Controller learning

Martin Adam, Yigit Kayabasi, František Nesveda

Task

• Use data from several demonstrations to learn autonomous maneuvers

• Progress from simple maneuvers to more complex ones

• User changes the high-level activity, drone reacts

Input

- 1. Flight model
 - F: State x Command -> State

- 2. Desired trajectory/desired state (stationary hover,...)
 - Controlled by user (using a keyboard?)

Output

• Command (or a sequence of commands) to be sent to the drone using the YADrone application

• Maximizing the probability of the drone being in the desired state after executing it

Activities

- 1. Static
 - The status can(?) be described manually, reward would be the least deviation
- 2. Dynamic (following desired trajectory, ...)
 - Multiple trajectory demonstrations \Rightarrow each a bit different in length, timing, etc.
 - Possibility to ad known trajectory properties

Reinforcement Learning

 States, Actions, Dynamics model, H = Horizon, s(0) = the initial state, Reward function

• The policy $\pi = (\mu 0, \mu 1, \dots, \mu H)$ Policy consists of mappings μ : states --> actions, one map for every t.

• Finding the optimal policy is the goal for making the controller.

Inverse Reinforcement Learning (Apprenticeship Learning)

- Assumes that an expert demonstrates the ideal behaviour and tries to mimic that efficiently. Reward function is correlated strongly with the distance* from desired trajectory of the demonstration.
- Requires no given reward function.
- Learns from a time series of both states and actions to
 - First to approximate the dynamics model around the trajectory
 - Second to derive a reward function
- IRL iteratively changes reward weights that results in policies that brings us closer* to the demonstration(desired trajectory).

LQR control problem

In the Linear Quadratic Regularization problem(A special class of MDPs):

State space is the time series $s(t) \in S$ and the actions $u(t) \in set$ of Actions

Dynamics model given by: s(t + 1) = A(t) * s(t) + B(t) * u(t)

The reward for being in state s(t) and taking action u(t) is given by: - $s(t)^T *Q(t) *s(t) - u(t)^T *R(t) * u(t)$

• Q and R are positive semi definite matrices which parameterize the reward function.

This standard formulation assumes s(t) = 0 for all t is the best trajectory, but with the extension $e(t) = s(t) - s^*(t)$ where $s^*(t)$ for t=1,2..H is the desired trajectory.

DDP (Differential Dynamic Programming)

DDP approximates a solution to the MDP by iterating:

- 1. Linearly approximating the dynamics and quadratically approximating the reward function when applying the current policy around the desired trajectory.
- 2. Current Policy \leftarrow Compute optimal policy for the LQR

Other Challenges

- 1. Becoming familiar with the YADrone framework
- 2. Discovering the range of maneuvers that the drone can do
- 3. Not destroying the drone in the process :)

Apprenticeship Learning for Helicopter Control

Autonomous inverted helicopter flight via reinforcement learning

Learning for Control from Multiple Demonstrations