Artificial Intelligence at the Jet Propulsion Laboratory

Jakub Hajic
3. 12. 2013
AI Seminar I., MFF UK
Talk outline

• Included:
 • Overview of JPL
 • Current planning systems
 • ASPEN (batch)
 • CASPER (continuous)
 • Currently complex autonomy systems
 • ASE (Earth)
 • OASIS (+ AEGIS) (Mars)
 • MISUS (Multi-agent Mars)

• Not included
 • In-depth planning and scheduling (see NAIL071)
 • MSL (Curiosity)
 • mathematical formulae
A brief overview of JPL

- formally established 1943 as a US Army facility
- together with W. von Braun launched US’ first satellite in ’58
- December ’58 transferred under NASA
- notable missions
 - practically all successful missions to Mars
 - first mission to Venus
 - Near-Earth object program

- ca. 0.75 km²
- ca. 5000 Caltech employees, 1000s of other contractors
ASPEN

- Automated Planning/Scheduling Environment

Architecture:

- Activity database
 - activities have durations, use resources, require particular states
 - activities may be organized into a hierarchy
 - the DB also manages global constraints

- Temporal constraint network
 - temporal constraints between activities – e.g. A must be after B

- Resource timelines
 - resources may be depletable (fuel) or non-depletable (power)
 - all resources are discretized

- State timelines
CASPER

- continuous planner
- based on ASPEN
- iterative repair
- basic workflow:
 - A plan exists
 - When a status update arrives, search plan for conflicts
 - resolve one by one until no conflicts remain
- resolution
 - moving, adding, detailing/abstracting activities, modifying temporal constraints, …
ASE

- Autonomous Scienceecraft Experiment
- onboard Earth Observing 1 (EO-1)
- used for:
 - live replanning
 - selection of data for downlink
 - „interesting“:
 - event detection
 - feature detection
 - change detection
 - unusualness detection
EO-1

- Earth Observer 1
- circular 705 km sun-synchronous orbit
- Launched November 21, 2000
- orbit takes approx. 100 minutes
- ~49000 images taken so far
- processors
 - 2x 12MHz, 256MB RAM
EO-1 Onboard instruments

- Hyperion spectral instrument
 - 30m spatial resolution
 - 7.7 x 42 km on all channels (220 – 12 in use at once, 6 const (cloud cover), 6 varied)

- Advanced land imager
 - sophisticated linear camera

- Atmospheric corrector
 - takes measurements of atmospheric effects
 - thus improves quality of images
ASE: Layered architecture

- CASPER
 - top level – continuous planner
 - timescale: tens of minutes (several orbits)
 - responds to observations, science goals,…

- “lite STL”
ASE: Layers cont.

- SCL
 - middle layer
 - timescale: several seconds
 - expansions of CASPER activities
 - considers spacecraft constraints, flight rules
 - runs scripts of low-level commands
 - monitors spacecraft state and resources, passes back to CASPER

- FSS
 - runs low level commands
 - full fault protection (such as „do not point camera at sun“)
ASE: Onboard science

- **Examples**
 - volcanoes
 - infrared
 - amount of thermally active pix
 - ice caps
 - change over time
 - clouds
 - 6 bands
 - results used to discard images with high cloud cover, perhaps reimage the area
 - floods
 - different spectral bands to differentiate water from land
 - change over time
ASE in Sensorwebs

- **Sensorweb:**
 - “system of systems”
 - a network of satellites and ground sensors

- **Components:**
 - ground sensors, satellites
 - science agents:
 - convert sensor output to “science events”
 - output readable XML
 - science event manager:
 - converts “science events” to observation requests (for EO-1)
 - uses expert input
ASE: some active Sensorwebs

- **Wildfires**
 - data from other satellites to detect active fires
 - EO-1 acquires more data (higher resolution)

- **Floods**
 - again, different satellites provide alerts
 - EO-1 acquires more data

- **Volcanoes**
 - Ground sensors and satellites detect volcanic activity
 - EO-1 acquires more data (a lot of infrared)

- **Cryosphere**
 - snow melts and triggers....
 - more data from EO-1
ASE: operations flow comparison

- **Past**
 - weekly
 - manually select 1-2 targets per orbit
 - manually schedule downlinks
 - daily
 - assemble maneuvers for imaging
 - further conflict resolution
 - command seq. uplink
 - reaction to fleeting event in days (or next weekly meeting)

- **Present**
 - weekly
 - only prioritization of targets is required
 - downlinks scheduled automatically
 - daily
 - only high level goals uplinked
 - reaction to fleeting event as fast as a single orbit
ASE: Challenges

- Challenges
 - operation without communication
 - 8 ground contacts / day, 10-15 mins each, 2Mbit/s DL, 2Kbit/s upload
 - unique equipment
 - limited telemetry
 - limited computing power
 - $$$ (but overall, ASE saves about 1M$ annually)
OASIS

- Onboard Autonomous Science Investigation System
- currently on MERs – Spirit and Opportunity
- Basic structure
 - Feature detection
 - Data analysis and prioritization
 - Planning and scheduling
MER: instrumentation

- Imaging
 - Hazcams (120° FOV)
 - Navcams (45° FOV)
 - Pancam (16° FOV)
 - Microscopic imager (tiny FOV)
- Spectrometers (all for rock compositions)
 - Thermal emissions (Mini-TES)
 - Mössbauer (gama rays)
 - Alpha particle X-ray
- Rock abrasion tool
- Magnet array
OASIS: feature detection

- Segmentation
 - rock detection
 - preprocessing
 - edge detection
 - contours
 - sky detection
 - find seeds (is sky present?) — low variance areas
 - identify low variance edge
 - grow seeds
 - determine skyline, horizon
OASIS: feature detection

- Feature extraction
 - Cloud detection
 - locate sky
 - search for high variance regions in the sky
 - Dust devil detection
 - noise reduction
 - compare test image vs. average -> dust devils
 - Rock properties
 - albedo, texture, shape, size
 - Boundary detection
 - geomorphological units
OASIS: Data analysis

• Four approaches:
 • Event detection
 • for cloud and dust devil detection
 • images where nothing is detected need not be downlinked
 • Key target signature
 • for rock detection
 • scientists specify desired properties of high-interest rocks
 • each detected rock is evaluated according to desired properties
OASIS: Data analysis cont’d

• Novelty detection
 • difference from the norm for the region
 • distance-based (distance to nearest rock feature vector cluster)
 • probability based (probability of rock being generated by distr. of other rocks)
 • discriminative (all other rocks form a point cloud in the feature space, its boundary is calculated, new sample in/out)

• Representative sampling
 • (almost) opposite of Novelty detection
 • choose rocks representative of region
 • cluster rocks, choose rock closest to mean
OASIS: planning and execution

- Detected targets of interest are transformed into goals
- goals are passed on to planning software
- plan is updated
- challenges:
 - prediction of power consumption & task duration
 - downlinks
 - movements (unknown terrain)
 - position estimation
OASIS: Planning and execution

- CASPER & TDL
- TDL performs similar functions as SCL

- Planning is capable of handling “science alerts”
 - stop
 - drive somewhere else
 - aim instruments at something
 - acquire more data
 - repeat?
 - talk to Earth?
OASIS: onboard science capabilities

- opportunities during traverse
 - considerable speed-up
- science campaigns
 - such as dust devils, clouds,…
- automated target selection
 - idle instruments ate end-of-day automatically assigned targets
- prioritization when idle (before downlink)
Comparisons

- ASE
 - plans continuously
 - analyzes acquired data
 - decisions:
 - take picture again?
 - downlink?
 - priorities set from ground

- OASIS
 - plans continuously
 - analyzes acquired data
 - decisions
 - take more pictures? which instruments?
 - drive somewhere else?
 - downlink?
 - priorities determined onboard as well as on ground
AEGIS

- onboard system for increased autonomy
- carries out a subset of OASIS tasks
- planned as an independent unit
AEGIS: workflow

- Capture large FOV image with Navcam
- detect areas of interest
 - rocks – found using edges, contours
- extract relevant features
 - size, shape, reflectance
- prioritize targets
 - according to previously set goals
- point other instruments
- acquire new data
 - using Pancam/MI
MISUS

- Multi-rover Integrated Science Understanding System
- Autonomous multi-agent system (proposed & tested)
- Similar to ASE and OASIS, except for the multi-agent part:
 - Data analysis & prioritization
 - (Re)planning according to data
- Main goal
 - find relationships between geological data over large areas
 - => unsupervised learning, clustering
MISUS: distributed planning

- Based on CASPER

- Centralized part
 - limited knowledge of rover resources
 - limited communication (obstructions, distance)
 - global objective: minimize traverse distance

- Distributed part
 - as described before – continuous, iterative repair
 - communication with central planner:
 - receive goals
 - update as goals executed
MISUS: interdependent goals

- modified objective function:
 - each goal has an assigned reward
 - each combination of goals may have an assigned reward
 - plan quality is evaluated as a sum of
 - rewards for completed goals
 - rewards for completed combinations of goals
Summary

- Two essential onboard capabilities:
 - Data analysis (mostly image processing)
 - Replanning

- At JPL:
 - various image processing techniques for analysis
 - CASPER engine for planning

- Live systems:
 - ASE for EO-1 over Earth
 - OASIS + AEGIS for Mars Exploration Rovers

- Testing
 - MISUS for more than 1 rover
That’s all, folks!

Q&A