Car Insurance

Prvák, Tomi, Havri

Sumo report - expectations

Sumo report - reality

Bc. Jan Tomášek

Deeper look into data set Column approach

Reminder

What the hell is this competition about ???

Attributes overview

customer_ID, **record_type**, dateTime, location, group_size, homeowner, car_age, **car_value**, **risk_factor**, **age_oldest**, age_youngest, married_couple, **C_previous**, duration_previous, **A,B,C,D,E,F,G**, cost

Data problems

lot of nan values in

 risk factor
 c_previous
 nan values replaced with 0

 some attributes have to big granularity

 date time
 probably no need to use at all

Column correlation 1

Column correlation corr([location risk_factor cost A B C])

Correlation result

- almost no linear dependency
- no chance to categorize with linear regression
- we need to add at least quadratic/cubic coefficients or use svm machines with clever kernel function

Column approach Motivation

- last quotes benchmark 53%
- 72% buys previously visited product
- Can we bring our result nearer to 72%?
- average gives 45%
 - need something more clever
 - older are more important than previous views
 - weighted average instead

Future work

- better data filter and normalization
- clever column approach
- keep compatibility with our interface for result combinations
- don't ever try to win sumo competition again

.Net & Horizontal data view

Štěpán Havránek

Machine learning & .Net

• Accord framework

- o <u>http://accord-framework.net</u>
- Complex Computer science library
 - Math
 - Statistics
 - Machine learning
 - Neural networks
- Uniform interface
- Various data manipulation utilities

Machine learning & .Net

• AForge framework

- <u>http://www.aforgenet.com/</u>
- Primary for computer vision
- Libraries for Computer Science
 - Especially Artificial intelligence

.Net implementation

Data in MS SQL Server

 Easy to fetch, aggregate, view, etc...

 Object model and object factory

 Easy to transform
 Made in Object Factory

.Net implementation

What the customer info can say about the result purchased product parameters?
Seven output parameters
mostly 4 options per each
Let's try to make a model only on customer parameters and verificate it

- Decision trees
 - Input attributes
 - Customer and his car info
 - Ages
 - Car value
 - Group size
 - Is homeowner
 - Is married
 - Risk factor
 - Previous purchase info

• Decision trees Used learning algorithms ID3 ■ C4.5 Model verification 10 times cross validation => 10 different models (trees) • Process Split the data Create (learn) model Validate outputs

• Results

- 50 79% mean validation error
 - Actual competition leader has score 54%
- At least two output parameters (A, E) are very dependent on customer
- C, D are less dependent
- B, F, G can't be resolved from the customer info

Future work

• Environment for experiments is ready... • Spread out the horizontal data object • Add product browsing history Divide the output parameters between different models and input parameter sets **Pruning overfits** Use as much as possible from the Accord Framework Unify interfaces, lots of data and ML utilities

Michal Pokorný

SVC model

scikit-learn

- Python (3)
- NumPy, SciPy, matplotlib
 BSD licence

Classification, regression, clusterization, dimensionality reduction, cross-validation,

Current plan

- Most customers choose some browsed plan
- Make some predictors of plan choice probabilities
- From browsed plans, pick the one with highest probability prediction

Plan probability predictor

- RBF support vector machine classifier
 (Plus feature scaling)
- Possible features:
 - Vector of "customer constants" (no location & time for now)
 - Most commonly browsed plan, last browsed plan, ...
 - Histogram of browsing for every plan feature

Closer look on features

• One-hot

- Day, previous C, home owner?, married couple?
- A: 3, B: 2, C: 4, D: 4, E: 2, F: 4, G: 4

• Scalar

 Group size, car age, car value, risk factor, age of oldest & youngest, cost of offer

Results so far

- Relatively slow training on all 77607 customers :(
- Current best result: 53.793% (same as trivial benchmark [doesn't give the same outputs, through])
 - But this was on scalar representations of categories, so there might be some progress after training on better representation finishes :)

Scalar vs. one-hot (small dataset)

135				precision	recall	f1-score	support
136 137 138 139			0 1 2	0.81 0.67 0.00	0.45 0.97 0.00	0.57 0.80 0.00	56 181 55
140	avg	7	total	0.57	0.69	0.60	292
143				precision	recall	f1-score	support
144 145 146 147			0 1 2	0.81 0.67 0.00	0.45 0.97 0.00	0.57 0.80 0.00	56 181 55
148 149 150	avg	7	total	0.57	0.69	0.60	292
150				precision	recall	f1-score	support
153 154 154			0 1	0.53 0.52	0.38 0.66	0.44 0.58	146 146
155	avg	7	total	0.52	0.52	0.51	292
157 158 150				precision	recall	f1-score	support
160 161			0 1	0.53 0.52	0.38 0.66	0.44 0.58	146 146
163	avg	7	total	0.52	0.52	0.51	292
165				precision	recall	f1-score	support
167 168 169 170			0 1 2 3	0.52 0.00 0.50 0.00	0.43 0.00 0.90 0.00	0.47 0.00 0.64 0.00	79 64 125 24
172	avg	7	total	0.35	0.50	0.40	292

209	precision	recall	f1-score	support
210 211 0 212 1 213 2 214	0.96 0.93 0.98	0.95 0.99 0.78	0.95 0.96 0.87	56 181 55
214 215 avg / total	0.94	0.94	0.94	292
216 217 218	precision	recall	f1-score	support
219 Ø 220 1	0.94 0.93	0.93 0.94	0.93 0.94	146 146
221 222 avg / total	0.93	0.93	0.93	292
223	precision	recall	f1-score	support
225 226 Ø 227 1 228 2 229 3	0.94 0.95 0.92 0.95	0.96 0.86 0.98 0.79	0.95 0.90 0.95 0.86	79 64 125 24
230 231 avg / total	0.94	0.93	0.93	292
232 233 234	precision	recall	f1-score	support
235 Ø 236 1 237 2	0.77 0.97 0.98	0.97 0.88 0.97	0.86 0.92 0.97	31 69 192
239 avg / total	0.95	0.95	0.95	292

What's next?

- "Naive Bayes assumption": category membership classifier scores are multiplied...
 - Higher-order classifiers?
- Do something about missing values
 o scikit Imputer
- Throw in more features if nothing works...
 Ensemble if something works...