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Reinforcement learning
The agent needs to learn to perform tasks in 
environment

No prior knowledge about the effects of tasks

Maximized its utility

Mountain Car problem →
◦ Typical RL toy problem

◦ Agent (car) has three actions – left, right, none

◦ Goal – get up the mountain (yellow flag)

◦ Weak engine – cannot just go to the right, needs 
to gain speed by going downhill first



Reinforcement learning
Formally defined using a Markov Decision Process (MDP) (S, A, R, p)

◦ 𝑠𝑡 ∈ 𝑆 – state space

◦ 𝑎𝑡 ∈ 𝐴 – action space

◦ 𝑟𝑡 ∈ 𝑅 – reward space

◦ 𝑝(𝑠′, 𝑟|𝑠, 𝑎) – probability that performing action 𝑎 in state 𝑠 leads to state 𝑠′ and gives reward 𝑟

Agent’s goal: maximize discounted returns 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾
2𝑅𝑡+3… = 𝑅𝑡+1 + 𝛾𝐺𝑡+1

Agent learns its policy: 𝜋(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠)
◦ Gives a probability to use action 𝑎 in state 𝑠

State value function: 𝑉𝜋 𝑠 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

Action value function: 𝑄𝜋 𝑠, 𝑎 = 𝐸𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]



Q-Learning
Learns the 𝑄 function directly using the Bellman’s equations

𝑄 𝑠𝑡 , 𝑎𝑡 ← 1 − 𝛼 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼(𝑟𝑡 + 𝛾max
𝑎
𝑄 𝑠𝑡+1, 𝑎 )

During learning – sampling policy is used (e.g. the 𝜖-greedy policy – use a random action with 
probability 𝜖, otherwise choose the best action)

Traditionally, 𝑄 is represented as a (sparse) matrix

Problems
◦ In many problems, state space (or action space) is continuous →must perform some kind of 

discretization

◦ Can be unstable

Watkins, Christopher JCH, and Peter Dayan. "Q-learning." Machine learning 8, no. 3-4 (1992): 279-292.



Deep Q-Learning
𝑄 function represented as a deep neural network

Experience replay
◦ stores previous experience (state, action, new state, 

reward) in a replay buffer – used for training

Target network
◦ Separate network that is rarely updated

Optimizes loss function 

𝐿 𝜃 = 𝐸 𝑟 + 𝛾max
𝑎′
𝑄 𝑠, 𝑎; 𝜃𝑖

− − 𝑄 𝑠, 𝑎; 𝜃
2

◦ 𝜃, 𝜃− - parameters of the network and target network

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, et al. “Human-Level Control through Deep Reinforcement Learning.” Nature 518, no. 
7540 (February 2015): 529–33. https://doi.org/10.1038/nature14236.

https://doi.org/10.1038/nature14236


Deep Q-Learning
Successfully used to play single player Atari 
games

Complex input states – video of the game

Action space quite simple – discrete

Rewards – changes in game score

Better than human-level performance
◦ Human-level measured against “expert” who 

played the game for around 20 episodes of max. 
5 minutes after 2 hours of practice for each 
game. 

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, et al. “Human-Level Control through Deep Reinforcement Learning.” Nature 518, no. 
7540 (February 2015): 529–33. https://doi.org/10.1038/nature14236.

https://doi.org/10.1038/nature14236


Actor-Critic Methods
The actor (policy) is trained using a gradient that depends on a critic (estimate of value function)

Critic is a value function
◦ After each action checks if things have gone better or worse than expected

◦ Evaluation is the error 𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉 𝑠𝑡+1 − 𝑉(𝑠𝑡)

◦ Is used to evaluate the action selected by actor
◦ If 𝛿 is positive (outcome was better than expected) – probability of selecting 𝑎𝑡 should be strengthened (otherwise lowered)

Both actor and critic can be approximated using NN
◦ Policy (𝜋(𝑠, 𝑎)) update - Δ𝜃 = 𝛼𝛻𝜃(log𝜋𝜃(𝑠, 𝑎))𝑞(𝑠, 𝑎)

◦ Value (𝑞(𝑠, 𝑎)) update - Δ𝑤 = 𝛽 𝑅 𝑠, 𝑎 + 𝛾𝑞 𝑠𝑡+1, 𝑎𝑡+1 − 𝑞 𝑠𝑡 , 𝑎𝑡 𝛻wq(st, at)

Works in continuous action spaces



Multiagent Learning
Learning in multi-agent environments more 
complex – need to coordinate with other 
agents

Example – level-based foraging (→)
◦ Goal is to collect all items as fast as possible

◦ Can collect item, if sum of agent levels is greater 
than item level



Goals of Learning
Minmax profile

◦ For zero-sum games – (𝜋𝑖 , 𝜋𝑗) is minimax profile if 𝑈𝑖 𝜋𝑖 , 𝜋𝑗 = −𝑈𝑗(𝜋𝑖 , 𝜋𝑗)

◦ Guaranteed utility against worst-case opponent

Nash equilibrium
◦ Profile 𝜋1, … , 𝜋𝑛 is Nash equilibrium if ∀𝑖∀𝜋𝑖

′: 𝑈𝑖 𝜋𝑖
′, 𝜋−𝑖 ≤ 𝑈𝑖(𝜋)

◦ No agent can improve utility unilaterally deviating from profile (every agent plays best-response to other agents)

Correlated equilibrium
◦ Agents observe signal 𝑥𝑖 with joint distribution 𝜉 𝑥1, … , 𝑥𝑛 (e.g. recommended action)

◦ Profile 𝜋1, … , 𝜋𝑛 is correlated equilibrium if no agent can improve its expected utility by deviating 
from recommended actions

◦ NE is special type of CE – no correlation



Goals of Learning
Pareto optimum

◦ Profile 𝜋1, … , 𝜋𝑛 is Pareto-optimal if there is not other profile 𝜋′ such that ∀𝑖: 𝑈𝑖 𝜋
′ ≥ 𝑈_𝑖(𝜋) and 

∃𝑖: 𝑈𝑖 𝜋
′ > 𝑈𝑖(𝜋)

◦ Cannot improve one agent without making other agent worse

Social Welfare & Fairness
◦ Welfare of profile is sum of utilities of agents, fairness is product of utilities

◦ Profile is welfare or fairness optimal if it has the maximum possible welfare/fairness

No-Regret
◦ Given history Ht = 𝑎0, … , 𝑎𝑡−1 agent 𝑖’s regret for not having taken action 𝑎𝑖 is 

𝑅𝑖 𝑎𝑖 = 

𝑡

𝑢𝑖 𝑎𝑖,𝑎−𝑖
𝑡 − 𝑢𝑖( 𝑎𝑖

𝑡, 𝑎−𝑖
𝑡 )

◦ Policy 𝜋𝑖 achieves no-regret if ∀𝑎𝑖: lim
𝑡→∞

1

𝑡
𝑅𝑖 𝑎𝑖 𝐻

𝑡 ≤ 0.



Joint Action Learning
Learns 𝑄-values for joint actions 𝑎 ∈ 𝐴

◦ joint action of all agents 𝑎 = (𝑎1, … , 𝑎𝑛), where 𝑎𝑖 is the action of agent 𝑖

𝑄𝑡+1 𝑎𝑡, 𝑠𝑡 = 1 − 𝛼 𝑄
𝑡 𝑎𝑡, 𝑠𝑡 + 𝛼𝑢𝑖

𝑡

◦ 𝑢𝑖
𝑡 - utility received after joint action 𝑎𝑡

Uses opponent model to compute expected utilities of action
◦ 𝐸 𝑎𝑖 =  𝑎−𝑖 𝑃 𝑎−𝑖 𝑄

𝑡+1( 𝑎𝑖 , 𝑎−𝑖 , 𝑠𝑡+1) – joint action learning

◦ 𝐸 𝑎𝑖 =  𝑎−𝑖 𝑃 𝑎−𝑖|𝑎𝑖 𝑄
𝑡+1 (𝑎𝑖 , 𝑎−𝑖 , 𝑠𝑡+1) – conditional joint action learning

Opponent models predicted from history as relative frequencies of action played (conditional 
frequencies in CJAL)

𝜖 – greedy sampling



Policy Hill Climbing
Learn policy 𝜋𝑖 directly

Hill-climbing in policy space 

◦ 𝜋𝑖
𝑡+1 = 𝜋𝑖

𝑡 𝑠𝑖
𝑡 , 𝑎𝑖
𝑡 + 𝛿 if 𝑎𝑖

𝑡 is the best action according to 𝑄(𝑠𝑡 , 𝑎𝑖
𝑡)

◦ 𝜋𝑖
𝑡+1 = 𝜋𝑖

𝑡 𝑠𝑖
𝑡 , 𝑎𝑖
𝑡 −

1

𝐴𝑖 −1
otherwise

Parameter 𝛿 is adaptive – larger if winning and lower if losing



Counterfactual Multi-agent Policy 
Gradients
Centralized training and de-centralized execution (more information available in training)

Critic conditions on the current observed state and the actions of all agents

Actors condition on their observed state

Credit assignment – based on difference rewards
◦ Reward of agent 𝑖 ~ the difference between the reward received by the system if joint action 𝑎 was 

used, and reward received if agent 𝑖 would have used a default action
◦ Requires assignment of default actions to agents

◦ COMA – marginalize over all possible actions of agent 𝑖

Used to train micro-management of units in StarCraft

Foerster, Jakob, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. “Counterfactual Multi-Agent Policy Gradients.” ArXiv:1705.08926 [Cs], May 24, 2017. 
http://arxiv.org/abs/1705.08926.

http://arxiv.org/abs/1705.08926


Counterfactual Multi-agent Policy 
Gradients

Foerster, Jakob, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. “Counterfactual Multi-Agent Policy Gradients.” ArXiv:1705.08926 [Cs], May 24, 2017. 
http://arxiv.org/abs/1705.08926.

http://arxiv.org/abs/1705.08926


Ad hoc Teamwork
Typically whole team of agents provided by single organization/team.

◦ There is some pre-coordination (communication, coordination, …)

Ad hoc teamwork
◦ Team of agents provided by different organization need to cooperate

◦ RoboCup Drop-In Competition – mixed players from different teams

◦ Many algorithms not suitable for ad hoc teamwork 
◦ Need many iterations of game – typically limited amount of time

◦ Designed for self-play (all agents use the same strategy) – no control over other agents in ad hoc teamwork



Ad hoc Teamwork
Type-based methods

◦ Assume different types of agents

◦ Based on interaction history – compute belief over types of other agents

◦ Play own actions based on beliefs

◦ Can also add parameters to types



Other problems in MAL
Analysis of emergent behaviors

◦ Typically no new learning algorithms, but single-agent learning algorithms evaluated in multi-agent 
environment

◦ Emergent language 
◦ Learn agents to use some language

◦ E.g. signaling game – two agents are show two images, one of them (sender) is told the target and can send a message (from fixed
vocabulary)  to the receiver; both agents receive a positive reward if the receiver identifies the correct image

Learning communication
◦ Agent can typically exchange vectors of numbers for communication

◦ Maximization of shared utility by means of communication in partially observable environment

Learning cooperation

Agent modelling agents
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