Generative Adversarial Networks

by aydin ahmadli
ROADMAP

- Supervised vs Unsupervised Learning
- Why study Generative Modeling?
- How do generative models work?
- Generative adversarial network
Supervised vs Unsupervised Learning

Supervised Learning

Data: \((x,y)\)
\(x\) is data, \(y\) is label

Goal: Learn a *function* to map \(x\rightarrow y\)

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Supervised Learning

Data: (x,y)
x is data, y is label

Goal: Learn a function to map x->y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Supervised Learning

Data: \((x, y)\)

\(x\) is data, \(y\) is label

Goal: Learn a \textit{function} to map \(x \rightarrow y\)

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Supervised Learning

Data: \((x,y)\)
x is data, y is label

Goal: Learn a function to map \(x \rightarrow y\)

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Supervised Learning

Data: \((x,y)\)
x is data, y is label

Goal: Learn a function to map \(x\to y\)

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.
Example 1: K-means clustering

Goal: to find groups within the data that are similar by some type of metric.
Example 2: Dimensionality reduction

Goal: to find axes along which our training data has the most variation.

Underlying Structure: axes

In the right example, we start off with data in 3D and we are going to find two axes of variation and reduce our data projected down to 2D.
Example 3: Feature learning

In this case, our *loss* is trying to reconstruct the input data and use it to learn features.

Advantage: We are learning a feature representation without using any *additional external labels*.
Example 4: Density estimation

Goal: to estimate *underlying distribution* of our data.

In the right example, in top case, we have points in 1D. And we fit *Gaussian* into this density. In bottom case, we have data in 2D and we fit the model such that density is higher where there is more points concentrated.
Why study Generative Models?

• Simulate possible futures for planning. (Reinforcement Learning)
• Missing data
 • Semi-supervised learning
• Multi-modal outputs
• Realistic generation tasks
Next Video Frame Prediction

Ground Truth MSE Adversarial
Single Image Super-Resolution

original
bicubic (21.59dB/0.6423)
SRResNet (23.44dB/0.7777)
SRGAN (20.34dB/0.6562)
iGAN

Generative Image Manipulation
Introspective Adversarial Networks
Image to Image Translation

Labels to Street Scene

Input

Output

Aerial to Map

Input

Output

https://www.youtube.com/watch?v=EYjdLppmERE
Its easiest to compare many different models if we describe all of them as performing *Maximum Likelihood*.
Taxonomy of Generative Models

- Maximum Likelihood
 - Explicit density
 - Fully visible belief nets
 - NADE
 - MADE
 - PixelRNN
 - Change of variables models (nonlinear ICA)
 - Implicit density
 - Approximate density
 - Variational autoencoder
 - Boltzmann machine
 - Markov Chain
 - GSN
 - Direct
 - GAN

"Goodfellow 2016"
Generative Adversarial Networks
Advantages of GANs

1. They use a latent code that describes everything that is generated later. They have this property in common with other models like Variational Autoencoders and Boltzmann Machines. It is an advantage they have over fully visible belief networks.

2. They are asymptotically consistent. So, if we are able to find the equilibrium point of the game defining generative adversarial network, we are guaranteed that we have actually recovered the true distribution that generates the data. For example, if we have infinite data, we eventually recover the correct distribution.

3. There are no Markov Chains needed neither to train Generative Adversarial Network nor to draw samples from it which is an important requirement.

4. They are often regarded as producing the best samples compared to other models.
Training GANs: Two-player game

Generator Network

Discriminator Network

Try to fool the discriminator by generating real-looking images

Try to distinguish between real and fake images
Two-player Game
Adversarial Nets Framework

D(x) tries to be near 1

Differentiable function D

x sampled from data

D tries to make D(G(z)) near 0, G tries to make D(G(z)) near 1,

D

x sampled from model

Differentiable function G

Input noise z
Generator Network

\[x = G(z; \theta^{(G)}) \]

1. G must be differentiable
2. No invertibility required
3. Trainable for any size of z
Discriminator Strategy

Optimal $D(x)$ for any $p_{\text{data}}(x)$ and $p_{\text{model}}(x)$ is always

$$D(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x)}$$

Estimating this ratio using supervised learning is the key approximation mechanism used by GANs.
- Equilibrium is a saddle point of the discriminator loss
- Generator minimizes the log-probability of the discriminator being correct
Minimax Game

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

- Discriminator \((\theta_d)\) wants to maximize objective such that \(D(x)\) is close to 1 (real) and \(D(G(z))\) is close to 0 (fake)
- Generator \((\theta_g)\) wants to minimize objective such that \(D(G(z))\) is close to 1 (discriminator is fooled into thinking generated \(G(z)\) is real)
Training GANs: Two-player game

Minimax objective function:
\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

Alternate between:

1. **Gradient ascent** on discriminator
\[
\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

2. **Gradient descent** on generator
\[
\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z)))
\]
Training Procedure

• Use **Stochastic Gradient Descent** - optimization algorithm of choice on two minibatches simultaneously.
 • A minibatch of training examples
 • A minibatch of generated samples
• Optional: run k steps of one player for every step of the other player.
Training GANs: Two-player game

Putting it together: GAN training algorithm

for number of training iterations do
 for k steps do
 • Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
 • Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
 • Update the discriminator by ascending its stochastic gradient:
 \[
 \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]
 \]
 end for
 • Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
 • Update the generator by ascending its stochastic gradient (improved objective):
 \[
 \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))
 \]
end for
Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions.
Discriminator is a convolutional network.

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.
Generative Adversarial Nets: Convolutional Architectures

Samples from the model look amazing!

Radford et al,
ICLR 2016
Generative Adversarial Nets: Convolutional Architectures

Interpolating between random points in latent space

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Smiling woman Neutral woman Neutral man

Samples from the model

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Smiling woman Neutral woman Neutral man

Samples from the model

Average Z vectors, do arithmetic

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Samples from the model

Average Z vectors, do arithmetic

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman

Radford et al, ICLR 2016
Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman

Woman with glasses

Radford et al, ICLR 2016
References:

4. https://openreview.net/forum?id=Byxz4n09tQ