Blue Book for Bulldozers

Hajic, Havranek, Taufer, Tomasek
Problem - description

- https://www.kaggle.com/c/bluebook-for-bulldozers
- The goal of the contest is to predict the sale price of heavy equipment at auction
Source data

- all data are stored in simple csv
- but there is huge amount of noise in these data
 - some bulldozers are made in year 1000
 - different YearMades attached to the same MachineID
 - strange MachineHoursCurrentMeter values
 - example:
 - SalesID 2318649
 - Value 2 483 300
 - Year made 2005
 - \((2013-2005) \times 24 \times 365 = 70 080 :\)
Evaluation

- Root Mean Squared Logarithmic Error ("RMSLE")

\[\epsilon = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2} \]

- \(p_i \) - your predicted value
- \(a_i \) - real value
- \(n \) - count
Source data - relevancy

- show excel description
- is fork type or transmission relevant for final price?
- how can we find out?
- can we find it out manually or using some magic machine learning?
Possible solutions

- **Question-form**
 - FHS style
 - ask people in Prague
- **Genetic programming**
- **Neural networks**
Statistics - observations

- 3/4 only once
- one piece sold 26 times
- data aren't complete

...
Statistics - solution

● Regression
 ○ According to observation linear is not enough
 ○ Polynomial is needed
 ■ grade about 3-4 will be enough
Statistic - what's completed

- Parsing script
- Analyzing scripts
- Observation picture diagrams generator
 - Currently running in lab
Solution?

- We don't know how to solve this problem
 - Let's cultivate the solution -> genetic programming
 - The buyer will be product of evolution
 - Inspiration / literature:
 - Tomáš Křen: Genetic functional programming presentation
 - Genetic programming research group http://www.genetic-programming.com
Genetic programming

- **Population**
 - Member = *Price calculation function*
 - Tree of functions :: [Price] -> Price
 - Arithmetical / logical / load / SQL history aggregation
 - Fit function = difference from actual price in DB
 - same as the official
 - Reproduction
 - Switch subtrees on random layer
 - ... picture diagram
 - Mutation
 - change function in specific node
Genetic solution - data

- Input data (training data)
 - Structured in SQL database
 - Special nullary function nodes access the data
 - Bulldozers table
 - Stores known bulldozers specification and price

- Input object
 - Bulldozer for auction
 - Structure = database table row without price specified
 - [Int] numeric values
 - [Enum] enum values
Genetic solution - node functions

- **Constant**
 - :: Price

- **Arithmetical**
 - Classical operations
 - :: [Price] -> Price
 - Price is numeric type - double/real

- **Logical**
 - if-then-else
 - <, <= ...
 - :: [Price] -> Price
Genetic solution - node functions

- **Load**
 - :: Price
 - Loads specific cell from input object
 - number value
 - mask as price and returns for next operation (usually arith.)
 - enum value
 - mask as price for only logical functions

- **SQL Aggregation**
 - :: Price
 - Selects from history database values
 - using aggregation function (count, max, sum...)
 - using where based on input object
Genetic solution - convergence

- Solution is very generic
 - Needs optimizations, heuristics, constraints...
Genetic solution - subproblems

● Not all data columns are dependent
● Split price calculation by column groups
 ○ k separated evolution runs with smaller members
 ■ using only few columns for loading and sql agg. functions
 ○ One small function for aggregation

● Columns
 ○ globals
 ○ specials
 ○ ... picture diagram
Genetic solution - confidence

- During the process is calculated confidence of returned price
 - effects final aggregation
 - effects selection in evolution process
- Example
 - confidence is low when database history doesn't contain data similar to input object
Genetic solution - constraints

- **Constants**
 - Take from final universum
 - example: equally taken subset of $[0,1]$

- **Type constraints**
 - Input object
 - arithmetical operations for number values
 - for enum values only logical
 - special switch

- **Generic**
 - Max deep
Genetic solution - heuristic

- Startup population member
 - Not only random generated
 - Based on human rational guess
 - From SQL agg. uses only avg, median...
 - Based on other team member's results
- Small column groups
Genetic solution - what's done

- Team foundation server
- Generic node abstraction
- Arithmetical nodes
- Data parsing in SQL
Jakub's presentation

http://www.youtube.com/watch?v=SJI5v9QoPus