Short-term Motion Tracking Using Inexpensive Sensors

Filip Matzner, Roman Barták

Introduction

- **Sensors** became extremely small, lightweight, low-power and cheap.
- In theory, having perfect inertial sensors, it is possible to track the full 3D motion.
- Is it possible in practice with cheap low-end sensors present in a smartphone?

Outline

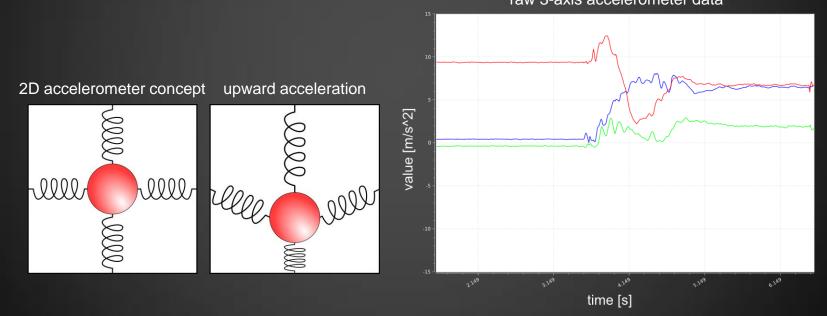
- Sensor Description
 - What sensors do we need and what data they produce.
- Sensor Fusion
 - Fusion of the sensor data into the position.
- Experiment with a Smartphone
 - Does it work? Try yourself!

Sensors

- **MEMS** (micro-electro-mechanical-systems)
- Usual combination present in smartphones is:
 - o accelerometer
 - gyroscope
 - magnetometer

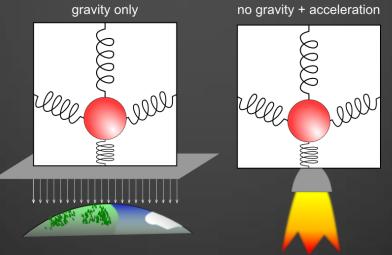
Sensors - accelerometer

 Measures acceleration of the device in three coordinate axes [ms⁻²].



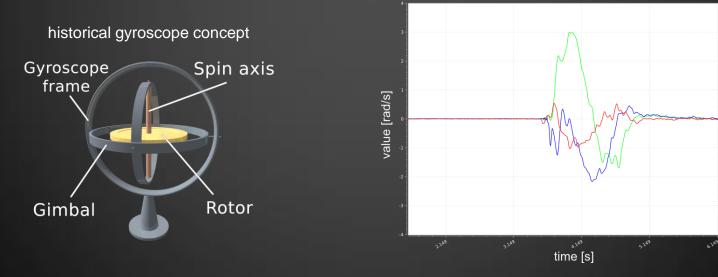
Sensors - accelerometer (gravity)

- Every accelerometer is affected by a permanent gravity force.
- The gravity force cannot be distinguished from upward acceleration.



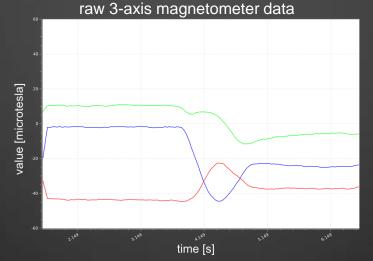
Sensors - gyroscope

- Historical gyroscopes were able to produce absolute orientation in space.
- MEMS gyroscopes only produce angular speed [rad/s] for each coordinate axis.



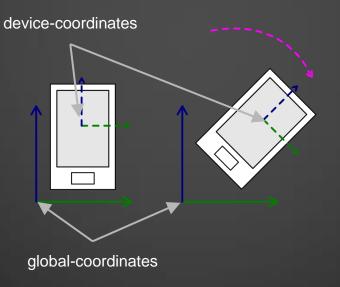
Sensors - magnetometer

- Measures magnetic field vector, i.e., magnetic field strength for each coordinate axis.
- Sensitive to an interference caused by WiFi, electrical wires, etc.



Sensor Fusion - coordinate systems

- We will be working with two coordinate systems.
 - o global-coordinates: the system the device was in at the beginning
 - device-coordinates: the system fixed to the device



Sensor Fusion - problem specification

- We have the following data in device-coordinates:
 - acc(t) = accelerometer vector in time t
 - gyro(t) = gyroscope vector in time t
 - mag(t) = magnetic field vector in time t
- We want to fuse the data to get the position of the device in time t in global-coordinates.
 - **pos(t)** = position vector in time t

Sensor Fusion - theoretical model 1 The device does not rotate during the entire motion.

• First some basic definitions from physics:

linacc :
$$\mathbb{R} \to \mathbb{R}^3$$
 acceleration in time t without gravity
vel : $\mathbb{R} \to \mathbb{R}^3$ velocity in time t
pos : $\mathbb{R} \to \mathbb{R}^3$ position in time t
vel $(t) = \frac{\partial \text{pos}(t)}{\partial t}$
inacc $(t) = \frac{\partial \text{vel}(t)}{\partial t}$

- But we only have the accelerometer data!
 - We will use the definition the other way around:

$$\operatorname{vel}(t) = \int_0^t \operatorname{linacc}(u) du$$
$$\operatorname{pos}(t) = \int_0^t \operatorname{vel}(u) du$$

Sensor Fusion - theoretical model 1 The device does not rotate during the entire motion.

 The accelerometer vector also measures gravity, which has to be subtracted:

 $\operatorname{linacc}(t) = \operatorname{acc}(t) - \operatorname{acc}(0)$

• Now we have the formula for the position of the device as long as it does not rotate.

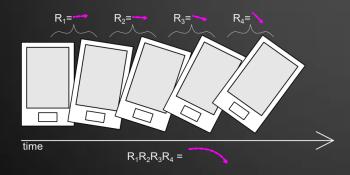
$$pos(t) = \int_0^t \int_0^t acc(u) - acc(0)d^2u$$

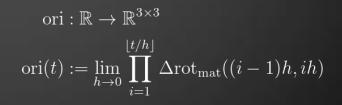
Sensor Fusion - theoretical model 2 The device rotates during the motion.

- If we allow **rotation**, the sensor data from different time can be relative to different coordinate systems.
- To **convert** the data from device-coordinates to globalcoordinates, we need to know the **orientation** of the device.
- The orientation will be represented by a 3x3 rotation matrix.

Sensor Fusion - Orientation

- The orientation will be a rotation matrix representing the rotation of the device-coordinate system relative to the global-coordinate system.
- The matrix will be created by **sampling** the data from the gyroscope into rotation matrices and **multiplying** the matrices together.





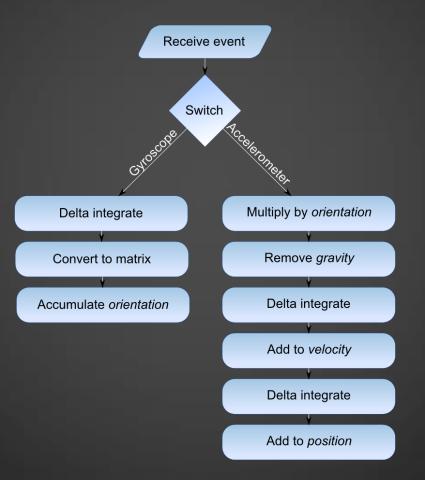
Sensor Fusion - the final formula

 Putting the orientation formula and the simple position formula together gives us the final formula for the position including the rotation of the device.

pos :
$$\mathbb{R} \to \mathbb{R}^3$$

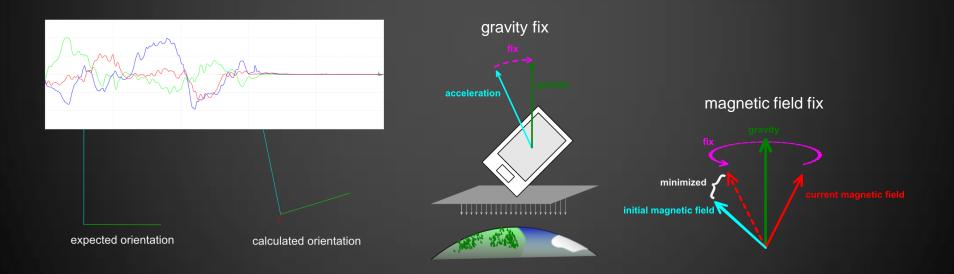
pos $(t) := \int_0^t \int_0^t \operatorname{ori}(u)\operatorname{acc}(u) - \operatorname{acc}(0) \, \mathrm{d}^2 u$

Sensor Fusion - algorithm



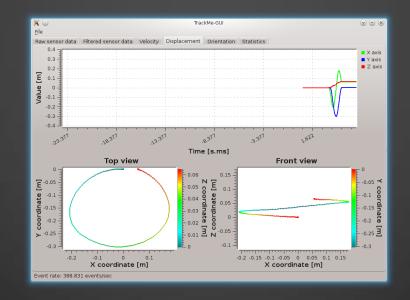
Automated Stabilization

 The gyroscope bias introduces a drift, which can be compensated by gravity and magnetic field.



Experimental Evaluation

• We have developed a software and performed a series of experiments.



Conclusion

- The cheap sensors are not accurate enough to track long motions.
- If the motion can be separated into multiple short intervals, the automated stabilization can prolong reliability.
- A model method, such as **Kalman filter**, might improve the results and reduce noise.