj log	P(dj |h%)	=	c	log	% +	l	log(1- %)	
– We	differentiate	 L	with	respect	 to % and	set	the	resulting	expression	 to	

zero:
& L(d|h%)	/	& % =	c/ % - l/(1- %)	=	0 ⇒ % =	c	/	(c+l)	=	c	/	N

– hML asserts	 that	the	actual	proportion	of	cherries	 in	the	bag	is	equal	to	
the	observed	proportion	in	the	candies	unwrapped	so	far!

Maximum-likelihood	parameter	learning

The	standard	method	for	maximum-likelihood	
parameter	learning:
– write	down	an	expression	for	the	likelihood	 of	the	
data	as	a	function	of	the	parameter(s)

– write	down	the	derivative	of	the	log	likelihood	with	
respect	 to	each	parameter

– find	the	parameter	 values	such	that	the	derivatives	
are	zero
• this	is	the	trickiest	step	and	in	many	cases	we	need	to	resort	
to	iterative	solution	algorithms	or	other	numerical	
optimization	techniques

ML	parameter	learning	problem	for	a	Bayesian	
network	decomposes	into	separate	learning	
problems,	one	for	each	parameter.

Extended	example

Suppose	the	candy	manufacturer	wants	to	give	a	little	 hint	to	the	consumer	and	uses	
candy	wrappers	colored	red	and	green	(the	wrapper	for	each	candy
is	selected	 probabilistically).

– the	Bayesian	network	now	has	three	parameters	%,	%1,	%2
% - cherry	candy
%1 – cherry	candy	has	a	red	wrapper
%2 – lime	candy	has	a	red	wrapper

P(Flavor=cherry,	Wrapper=green	|	hq,q1,q2)
=	P(Flavor=cherry	|	h%,%1,%2)	P(Wrapper=green	|	Flavor=cherry,	h%,%1,%2)
=	% (1- %1)	

We	unwrap	N	candies
(c	cherries,	l	limes,
rc cherries	with	red	wrappers,	gc cherries	with	green	wrappers,
rl lime	with	red	wrappers,	gl lime	with	green	wrappers)

P(d |	h%,%1,%2)	=	%c(1- %)l %1
rc (1- %1)gc %2

rl (1- %2)gl

L	=	c.log % +	l.log(1- %)	+	rc.log %1 +	gc.log(1-%1)	+	rl.log %2 +	gl.log(1-%2)

& L	/	& % =	c	/	% - l	/	(1- %) ⇒ % =	c	/	(c+l)
& L	/	& %1 =	rc /	%1 - gc /	(1- %1) ⇒	 %1 =	rc /	(rc + gc)
& L	/	& %2 =	rl /	%2 - gl /	(1-%2) ⇒	 %2 =	rl /	(rl + gl)

Naive	Bayes	models

Probably	the	most	common	Bayesian	network	model	used	in	machine	
learning	is	the	naïve	Bayes	model.

– the	“class”	variable	C	(which	is	to	be	predicted)	is	the	root
– the	“attribute”	variables	Xi are	the	 leaves	(the	model

assumes	that	the	attributes	are	conditionally
independent	 of	each	other,	given	the	class)

Assuming	Boolean	variables,	the	parameters are:
% =	P(C=true)
%i1 =	P(Xi=true	|	C=true)
%i2 =	P(Xi=true	|	C=false)

Once	the	model	has	been	trained,	it	can	be	used	to	classify	new	examples	for	
which	the	class	variable	C	is	unobserved	 (we	observe	attribute	values	x1,…,xN)

P(C	|	x1,…,xN)	=	! P(C)	Πi P(xi |	C)

Properties:
– scales	well	to	very	large	problems	(with	n	Boolean	attributes,	there	are	just	

2n+1	parameters	to	be	learnt)
– no	difficulty	with	noisy	or	missing	data
– gives	probabilistic	predictions

C

X1 Xn…

Hidden	variables

Many	real-world	problems	have	hidden	
variables,	which	are	not	observable	in	the	
data	that	are	available	for	learning.

For	example,	medical	records	often	include	
the	observed	symptoms,	the	diagnosis,	and	
the	treatment	applied,	but	they	seldom	
contain	a	direct	observation	of	the	disease	
itself!

If	a	variable	is	not	observed,	why	not	
constructing	a	model	without	it?

– The	hidden	variables	can	dramatically	
reduce	the	number	of	parameters	
required	to	specify	a	Bayesian	network.

– Assume	three	possible	 values	for	each	
variable.	Then	the	model	without	the	
hidden	variable	requires	708	parameters,	
while	the	model	with	the	hidden	variable	
requires	only	78	parameters.

EM	algorithm

How	to	learn	conditional	distribution	for	the	
hidden	variable	if	the	value	of	that	variable	is	
not	given	in	examples?

• pretend	that	we	know	the	parameters	of	the	
model

• infer	the	expected	values	of	hidden	variables	to	
”complete”	the	data	(E-step,	expectation)

• update	the	parameters to	maximize	likelihood	
of	the	model	(M-step,	maximization)

• iterate	until	convergence

Model	example

Consider	that	some	candies	have	a	hole	in	the	
middle	and	some	do	not	and	that	there	are	two	bags	
of	candies	that	have	been	mixed	together.

The	distribution	 of	candies	in	each	bag
is	described	 by	naïve	Bayes	model,
where	 the	Bag	is	a	hidden	variable
– parameters

• % candy	comes	from	Bag	1
• %F1,	%F2 the	flavor	is	cherry	given	the	bag	1	or	2
• %W1,	%W2 the	wrapper	is	red	given	the	bag	1	or	2
• %H1,	%H2 the	candy	has	a	hole	given	the	bag	1	or	2

– we	generated	 1000	samples	from
a	model	with	the	following
distribution:

Application	or	the	EM	algorithm

We	start	by	initializing	the	parameters
%(0) =	%(0)

F1 =	%(0)
W1 =	%(0)

H1 =	0.6
%(0)

F2 =	%(0)
W2 =	%(0)

H2 =	0.4
Because	the	bag	is	a	hidden	variable,	we	calculate	the	
expected	counts	instead	(using	any	inference	algorithm	
for	Bayesian	networks):

N(Bag=1)	=	Σj P(Bag=1	|	flavorj,	wrapperj,	holesj)
We	update	the	parameters	(N	is	the	number	of	examples)

%(0) =	N(Bag=1)	/	N
– a general	principle	of	parameter	update

• let	%(0)
i,j,k be	the	parameter	P(Xi	=	xij |	Ui =	uik)	for	Xi with	parents		Ui

• %ijk ← N(Xi =	xij,	Ui =	uik)	/	N(Ui =	uik)

%(1) =	0.6124,	%(1)
F1 =	0.6684,	%(1)

W1 =	0.6483,	%(1)
H1 =	0.6558

%(1)
F2 =	0.3887,	%(1)

W2 =	0.3817,	%(1)
H2 =	0.6558

EM	algorithm	in	general

The	EM	algorithm	works	in	two	steps
– calculate	expected	values	of	hidden	variables	for	
each	example	(expectation)

– then	recompute the	parameters	(maximization)
At	a	glance
– x are	all	the	observed	values	in	all	the	examples
– Z are	all	the	hidden	variables	
– % are	all	the	parameters	for	the	probability	model
%(i+1)← argmax%(i) Σz P(Z=z |	x,	%(i))	L(x,	Z=z |	%(i))

M-step (maximization) E-step (expectation)

© 2016 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

