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Online Anomaly Detection

• Attributes from sensors sampled every t milliseconds
• Ԧ𝑖𝑡 = 𝑖𝑡,1, 𝑖𝑡,2, … , 𝑖𝑡,𝑛 … input vector
• 𝑖𝑡,𝑗 ∈ ℝ … value of attribute 𝑎𝑗 at time 𝑡

• Task: Instantly decide if new sample Ԧit is an anomaly.

• Past data stored in matrix 𝐻 … a sliding window
• m rows – the last m sensor readings
• n columns – the attributes (individual sensor readings)
• Every time a new input Ԧ𝑖𝑡is received, the oldest reading is 

forgotten (the first row is removed) and the new one is added as 
the last row of the matrix.

• The data in H is always assumed to be nominal.



Mahalanobis Distance

• Measure distance between point 𝑖𝑡 and distribution H

• Distance in the units of standard deviations.
• “How many standard deviations away 𝑖𝑡 is from the mean of H”

𝐷𝑀 𝑖𝑡 , 𝐻 = (𝑖𝑡 − Ԧ𝜇)Σ−1(𝑖𝑡
𝑇
− Ԧ𝜇𝑇)

𝑖𝑡 … vector of current input

Σ… covariance matrix of H

Ԧ𝜇 ... means of all the dimensions of H



Three Types of Anomalies

1. Point anomalies
• illegal data instances, corresponding to illegal values in 𝑖𝑡
• i.e., a malfunctioning sensor 

2. Contextual anomalies
• that is, data instances that are only illegal with respect to specific context but not 

otherwise
• i.e., sudden change of acceleration – drone hits an obstacle

3. Collective anomalies
• which are related data instances that are legal apart, but illegal when they occur 

together
• i.e., a malfunctioning sensor

• Anomaly of any type can cause the representative point to be apart from 
the nominal points ⇒ outside of the dense area ⇒ large 𝐷𝑀.



Online Training

• Using the Mahalanobis Distance as an anomaly detector is prone to 
errors without guidance
• the success depends on whether the dimensions are correlated or not

• dimensions are not correlated ⇒ more probable a nominal point will differ 
from the observed nominal points in those dimensions, exactly as in 
contextual anomaly ⇒ large Mahalanobis Distance ⇒ false alarms.

• Find and group correlated attributes
• Mahalanobis Distance can be applied per each correlated set of attributes 

afterwards

• Difficult task



Finding Correlated Attributes

• Online_Trainer(H)
• returns n sets of dynamically 

correlated attributes (Alg. 1) …
𝐶𝑆 = 𝐶𝑆1, 𝐶𝑆2, … , 𝐶𝑆𝑛

• … and a threshold per each set
𝑇𝑆 = 𝑡𝑠1, 𝑡𝑠2, … , 𝑡𝑠𝑛

• 𝑡𝑠𝑎 … the highest 𝐷𝑀 of points 
with dimensions relating the 
attributes in 𝐶𝑆𝑎 extracted from H

• Since every point in H is 
considered nominal, then any 
higher 𝐷𝑀 indicates an anomaly.

• CS, TS … sets of correlated 
attributes and their thresholds.

• ρ … Pearson correlation coefficient



Specializing Anomaly Detection for Robots

• Data obtained from sensors that are used in the 
control loop to affect the environment
• Changes in the environment – a function of the actions of 

the agent.
• Therefore, it makes sense to monitor the change in the 

values measured by the sensors (which originates from the 
robot’s actions), rather than the absolute values.

ΔԦ𝑖𝑡 = Ԧ𝑖𝑡 − Ԧ𝑖𝑡−1

• Smoothing filter:

𝑍 𝑥, Ԧ𝑥 =
𝑥 − ҧ𝑥

𝜎𝑥

𝑍𝑟𝑎𝑤 Ԧ𝑖𝑡 = 𝑍 𝑖𝑡,1, 𝐻1
𝑇 , … , 𝑍 𝑖𝑡,𝑛, 𝐻𝑛

𝑇

𝑍Δ Ԧ𝑖𝑡 = 𝑍𝑟𝑎𝑤(ΔԦ𝑖𝑡)

• Aileron data – nearly constant.
• We say that the aileron and roll attributes are 

correlated if they share the same effect of 
change. 



The Anomaly Detector



The Goal

• Maximize detections

• Minimize false alarms

• Method proposed by the 
authors of the paper:
• (SW, Tsw, Z∆)

• online training on the sliding 
window with Z-filter

• Results of the authors:
• Detection rate … 1
• False alarms rate … 0.064



The Project

• (SW, Tsw, Z∆)
• Unsupervised method

• The ct parameter must be chosen 
carefully

• Worked on applications on UAVs

• I will try to implement this
method and test it on our data.
• It will be interesting to see the 

comparison with the classifier used 
as anomaly detector.



Data Format

• Input:
• raw stream of the data from the sensors of the drone

• Output:
• [0, 1] … likelihood of an anomaly

• 0/1 … “an anomaly is detected”
• This detector cannot identify the type of anomaly/what happened to the drone
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