
Report: Enriching data with optical flow

Jǐŕı Hörner

July 15, 2017

I have evaluated two optical flow algorithms for extracting flow information from video.
Gunner Farneback’s algorithm [1] for dense optical flow and Lucas-Kanade sparse flow
algorithm [2]. I have used implementations of these methods from the OpenCV library.
Source files in Python are attached.

I have focused on extracting raw information from the flow suitable for further process-
ing by machine learning methods. My approach therefore does not necessarily generates
a perfect information.

1 Dense optical flow
Farneback’s method produces flow information for every pixel in the source frame of the
video. The flow is computed between two consecutive frames in video.

Because the flow is computed for each pixel this method is computationally expensive.
To get near real-time performance I have resized the input video to 480×234. Performance
of this method might be a significant limitation, especially when processing must be done
onboard of the drone with the limited compute power.

As the method have to generate flow information for every pixel, flow in some areas
of the video frame contains a lot of noise. This is clearly visible along the long edges in
the video, see figure 1. This makes the further processing hard. Flow in the featureless
areas is usually zero.

Because the resulting flow is represented by 480 × 234 × 2 = 224640 values, which
seems really excessive for most of the learning methods, I have aggregated this flow. The
aggregated flow represents flow in 3 × 3 rectangular areas of the frame. For each area a
flow vector with the largest euclidean metric is selected to represent the area. This allows
us to represent the flow in 3 × 3 × 2 = 18 values. This approach is noise-sensitive and
it might be necessary to reconsider this approach based on the output of the learning
method. We might want to employ RANSAC-based method for extracting geometrically
consistent information (but that collides with the philosophy to extract the raw flow).

1.1 Script
Attached to this report is a script for experimenting with Farneback flow. The script is
written in Python and requires OpenCV 3 and numpy libraries. Usage example:

./farneback.py [<video_source>]

./farneback.py camera_auto10/camera10.AVI

1



Figure 1: Top-left: dense flow visualised on black background. Bottom-left: dense flow
visualised on original video frame. Note the noise around the doors. Top-right: HSV
visualisation of the same flow. Bottom-right: Previous frame transformed according to
the flow.

Script will show flow visualisation in the new window. CSV file with summarized flow
is outputted alongside the video. File with the flow has the following format:

timestamp,<18 values comma separated>

Timestamp is position in video in milliseconds. 18 values are summarized flow for 3x3
image areas as discussed above (each area has flow in x and y direction).

2 Sparse optical flow
Lukas-Kanade method tracks only selected keypoints in frames. This method is therefore
much less computationally demanding than the previous dense flow method. In my setup
new keypoints are detected every 5 frames.

For tracking only a suitable keypoints are selected, using a corner quality measure.
This leads to a considerably less noise in the computed flow. Moreover Number of tracked
keypoints provides a good measure of confidence for this method. Confidence may be also
useful output for machine learning, or could be used for sensor fusion using Kalman filter.

For our purposes we have decided after a discussion to reduce the number of features
processed by machine learning. The minimum information available from sparse flow is
a one keypoint. I have chosen to select a random keypoint in each frame and output its
flow. Although this can’t provide a complete motion information, it might help when
estimating some specific moves, especially rotations. See figure 2 for flow computed for
rotation and figure 3 for frame with translation.



Figure 2: Frame recorded by drone with dominant rotation. Keypoints tracked by Lukas-
Kanade method are show in green together with history of tracked positions of each
keypoints.



Figure 3: Frame recorded by drone with dominant translation. Keypoints tracked by
Lukas-Kanade method are show in green together with history of tracked positions of
each keypoints.



2.1 Script
Attached to this report is a script for experimenting with Lucas-Kanade flow. The script
is also in Python and requires OpenCV 3, numpy and external file common.py. Usage
example:

./lucas-kanade.py [<video_source>]

./lucas-kanade.py camera_auto10/camera10.AVI 2>camera_auto10/camera10_flow_lucas-kanade.txt

Script will show flow visualisation in the new window. Flow information will be printed
to stderr (It might be a good idea to redirect stderr to a file). Flow info has the following
format:

timestamp,flow_x,flow_y

Timestamp is position in video in milliseconds. Flow is for 1 selected tracked point as
discussed above.



References
[1] Gunnar Farnebäck. Two-Frame Motion Estimation Based on Polynomial Expansion,

pages 363–370. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[2] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an
application to stereo vision. In Proceedings of the 7th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’81, pages 674–679, San Francisco, CA,
USA, 1981. Morgan Kaufmann Publishers Inc.


	Dense optical flow
	Script

	Sparse optical flow
	Script


