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The Alpha* Timeline



Fan Hui

■ professional 2 dan
■ European Go Champion in 2013, 2014 and 2015
■ European Professional Go Champion in 2016

https://en.wikipedia.org/wiki/Fan_Hui 2
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AlphaGo (AlphaGo Fan) vs. Fan Hui

AlphaGo won 5:0 in a formal match on October 2015.
[AlphaGo] is very strong and stable, it seems
like a wall. ... I know AlphaGo is a computer,
but if no one told me, maybe I would think
the player was a little strange, but a very
strong player, a real person.

Fan Hui
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Lee Sedol “The Strong Stone”

■ professional 9 dan
■ the 2nd in international titles
■ the 5th youngest to become a professional Go player in South

Korean history
■ Lee Sedol would win 97 out of 100 games against Fan Hui.
■ “Roger Federer” of Go
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I heard Google DeepMind’s AI is surprisingly
strong and getting stronger, but I am
confident that I can win, at least this time.

Lee Sedol

...even beating AlphaGo by 4:1 may allow
the Google DeepMind team to claim its de
facto victory and the defeat of him
[Lee Sedol], or even humankind.

interview in JTBC
Newsroom
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AlphaGo (AlphaGo Lee) vs. Lee Sedol

In March 2016 AlphaGo won 4:1 against the legendary Lee Sedol.

AlphaGo won all but the 4th game; all games were won
by resignation.
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AlphaGo Master

In January 2017, DeepMind revealed that AlphaGo had played
a series of unofficial online games against some of the strongest
professional Go players under the pseudonyms “Master” and
”Magister”.

This AlphaGo was an improved version of the AlphaGo that played
Lee Sedol in 2016.

Over one week, AlphaGo played 60 online fast time-control games.

AlphaGo won this series of games 60:0.

https://deepmind.com/research/alphago/match-archive/master/ 6

https://deepmind.com/research/alphago/match-archive/master/


AlphaGo Master

In January 2017, DeepMind revealed that AlphaGo had played
a series of unofficial online games against some of the strongest
professional Go players under the pseudonyms “Master” and
”Magister”.

This AlphaGo was an improved version of the AlphaGo that played
Lee Sedol in 2016.

Over one week, AlphaGo played 60 online fast time-control games.

AlphaGo won this series of games 60:0.

https://deepmind.com/research/alphago/match-archive/master/ 6

https://deepmind.com/research/alphago/match-archive/master/


AlphaGo Master

In January 2017, DeepMind revealed that AlphaGo had played
a series of unofficial online games against some of the strongest
professional Go players under the pseudonyms “Master” and
”Magister”.

This AlphaGo was an improved version of the AlphaGo that played
Lee Sedol in 2016.

Over one week, AlphaGo played 60 online fast time-control games.

AlphaGo won this series of games 60:0.

https://deepmind.com/research/alphago/match-archive/master/ 6

https://deepmind.com/research/alphago/match-archive/master/


AlphaGo Master

In January 2017, DeepMind revealed that AlphaGo had played
a series of unofficial online games against some of the strongest
professional Go players under the pseudonyms “Master” and
”Magister”.

This AlphaGo was an improved version of the AlphaGo that played
Lee Sedol in 2016.

Over one week, AlphaGo played 60 online fast time-control games.

AlphaGo won this series of games 60:0.

https://deepmind.com/research/alphago/match-archive/master/ 6

https://deepmind.com/research/alphago/match-archive/master/


AlphaGo Master

In January 2017, DeepMind revealed that AlphaGo had played
a series of unofficial online games against some of the strongest
professional Go players under the pseudonyms “Master” and
”Magister”.

This AlphaGo was an improved version of the AlphaGo that played
Lee Sedol in 2016.

Over one week, AlphaGo played 60 online fast time-control games.

AlphaGo won this series of games 60:0.

https://deepmind.com/research/alphago/match-archive/master/ 6

https://deepmind.com/research/alphago/match-archive/master/


https://events.google.com/alphago2017/ 6

https://events.google.com/alphago2017/


■ 23 May - 27 May 2017 in Wuzhen, China
■ Team Go vs. AlphaGo 0:1
■ AlphaGo vs. world champion Ke Jie 3:0
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defeated AlphaGo Lee by 100 games to 0
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AI system that mastered
chess, Shogi and Go to
“superhuman levels” within
a handful of hours

AlphaZero

defeated AlphaGo Zero (version with 20 blocks trained for 3 days)
by 60 games to 40
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1 AlphaGo Fan
2 AlphaGo Lee
3 AlphaGo Master
4 AlphaGo Zero
5 AlphaZero
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AlphaGo



Policy and Value Networks

[Silver et al. 2016] 9



Training the (Deep Convolutional) Neural Networks

[Silver et al. 2016] 10



AlphaGo Zero (AG0)



AG0: Differences Compared to AlphaGo {Fan, Lee, Master}

AlphaGo {Fan, Lee, Master} × AlphaGo Zero:

■ supervised learning from human expert positions × from
scratch by self-play reinforcement learning (“tabula rasa”)

■ additional (auxialiary) input features × only the black and
white stones from the board as input features

■ separate policy and value networks × single neural network
■ tree search using also Monte Carlo rollouts × simpler tree

search using only the single neural network to both evaluate
positions and sample moves

■ (AlphaGo Lee) distributed machines + 48 tensor processing
units (TPUs) × single machines + 4 TPUs

■ (AlphaGo Lee) several months of training time × 72 h of
training time (outperforming AlphaGo Lee after 36 h)

[Silver et al. 2017b] 11
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AG0 achieves this via

■ a new reinforcement learning algorithm
■ with lookahead search inside the training loop

[Silver et al. 2017b] 12
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AG0: Self-Play Reinforcement Learning
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AG0: Self-Play Reinforcement Learning – Neural Network

deep neural network fθ with parameters θ:

■ input: raw board representation s
■ output:

■ move probabilities p
■ value v of the board position
■ fθ(s) = (p, v)

■ specifics:

■ (20 or 40) residual blocks (of convolutional layers)
■ batch normalization
■ rectifier non-linearities

[Silver et al. 2017b] 14
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AG0: Comparison of Various Neural Network Architectures

[Silver et al. 2017b] 15



AG0: Self-Play Reinforcement Learning – Steps

0. random weights θ0

1. at each iteration i > 0, self-play games are generated:

i. MCTS samples search probabilities πt based on the neural
network from the previous iteration fθi−1 :

πt = αθi−1(st)

for each time-step t = 1, 2, . . . ,T
ii. move is sampled from πt
iii. data (st, πt, zt) for each t are stored for later training
iv. new neural network fθi is trained in order to minimize the loss

l = (z − v)2 − π⊤ logp+ c||θ||2

Loss l makes (p, v) = fθ(s) more closely match the improved search
probabilities and self-play winner (π, z).

[Silver et al. 2017b] 16
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AG0: Monte Carlo Tree Search (1/2)

Monte Carlo Tree Search (MCTS) in AG0:
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AG0: Monte Carlo Tree Search (2/2)

[Silver et al. 2017b] 18



AG0: Self-Play Reinforcement Learning – Review

[Silver et al. 2017b] 19



AG0: Elo Rating over Training Time (RL vs. SL)
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AG0: Elo Rating over Training Time (AG0 with 40 blocks)

[Silver et al. 2017b] 21



AG0: Tournament between AI Go Programs
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AG0: Discovered Joseki (Corner Sequences)

a five human joseki
b five novel joseki variants eventually preferred by AG0
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AG0: Discovered Playing Styles

at 3 h greedy capture of stones
at 19 h the fundamentals of Go concepts (life-and-death,

influence, territory...)
at 70 h remarkably balanced game (multiple battles,

complicated ko fight, a half-point win for white...)
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AlphaZero



To watch such a strong programme like
Stockfish, against whom most top players
would be happy to win even one game out
of a hundred, being completely taken apart
is certainly definitive.

Viswanathan Anand

It’s like chess from another dimension.

Demis Hassabis
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AlphaZero: Differences Compared to AlphaGo Zero

AlphaGo Zero × AlphaZero:

■ binary outcome (win / loss) × expected outcome (including
draws or potentially other outcomes)

■ board positions transformed before passing to neural networks
(by randomly selected rotation or reflection) × no data
augmentation

■ games generated by the best player from previous iterations
(margin of 55 %) × continual update using the latest
parameters (without the evaluation and selection steps)

■ hyper-parameters tuned by Bayesian optimisation × reused
the same hyper-parameters without game-specific tuning

[Silver et al. 2017a] 25
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AlphaZero: Elo Rating over Training Time

[Silver et al. 2017a] 26



AlphaZero: Elo Rating over Training Time

[Silver et al. 2017a] 26



AlphaZero: Elo Rating over Training Time

[Silver et al. 2017a] 26



AlphaZero: Elo Rating over Training Time

[Silver et al. 2017a] 26



AlphaZero: Tournament between AI Programs

(Values are given from AlphaZero’s point of view.)

[Silver et al. 2017a] 27



AlphaZero: Openings Discovered by the Self-Play (1/2)
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AlphaZero: Openings Discovered by the Self-Play (2/2)
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Conclusion



Difficulties of Go

■ challenging decision-making

■ intractable search space
■ complex optimal solution

It appears infeasible to directly approximate using a policy or value function!
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AlphaZero: Summary

■ Monte Carlo tree search

■ effective move selection and position evaluation

■ through deep convolutional neural networks
■ trained by new self-play reinforcement learning algorithm

■ new search algorithm combining

■ evaluation by a single neural network
■ Monte Carlo tree search

■ more efficient when compared to previous AlphaGo versions

■ single machine
■ 4 TPUs
■ hours rather than months of training time

[Silver et al. 2017a] 31



AlphaZero: Summary

■ Monte Carlo tree search
■ effective move selection and position evaluation

■ through deep convolutional neural networks
■ trained by new self-play reinforcement learning algorithm

■ new search algorithm combining

■ evaluation by a single neural network
■ Monte Carlo tree search

■ more efficient when compared to previous AlphaGo versions

■ single machine
■ 4 TPUs
■ hours rather than months of training time

[Silver et al. 2017a] 31



AlphaZero: Summary

■ Monte Carlo tree search
■ effective move selection and position evaluation

■ through deep convolutional neural networks

■ trained by new self-play reinforcement learning algorithm

■ new search algorithm combining

■ evaluation by a single neural network
■ Monte Carlo tree search

■ more efficient when compared to previous AlphaGo versions

■ single machine
■ 4 TPUs
■ hours rather than months of training time

[Silver et al. 2017a] 31



AlphaZero: Summary

■ Monte Carlo tree search
■ effective move selection and position evaluation

■ through deep convolutional neural networks
■ trained by new self-play reinforcement learning algorithm

■ new search algorithm combining

■ evaluation by a single neural network
■ Monte Carlo tree search

■ more efficient when compared to previous AlphaGo versions

■ single machine
■ 4 TPUs
■ hours rather than months of training time

[Silver et al. 2017a] 31



AlphaZero: Summary

■ Monte Carlo tree search
■ effective move selection and position evaluation

■ through deep convolutional neural networks
■ trained by new self-play reinforcement learning algorithm

■ new search algorithm combining

■ evaluation by a single neural network
■ Monte Carlo tree search

■ more efficient when compared to previous AlphaGo versions

■ single machine
■ 4 TPUs
■ hours rather than months of training time

[Silver et al. 2017a] 31



AlphaZero: Summary

■ Monte Carlo tree search
■ effective move selection and position evaluation

■ through deep convolutional neural networks
■ trained by new self-play reinforcement learning algorithm

■ new search algorithm combining
■ evaluation by a single neural network

■ Monte Carlo tree search

■ more efficient when compared to previous AlphaGo versions

■ single machine
■ 4 TPUs
■ hours rather than months of training time

[Silver et al. 2017a] 31



AlphaZero: Summary

■ Monte Carlo tree search
■ effective move selection and position evaluation

■ through deep convolutional neural networks
■ trained by new self-play reinforcement learning algorithm

■ new search algorithm combining
■ evaluation by a single neural network
■ Monte Carlo tree search

■ more efficient when compared to previous AlphaGo versions

■ single machine
■ 4 TPUs
■ hours rather than months of training time

[Silver et al. 2017a] 31



AlphaZero: Summary

■ Monte Carlo tree search
■ effective move selection and position evaluation

■ through deep convolutional neural networks
■ trained by new self-play reinforcement learning algorithm

■ new search algorithm combining
■ evaluation by a single neural network
■ Monte Carlo tree search

■ more efficient when compared to previous AlphaGo versions

■ single machine
■ 4 TPUs
■ hours rather than months of training time

[Silver et al. 2017a] 31



AlphaZero: Summary

■ Monte Carlo tree search
■ effective move selection and position evaluation

■ through deep convolutional neural networks
■ trained by new self-play reinforcement learning algorithm

■ new search algorithm combining
■ evaluation by a single neural network
■ Monte Carlo tree search

■ more efficient when compared to previous AlphaGo versions
■ single machine

■ 4 TPUs
■ hours rather than months of training time

[Silver et al. 2017a] 31



AlphaZero: Summary

■ Monte Carlo tree search
■ effective move selection and position evaluation

■ through deep convolutional neural networks
■ trained by new self-play reinforcement learning algorithm

■ new search algorithm combining
■ evaluation by a single neural network
■ Monte Carlo tree search

■ more efficient when compared to previous AlphaGo versions
■ single machine
■ 4 TPUs

■ hours rather than months of training time

[Silver et al. 2017a] 31



AlphaZero: Summary

■ Monte Carlo tree search
■ effective move selection and position evaluation

■ through deep convolutional neural networks
■ trained by new self-play reinforcement learning algorithm

■ new search algorithm combining
■ evaluation by a single neural network
■ Monte Carlo tree search

■ more efficient when compared to previous AlphaGo versions
■ single machine
■ 4 TPUs
■ hours rather than months of training time

[Silver et al. 2017a] 31



Novel approach

During the matches (against Stockfish and Elmo), AlphaZero
evaluated thousands of times fewer positions than Deep Blue
against Kasparov.

It compensated this by:

■ selecting those positions more intelligently (the neural
network)

■ evaluating them more precisely (the same neural network)

Deep Blue relied on a handcrafted evaluation function.

AlphaZero was trained tabula rasa from self-play. It used
general-purpose learning.

This approach is not specific to the game of Go. The algorithm
can be used for much wider class of AI problems!
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Novel approach

During the matches (against Stockfish and Elmo), AlphaZero
evaluated thousands of times fewer positions than Deep Blue
against Kasparov.

It compensated this by:

■ selecting those positions more intelligently (the neural
network)

■ evaluating them more precisely (the same neural network)

Deep Blue relied on a handcrafted evaluation function.

AlphaZero was trained tabula rasa from self-play. It used
general-purpose learning.

This approach is not specific to the game of Go. The algorithm
can be used for much wider class of AI problems!

[Silver et al. 2017a] 32



Novel approach

During the matches (against Stockfish and Elmo), AlphaZero
evaluated thousands of times fewer positions than Deep Blue
against Kasparov.

It compensated this by:

■ selecting those positions more intelligently (the neural
network)

■ evaluating them more precisely (the same neural network)

Deep Blue relied on a handcrafted evaluation function.

AlphaZero was trained tabula rasa from self-play. It used
general-purpose learning.

This approach is not specific to the game of Go. The algorithm
can be used for much wider class of AI problems!

[Silver et al. 2017a] 32



Novel approach

During the matches (against Stockfish and Elmo), AlphaZero
evaluated thousands of times fewer positions than Deep Blue
against Kasparov.

It compensated this by:

■ selecting those positions more intelligently (the neural
network)

■ evaluating them more precisely (the same neural network)

Deep Blue relied on a handcrafted evaluation function.

AlphaZero was trained tabula rasa from self-play. It used
general-purpose learning.

This approach is not specific to the game of Go. The algorithm
can be used for much wider class of AI problems!

[Silver et al. 2017a] 32



Novel approach

During the matches (against Stockfish and Elmo), AlphaZero
evaluated thousands of times fewer positions than Deep Blue
against Kasparov.

It compensated this by:

■ selecting those positions more intelligently (the neural
network)

■ evaluating them more precisely (the same neural network)

Deep Blue relied on a handcrafted evaluation function.

AlphaZero was trained tabula rasa from self-play. It used
general-purpose learning.

This approach is not specific to the game of Go. The algorithm
can be used for much wider class of AI problems!

[Silver et al. 2017a] 32



Novel approach

During the matches (against Stockfish and Elmo), AlphaZero
evaluated thousands of times fewer positions than Deep Blue
against Kasparov.

It compensated this by:

■ selecting those positions more intelligently (the neural
network)

■ evaluating them more precisely (the same neural network)

Deep Blue relied on a handcrafted evaluation function.

AlphaZero was trained tabula rasa from self-play. It used
general-purpose learning.

This approach is not specific to the game of Go. The algorithm
can be used for much wider class of AI problems!

[Silver et al. 2017a] 32



Novel approach

During the matches (against Stockfish and Elmo), AlphaZero
evaluated thousands of times fewer positions than Deep Blue
against Kasparov.

It compensated this by:

■ selecting those positions more intelligently (the neural
network)

■ evaluating them more precisely (the same neural network)

Deep Blue relied on a handcrafted evaluation function.

AlphaZero was trained tabula rasa from self-play. It used
general-purpose learning.

This approach is not specific to the game of Go. The algorithm
can be used for much wider class of AI problems!

[Silver et al. 2017a] 32



Novel approach

During the matches (against Stockfish and Elmo), AlphaZero
evaluated thousands of times fewer positions than Deep Blue
against Kasparov.

It compensated this by:

■ selecting those positions more intelligently (the neural
network)

■ evaluating them more precisely (the same neural network)

Deep Blue relied on a handcrafted evaluation function.

AlphaZero was trained tabula rasa from self-play. It used
general-purpose learning.

This approach is not specific to the game of Go. The algorithm
can be used for much wider class of AI problems!

[Silver et al. 2017a] 32



Thank you!

Questions?
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Backup Slides



Input Features of AlphaZero’s Neural Networks

[Silver et al. 2017a]



AlphaZero: Statistics of Training
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AlphaZero: Evaluation Speeds
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Scalability When Compared to Other Programs
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Further Reading I

AlphaGo:

■ Google Research Blog
http://googleresearch.blogspot.cz/2016/01/alphago-mastering-ancient-game-of-go.html

■ an article in Nature
http://www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.19234

■ a reddit article claiming that AlphaGo is even stronger than it appears to be:
“AlphaGo would rather win by less points, but with higher probability.”
https://www.reddit.com/r/baduk/comments/49y17z/the_true_strength_of_alphago/

■ a video of how AlphaGo works (put in layman’s terms) https://youtu.be/qWcfiPi9gUU

Articles by Google DeepMind:

■ Atari player: a DeepRL system which combines Deep Neural Networks with Reinforcement Learning (Mnih
et al. 2015)

■ Neural Turing Machines (Graves, Wayne, and Danihelka 2014)

Artificial Intelligence:

■ Artificial Intelligence course at MIT
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-034-artificial-intelligence-fall-2010/index.htm

http://googleresearch.blogspot.cz/2016/01/alphago-mastering-ancient-game-of-go.html
http://www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.19234
https://www.reddit.com/r/baduk/comments/49y17z/the_true_strength_of_alphago/
https://youtu.be/qWcfiPi9gUU
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/index.htm
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/index.htm


Further Reading II

■ Introduction to Artificial Intelligence at Udacity
https://www.udacity.com/course/intro-to-artificial-intelligence--cs271

■ General Game Playing course https://www.coursera.org/course/ggp

■ Singularity http://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html + Part 2

■ The Singularity Is Near (Kurzweil 2005)

Combinatorial Game Theory (founded by John H. Conway to study endgames in Go):

■ Combinatorial Game Theory course https://www.coursera.org/learn/combinatorial-game-theory

■ On Numbers and Games (Conway 1976)

■ Computer Go as a sum of local games: an application of combinatorial game theory (Müller 1995)

Chess:

■ Deep Blue beats G. Kasparov in 1997 https://youtu.be/NJarxpYyoFI

Machine Learning:

■ Machine Learning course
https://youtu.be/hPKJBXkyTK://www.coursera.org/learn/machine-learning/

■ Reinforcement Learning http://reinforcementlearning.ai-depot.com/

■ Deep Learning (LeCun, Bengio, and Hinton 2015)

https://www.udacity.com/course/intro-to-artificial-intelligence--cs271
https://www.coursera.org/course/ggp
http://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html
https://www.coursera.org/learn/combinatorial-game-theory
https://youtu.be/NJarxpYyoFI
https://youtu.be/hPKJBXkyTK://www.coursera.org/learn/machine-learning/
http://reinforcementlearning.ai-depot.com/


Further Reading III

■ Deep Learning course https://www.udacity.com/course/deep-learning--ud730

■ Two Minute Papers https://www.youtube.com/user/keeroyz

■ Applications of Deep Learning https://youtu.be/hPKJBXkyTKM

Neuroscience:

■ http://www.brainfacts.org/

https://www.udacity.com/course/deep-learning--ud730
https://www.youtube.com/user/keeroyz
https://youtu.be/hPKJBXkyTKM
http://www.brainfacts.org/
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