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Abstract
This article gives a short overview of the current state of re-
search in the field of the online warehouse MAPF problem.
In this class of problems, agents in a simulated warehouse en-
vironment need to be assigned to tasks with one or more end-
points and, without collisions, traverse along it’s path. New
tasks can be added at any time and they should be completed
as effectively and as soon as possible. Different variants of
the problem as well as different conditions and objectives can
be defined.

Introduction
The Multi-Agent Path Finding (MAPF) problem has been
studied for a relatively long time. Traditionally, it has been
viewed as a single-shot problem where each agent moves
from it’s location to a different one while avoiding collisions
with other agents. This does not very accurately capture the
requirements of many real-world applications such as auto-
mated robotic warehouses.

This article provides an overview of a specific part of the
research conducted in the field of ”Lifelong” or ”Online”
MAPF. In this problem, new tasks can be added to the sys-
tem at any time and the limited number of agents should
complete them as soon as possible. Other related problems,
such as the so-called ”Dynamic” MAPF, are also being ac-
tively studied, but these are beyond the scope of this article.

Research Summary
The first major attempt to apply AI techniques and algo-
rithms in autonomous warehouses was made by Kiva Sys-
tems (Wurman, D’Andrea, and Mountz 2008). Unfortu-
nately, their publications did not provide very detailed in-
formation on the specific implementation.

The initial formalization and scientific study of the ”On-
line Warehouse” version of MAPF was performed by (Čáp,
Vokřı́nek, and Kleiner 2015). They proposed a definition for
well-formed infrastructures and COBRA, a novel on-line
multi-robot trajectory planning algorithm that is complete
in such settings.

The next progress in this field was made by (Ma et al.
2017). The article formalized a definition for the Multi-
Agent Pickup and Delivery (MAPD) problem along with

a definition for well-formed MAPD instances. Additionally,
Ma et al. presented two decoupled MAPD algorithms, To-
ken Passing (TP) and the improved Token Passing with Task
Swaps (TPTS), that solve all well-formed MAPD instances
as well as a centralized MAPD algorithm (CENTRAL) with-
out that guarantee.

The TP algorithm was later improved by (Ma et al. 2018)
with the introduction of the Safe Interval Path Planning with
Reservation Table (SIPPwRT) search algorithm. The result-
ing MAPD algorithm TP-SIPPwRT takes kinematic con-
straints into account and computes continuous agent move-
ments while still being complete for all well-formed MAPD
instances.

The state of the art algorithms were further refined by
(Grenouilleau, van Hoeve, and Hooker 2019) who intro-
duced a multi-label A* (MLA*) algorithm and a new cen-
tralized heuristic for assigning available agents to tasks both
of which significantly improve the solution quality and com-
putation time.

A different approach was suggested by (Liu et al. 2019b)
for large-scale multi-agent systems while still working with
a notion of a well-formed infrastructure. They suggested
partitioning the environment into sectors and employing
a high-level centralized planning algorithm using a traffic
heat-map and a low-level decentralized path planning algo-
rithm using a road topology map. Additionally, a strategy for
resolving communication failures was proposed.

Previously, task allocation was done without taking agent
collisions into account. (Henkel, Abbenseth, and Toussaint
2019) jointly solved the problem of multi-agent task alloca-
tion and path planning. The proposed baseline Task Conflict-
Based Search (TCBS) was proved to be optimal for the
Combined Task Allocation and Path Finding (CTAPF) prob-
lem.

(Kou et al. 2019) focused on another objective to min-
imize the idle time of stations in a sortation center bring-
ing the theoretical methods closer to real-world applications.
They developed two offline algorithms that use the proposed
ITO and PITO flow networks that can be extended to solve
the online TAPF problem.

Having only one or two target locations can be limiting so
(Semiz and Polat 2020) studied a variant of the MAPF prob-



Figure 1: The figure shows an unsolvable problem instance
with a green agent with target endpoint e1 and another blue
agent that is free.

lem with multiple delivery locations (MAPF-MD). Semiz
and Polat introduced the Multiple Delivery Conflict-Based
Search algorithm (MD-DCBS) that solves MAPF-MD in-
stances.

Problem Definition
Generally, the system environment is a continuous 2-D co-
ordinate space or a discrete undirected connected graph. In
the environment, there is a fixed number of endpoints, some-
times divided into task and agent endpoints.

A (possibly fixed) number of agents is placed into the en-
vironment. Each agent has a location in a given time step,
which is either an XY coordinate or a vertex. The body of
the agent occupies a point, a closed disk or a single vertex.

In each time step, an agent can stay in place or move at
some speed in any direction. In a graph environment, the
agent can move to another vertex that is connected by an
edge to it’s current vertex. While moving, the agents must
avoid collisions. Two agents collide if their bodies intersect
or if they occupy the same vertex at the same time. Other
types of collisions can be defined (Stern et al. 2019).

A task is an ordered set of locations that need to be visited
by an agent. The task is completed once an agent visits all
of the locations and it is then removed. An agent is called
free if it isn’t currently executing any task. Tasks can be as-
signed to free agents automatically or the task allocation can
be considered part of the problem. All unassigned tasks are
placed into a task set. The task set may start with any number
of tasks and new tasks can be added at any time.

The objective is to complete the tasks as quickly as pos-
sible. The performance of an algorithm is usually measured
by the system’s throughput, i.e. by the average number of
time steps needed to complete a task after it was added to
the task set. The problem is solved if all tasks are completed
in a finite number of steps.

Well-Formed Infrastructure
Because not all instances are solvable (Figure 1) and some
are only solvable by offline solvers (Švancara et al. 2019),
multiple articles define a variant of a well-formed infrastruc-
ture that can always be solved by a complete online algo-
rithm.

The exact definition differs between articles but the main
points are the following:

1. There is a finite number of tasks.

2. For any two endpoints, there exists a valid path that tra-
verses no other endpoints.
Sometimes an extra condition is added:

Figure 2: The figure shows three problem instances with a
blue and a green agent and four endpoints e1 to e4. Task
endpoints are red and non-task endpoints are black.

3. There is at least the same number of non-task endpoints
as the number of agents. (In other words, there is always
a place where an agent can wait so that it doesn’t interfere
with the paths between task endpoints that are required by
the previous point)

Figure 2 shows three problem instances. The first environ-
ment is well-formed. The second one is well-formed only if
the third condition is omitted, because there are two agents
but only one non-task endpoint. The last environment is not
well-formed because, for example, all paths from e2 to e3
traverse e1.

Algorithms Overview
In this section, we take a more in-depth look at some of the
algorithms and methods mentioned in the section Research
Summary.

The Continuous Best-Response Approach
COBRA (2015) is a decentralized multi-agent path planning
algorithm. It operates on a continuous 2-D space and only
allows relocation tasks with one endpoint (i.e. an agent has
to move from it’s current location to a different one). In the
general formulation, it is assumed that each agent is able to
compute an optimal collision-free path to the target destina-
tion.

Distributed token-passing is used as a synchronization
mechanism. The token represents a synchronized shared
block of memory that stores the paths of all agents. Only
one agent can hold the token at any point in time and only
that agent can read or change it’s content.

The basic algorithm outline is as follows. At the begin-
ning, all agents acquire the token and set their path to stay
at their current positions indefinitely. Then, when assigned
a task, an agent acquires the token, computes a trajectory to
the task’s endpoint, releases the token and starts following
it.

In practice, the continuous 2-D space representation isn’t
very practical for computing paths so it is discretized and
represented as a graph. In such a representation, the agent
path can be found using the Dijkstra’s shortest-path algo-
rithm.

Čáp, Vokřı́nek, and Kleiner (2015) proved that COBRA
is complete in well-formed infrastructures. That is true for
both the continuous and discretized space representation.

The proposed method has a relatively low quadratic com-
plexity in the number of robots for the handling of a single



task. Unlike some reactive techniques (van den Berg et al.
2011), it is complete in most man-made environments.

It’s disadvantage is that it cannot be easily extended to
complete tasks with more than one endpoints (e.g. for when
an agent needs to pickup and deliver a package in a ware-
house), because it does not take into account that an agent
might be occupying an endpoint that is part of a task as-
signed to another agent.

Token Passing and Token Passing with Task Swaps
TP and TPTS (2017) build up on some of the same concepts
as COBRA. It was however designed for the MAPD prob-
lem so each task consists of two endpoints (pickup and de-
livery) and an agent has to traverse them in a given order. It
uses a discrete graph representation of the environment. The
algorithm also assumes that the environment is well-formed
including extra the 3rd point of the definition.

As the name suggests, both TP and TPTS use distributed
token-passing in a similar way to COBRA. Both of the algo-
rithms start by initializing the token with trivial trajectories
where the agents stay in their location for the next time step.

In TP, all free agents sequentially acquire the token and
search for tasks such that no paths of other agents end in any
one of the task’s endpoints. If there are such tasks, the agent
chooses the closest one and starts executing it. If there is no
such task and the agent is in a task endpoint, it moves to
another free endpoint. Otherwise it remains in it’s location.

TPTS is very similar to TP but it allows a free agent to
swap tasks with another agent that is moving to the first end-
point of a task if the free agent can reach it faster. The other
agent is then given the token and tries to assign itself to a
new task.

Both TP and TPTS solve all well-formed MAPD instances
(Ma et al. 2017).

The discussed algorithms are decentralized and while re-
maining complete and relatively effective, they require lower
compound computation times than some centralized meth-
ods. TPTS facilitates more communication between agents
and so is more effective with the cost of being more compu-
tationally expensive.

In some instances, TP produces a better solution than
TPTS. Figure 3 shows such an example. The left figure
shows the environment before the start of the simulation.
The figure in the center shows the paths chosen by TP if
the green agent is granted the token first. The resulting ser-
vice time is two. The right figure shows the paths chosen
by TPTS if the green agent is granted the token first. The
resulting service time is three (the average of one and five).

Token Passing - Safe Interval Path Planning with
Reservation Table
TP-SIPPwRT (2018) transforms TP into a continuous en-
vironment while taking kinematic constraints into account.
In standard TP, the shortest path is usually computed using
A* that searches in both space and time. That approach pre-
sumes that agents move at constant speeds, ignores rotations
and acceleration. SIPPwRT, an improved version of SIPP

Figure 3: The figure shows a problem instance with a green
and a blue agent and two endpoints e1 and e2.

(Phillips and Likhachev 2011), computes paths for continu-
ous forward movement and point turns. Additionally, agents
are assumed to have a disc-shaped body with an arbitrary
radius.

SIPP discretizes the environment into cells and for each
cell it keeps track of (safe) time intervals when it is empty
and time intervals when it is occupied. To find a path, a sim-
ple A* search in this representation is performed and the
visited cells are updated so that they track the traversal of
that path. This search is quite effective because a lot of the
A* branches can be pruned. It is always preferable for an
agent to arrive at a cell at an earlier time so all search paths
that arrive at that cell later can be ignored.

SIPPwRT improves upon SIPP by employing a reserva-
tion table, a more efficient data structure that speeds up the
operations needed by the TP-SIPPwRT algorithm. SIPPwRT
returns time-optimal collision-free paths (Ma et al. 2018)
and so if we use it instead of A* in TP, the resulting TP-
SIPPwRT will still be complete for all well-formed MAPD
instances.

When the original TP with A* is updated to account for
forward movement and point turns, it is less effective than
the novel TP-SIPPwRT. It could also be used to generalize
other algorithms that work with an idealistic discrete repre-
sentation and it could also be easily extended to work with
tasks with any number of endpoints.

Even though TP-SIPPwRT takes a big step towards mod-
eling real-world agents, it still ignores some kinematic con-
straints such as acceleration and deceleration.

Multi-Label A*
MLA* (2019) is an extension of the classic A* algorithm
that finds a shortest path traversing more than one node. In
the original TP implementation, the path search was exe-
cuted in two steps. First, the shortest path to the pickup end-
point was found and then the shortest path from the pickup
endpoint to the delivery endpoint was found and appended
to it. This can lead to some artificial constraints, e.g. if the
pickup endpoint is the delivery endpoint of some other task,
the traditional A* algorithm will discard this path even if the
agent could visit and leave the pickup location before the
other agent reaches it.

The MLA* algorithm works very similarly to A* but each
node of the search graph is labeled to keep track of the end-



point to which the algorithm is currently finding the short-
est path. Once the pickup endpoint is reached, the label is
updated and the search continues until it finds the delivery
endpoint.

The updated MLA* algorithm can help TP find better and
shorter paths (Grenouilleau, van Hoeve, and Hooker 2019).
Additionally, this approach could easily be extended to tasks
with more than two endpoints.

Task Conflict-Based Search
TCBS (2019) solves the problem of task allocation and
multi-agent path planning simultaneously. In the previous al-
gorithms, the tasks are usually assigned to the closest agent
without taking into account the paths of other agents. In
some instances, an agent that is further from the task’s first
endpoint can actually reach it faster than some other agent
that is closer but is blocked by a path of a third agent.

TCBS works the same way as CBS (Sharon et al. 2015),
but it operates on the level of task assignments rather than
path nodes. Each node of the search tree contains tuples con-
sisting of a task and an agent it is assigned to. Additionally,
a node can contain some forbidden configurations (e.g. the
presence of an agent at a location at some point in time).
Such a tree is searched using the traditional A* with specific
rules for node expansion, goal testing, calculating the cost
and choosing the node to expand.

The proposed algorithm, although it may not be very ef-
ficient, solves the combined problem of task allocation and
path finding (CTAPF) optimally and can therefore be used
to verify the (sub-)optimality of other algorithms.

Idle Time Optimization Flow Network
ITO (2019) is a flow network used to assign stations (task
endpoints) to all agents. In this special version of MAPF,
each station (task endpoint) has a queue that can host more
than one agent. The goal is to minimize the times when the
queues are empty. The maximum flow in the ITO network
corresponds to the optimal task assignment.

The task allocation ITO network can be combined with
a MAPF flow network (Yu and LaValle 2012) to form the
Path Finding with ITO (PITO) flow framework. This frame-
work can simultaneously find task assignments as well as
the collision-free paths for all agents to their assigned sta-
tions while minimizing the stations’ idle times.

This approach is inherently one-shot but it can be used
in an online scenario by recalculating the solutions at each
time step. When compared to the repeated use of the Hun-
garian method (Kuhn 2010) to assign tasks to agents, PITO
is significantly more effective in minimizing the idle times.

Even though this concrete method was developed with a
limited use-case in mind, the idea of using flow networks
for both the task allocation and path planning seems very
promising for other applications as well.

Multiple Delivery Conflict-Based Search
MD-DCBS (2020) solves the problem of online MAPF
with multiple delivery locations. It works similarly to CBS

(Sharon et al. 2015) but uses the D*-lite (Koenig and
Likhachev 2002) algorithm to traverse the CBS tree because
it supports replanning, making it very useful for dynamic
environments. Additionally, an extra D*-lite instance is used
for each successive destination pair for each agent. CBS then
runs on the aggregated paths found by these instances.

MD-DCBS is more effective than running CBS multiple
times because D*-lite can cache some information. It is op-
timal and complete in terms of the planned paths but sub-
optimal in terms of task allocation.

Conclusion and Future Work
The MAPF problem is currently studied very intensively.
Recently, more attention has been paid to the online ver-
sion of the problem, particularly to the variant reminiscent
of the requirements of autonomous robotic warehouses. The
methods that were proposed were successfully tested in toy
and industry computer simulations and sometimes even with
physical robots.

Some algorithms are tailored to a specific application like
sortation centers (Kou et al. 2019) but, even more so re-
cently, the suggested approaches are encompassing more
and more physical and kinematic constraints of real-world
agents.

Some of the areas that could be explored in the future in-
clude, but are not limited to:

• Decreasing the computational requirements of centralized
solutions,

• increasing the complexity of decentralized methods,

• allowing for more complicated agent tasks (e.g. where an
agent can simultaneously execute more tasks),

• adding deadlines, prioritites or other constraints to agent
tasks

• and more accurately representing the shape and move-
ment of physical agents.

Appendix
The following list contains some interesting articles that
study a different version of the online MAPF problem that
didn’t thematically fit into this article.

• (Sigurdson et al. 2018) proposes a decentralized real-time
heuristic that can be used to navigate agents without the
need to find a complete path.

• (Wan et al. 2018) introduces a different type of online
MAPF called the dynamic MAPF (DMAPF), where the
number of agents can change over time.

• (Liu et al. 2019a) provides several methods for solving
the offline version of multi-agent pickup and delivery
(MAPD) problem.

• (Švancara et al. 2019) formally defines the different ver-
sions of the online MAPF problem and proposes several
solvers for the intersection type of online MAPF where
agents disappear once they reach their goal.



• (Bogatarkan, Patoglu, and Erdem 2019) solves the dy-
namic MAPF problem using answer set programming.

• (Han and Yu 2019) solves the dynamic MAPF problem
using a decentralized algorithm called DDM.

• (Li et al. 2020) proposes a new approach of tackling the
online MAPF problem by decomposing it into a sequence
of time-bounded sub-problems.
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Čáp, M.; Vokřı́nek, J.; and Kleiner, A. 2015. Complete de-
centralized method for on-line multi-robot trajectory plan-
ning in well-formed infrastructures. In ICAPS.
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