Car Insurance

Havránek, Pokorný, Tomášek

Outline

- Data overview
- Horizontal approach + Decision tree/forests
- Vertical (column) approach + Neural networks
- SVM

Data overview

- Customers
 - Viewed policies
 - Bought policy

Štěpán Havránek

- Horizontal approach
 - Model: decision trees
 - Input: customer info
 - Output: bought policy
- Last time results:
 - 50 80% mean validation error per one output attribute
 - By C4.5 alg

• Overfitted trees pruning

- Simplified the models
- Mean validation error decreased
 - 30 65% per one output attribute
- Wider input data
 - Customer info + one viewed policy
 - Better results:
 - 10 45% MVE

- Observation: Output attributes aren't independent
 - New trees deciding subsets of the output attributes
 - All the possible subsets
 - => Out of memory exception
 - Only manually picked subsets
 - Singletons, pairs, 6 of 7, all
 - Mean validation error much more better than independent products
 - 15 80%
 - Only observed values
 - Running time > 12h

- With the subsets we have more than one tree for each output attribute
 - Save them to the forests
 - Voting model
 - By validation score
 - More progressive
 - Less progressive
 - Results with less wide input data (running time)
 - More progressive
 - Total overfit on the best tree => useless results
 - Less progressive
 - Variant results
 - Not good in official rating (~ 0.2)
 - Good for others

Column approach

Bc. Jan Tomášek

Column approach + N-net

- Separated Neural network for each Class
- Neural network inputs
 - last three entries in class
 - as characteristic vector
 - car age
 - original range 0-80
 - cropped to 0-30
 - car value
 - 'a' 'i'
 - scaled to (0-1)
- Levenberg-Marquardt backpropagation

Neural network - basics

- Oriented graph
 - weights
 - bias
- (+) strong in finding linear dependence
- (-) black box

Neural network 1

- Neural network structure
 - one hidden layer with 15 neurons
- result
 - ~ 0.529

Neural Network 2

- added more features
 - risk factor
 - cost
- result
 - ∼0.535

Neural network 3

- Deep network
- More networks
 - 20 networks
 - up to 3 layers
 - more different networks
 - bizarre topologies
- result
 - ∼0.528
 - probably overfit

Neural network 4

- Manual selection of good networks
- result
 - ∼0.537
- total 8 networks

Neural network results

- Best solution(0.53745) about the same as last quoted benchmark(0.53793)
 - nn probably learns to use last :)
- best solution of our group
- possible improvement
 - Adaptive Boosting
 - lear something else where last is failing
 - combine with last quoted (how?), combine with
- neural network problem
 - very fast convergence to local optimum
 - 10 iterations
 - almost no improvement after

Michal Pokorný

- Support vector machine classifiers
 - SVM's find the optimal separating hyperplane in a high-dimensional example space
 - Kernel function can be interpreted as "searching for similar browsing histories"
 - Basic SVM's just give a binary result, so N of them are trained for more-than-binary attributes
 - Can be tweaked to give probabilities, not just predictions
 - (Some simple approaches don't guarantee that.)
- Simplification: suggest the most likely plan the user actually looked at
- So, let's score every browsed plan
 - "Naive Bayes assumption": take one SVC for every attribute and multiply together their probability results

Tested feature ideas:

- "Static features": day of the week, group size, homeowner, car age+value, risk factor, oldest/youngest age, married couple?, cost
- Histogram of browsed attribute values
 - "We saw A=0 5 times, A=1 2 times, …"
- Most commonly browsed plan
- Last browsed plan, first browsed plan
- Unfortunately, no combinations improved upon the trivial solution :(
 - (The best reached accuracy equals that of the benchmark model.)
- Overfitting?
 - Not too likely, since changing regularization parameters of the SVC's didn't help

But...

This leaderboard is calculated on approximately 30% of the test data. The final results will be based on the other 70%, so the final standings may be different.

See someone using multiple accounts? Let us know.

#	Δ1w	Team Name *in the money	Score 😮	Entries	Last Submission UTC (Best - Last Submission)
1	†2	Magic Learner 🏨 *	0.54571	392	Sun, 18 May 2014 23:49:54 (-30.6h)
2	11	Owen *	0.54571	71	Mon, 19 May 2014 00:55:50 (-0h)
3	11	Finite State Insurance Machines <section-header> *</section-header>	0.54565	219	Sun, 18 May 2014 23:37:23 (-3d)
4	-	Alessandro & BreakfastPirate 🎩	0.54535	259	Mon, 19 May 2014 00:53:42
5	↑14	dynamic24	0.54481	226	Sun, 18 May 2014 22:19:45

..., while the trivial solution gives 0.53739.

- Since neither us, nor actual machine learning professionals found any significantly better solutions, the data probably just isn't there.
 - Maybe more features could help.
 - Website analytics could give us visit lengths, tracking of user activity, etc. - those are some ideas of useful predictors of plans or plan features the user might be interested in.
- Finally, please accept an apology for my physical absence this is the result of a planning/scheduling problem concerning my student duties.

