
From Abstract Models to
Executable Models for Multi-Agent

Path Finding on Real Robots
Roman Barták

Charles University, Czech Republic
with contributions from Ivan Krasičenko, David

Nohejl , Věra Škopková, and Jiří Švancara

Introduction

What is multi-agent path finding (MAPF)?

MAPF problem:
Find a collision-free plan (path) for each agent

Alternative names:
cooperative path finding (CPF), multi-robot path planning,
pebble motion

Applications

Talk outline

Part I: Introduction to MAPF
– Problem formulation, variants and objectives

Part II. Solving MAPF
– Reduction-based solvers

Part III. From abstract to executable actions
– Translation vs. model modification

Part IV. Demo

Talk outline

Part I: Introduction to MAPF
– Problem formulation, variants and objectives

Part II. Solving MAPF
– Reduction-based solvers

Part III. From abstract to executable actions
– Translation vs. model modification

Part IV. Demo

MAPF formulation

• a graph (directed or undirected)
• a set of agents, each agent is assigned to

two locations (nodes) in the graph (start,
destination)

V1

V2

V3 V4

V5

V6

Plans

Each agent can perform either move (to a
neighboring node) or wait (in the same node)
actions.

Typical assumption:
all move and wait actions have identical durations (plans for
agents are synchronized)

Plan is a sequence of actions for the agent leading
from its start location to its destination.

The length of a plan (for an agent) is defined by the
time when the agent reaches its destination and does
not leave it anymore.

MAPF task

Find plans for all agents such that the plans do
not collide in time and space (no two agents are
at the same location at the same time).

V1

V2

V3 V4

V5

V6

time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6

Plan existence

Some trivial conditions for plan existence:
• no two agents are at the same start node
• no two agents share the same destination node

(unless an agent disappears when reaching its
destination)

• the number of agents is strictly smaller than the
number of nodes

No-swap constraint

Agents may swap position

Agents use the same edge at
the same time!

Swap is not allowed.

V1 V2

V3

V4

time agent 1 agent 2
0 v1 v2

1 move v2 move v1

time agent 1 agent 2
0 v1 v2

1 move v2 move v3

2 move v4 move v2

3 move v2 move v1

Agent at vi cannot perform move
vj at the same time when agent

at vj performs move vi

No-train constraint

Agent can approach a node
that is currently occupied but
will be free before arrival.

Agents form a train.

Trains may be forbidden.

time agent 1 agent 2
0 v1 v2

1 move v2 move v3

2 move v4 move v2

3 move v2 move v1

time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v2 wait v3
3 move v4 wait v3
4 wait v4 move v2

5 wait v4 move v1

6 move v2 wait v1

Agent at vi cannot perform
move vj if there is another

agent at vj

V1 V2

V3

V4

Train collisions

If any agent is delayed then trains may cause
collisions during execution.

To prevent such collisions we may introduce more
space between agents.

Robustness

k-robustness
An agent can visit a node, if that node has not been
occupied in recent k steps.

1-robustness covers both no-swap and no-train
constraints

[Atzmon et al., SoCS 2017]

Objectives

How to measure quality of plans?
Two typical criteria (to minimize):
• Makespan
– distance between the start time of the first agent

and the completion time of the last agent
– maximum of lengths of plans (end times)

• Sum of costs (SOC)
– sum of lengths of plans

(end times)

time agent 1 agent 2
0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6

Makespan = 4
SOC = 7

Talk outline

Part I: Introduction to MAPF
– Problem formulation, variants and objectives

Part II. Solving MAPF
– Reduction-based solvers

Part III. From abstract to executable actions
– Translation vs. model modification

Part IV. Demo

Solving approaches

Search-based techniques
state-space search (A*)

state = location of agents at nodes
transition = performing one action for each agent

conflict-based search

Reduction-based techniques
translate the problem to another formalism
(SAT/CSP/ASP …)

Solving approaches

Search-based techniques
state-space search (A*)

state = location of agents at nodes
transition = performing one action for each agent

conflict-based search

Reduction-based techniques
translate the problem to another formalism
(SAT/CSP/ASP …)

Introduction to SAT

Express (model) the problem as a SAT formula in
a conjunctive normal form (CNF)

Boolean variables (true/false values)
clause = a disjunction of literals (variables and
negated variables)
formula = a conjunction of clauses
solution = an instantiation of variables such that the
formula is satisfied

Example:
(X or Y) and (not X or not Y)
[exactly one of X and Y is true]

SAT abstract expressions

SAT model is expressed as a CNF formula
We can go beyond CNF and use abstract
expressions that are translated to CNF.

We can even use numerical variables (and
constraints).

A => B B or not A

sum(Bs) >= 1
(at-least-one(Bs))

disj(Bs)

sum(Bs) = 1 at-most-one(B) and at-least-one(B)

SAT encoding: core idea

In MAPF, we do not know the lengths of plans
(due to possible re-visits of nodes)!
We can encode plans of a known length using a
layered graph (temporally extended graph).

Each layer corresponds to one time slice and
indicates positions of agents at that time.

Classical model

Using layered graph describing agent positions at each time step
Btav : agent a occupies vertex v at time t

Constraints:
• each agent occupies exactly one vertex at each time.

• no two agents occupy the same vertex at any time.

• if agent a occupies vertex v at time t, then a occupies a
neighboring vertex or stay at v at time t + 1.

Preprocessing:
Btav = 0 if agent a cannot reach vertex v at time t or
a cannot reach the destination being at v at time t

[Barták et al, ICTAI 2017]

Incremental generation of layers

Setting the initial and destination locations

Agent occupies one vertex at any time

No conflict between agents

Agent moves to a neighboring vertex

K-robustness

Picat code

Talk outline

Part I: Introduction to MAPF
– Problem formulation, variants and objectives

Part II. Solving MAPF
– Reduction-based solvers

Part III. From abstract to executable actions
– Translation vs. model modification

Part IV. Demo

Turning

6 classical actions needed to go from v1 to v7
plus 4 turning actions during execution

turning may take significant time (w.r.t. moving)

Abstract vs. executable actions

Abstract actions:
• move
• wait

Executable actions:
• move forward
• wait
• turn left/right + move
• turn back and move

Times:
tt – time to turn left/right
tf – time to move forward

classic classic+wait

tf tf + 2*tt

tf + tt/2 tf + 2*tt

tf + tt tf + 2*tt

tf + 2*tt tf + 2*tt

Model with turning

It is possible to assume turn actions during path
finding by splitting the nodes.

Split model

Classical model

Experiment setting

Some results

Talk outline

Part I: Introduction to MAPF
– Problem formulation, variants and objectives

Part II. Solving MAPF
– Reduction-based solvers

Part III. From abstract to executable actions
– Translation vs. model modification

Part IV. Demo

MAPF software

References

Atzmon, D.; Felner, A.; Stern, R.; Wagner, G.; Barták, R.; and Zhou, N.
2017. k-robust multi-agent path finding. In Proceedings of the Tenth
International Symposium on Combinatorial Search (SoCS), 157–158.

Barták, R., Švancara, J., Vlk, M. 2018. A scheduling-based approach
to multi-agent path finding with weighted and capacitated arcs. In
Proceedings of AAMAS 2018, Stockholm, Sweden, July 11-13.

Barták, R.; Zhou, N.-F.; Stern, R.; Boyarski, E.; and Surynek, P. 2017.
Modeling and solving the multi-agent pathfinding problem in Picat.
In 29th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), 959–966. IEEE Computer Society.
Barták, R.; Švancara, J.; Škopková, V.; and Nohejl, D. 2018. Multi-
agent path finding on real robots: First experience with ozobots. In
Advances in Artificial Intelligence – IBERAMIA 2018. Springer.

Roman Barták
Charles University, Faculty of Mathematics and Physics

bartak@ktiml.mff.cuni.cz

