
Multi-Agent
Pathfinding

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Introduction

What is multi-agent path finding (MAPF)?

MAPF problem:
Find a collision-free plan (path) for each agent

Alternative names:
cooperative path finding (CPF), multi-robot path planning,
pebble motion

MAPF formulation

• a graph (directed or undirected)
• a set of agents, each agent is assigned to

two locations (nodes) in the graph (start,
destination)

V1

V2

V3 V4

V5

V6

Plans

Each agent can perform either move (to a
neighboring node) or wait (in the same node)
actions.

Typical assumption:
all move and wait actions have identical durations (plans for
agents are synchronized)

Plan is a sequence of actions for the agent leading
from its start location to its destination.

The length of a plan (for an agent) is defined by the
time when the agent reaches its destination and does
not leave it anymore.

MAPF task

Find plans for all agents such that the plans do
not collide in time and space (no two agents are
at the same location at the same time).

V1

V2

V3 V4

V5

V6

time agent 1 agent 2

0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6

Plan existence

Some necessary conditions for plan existence:
• no two agents are at the same start node
• no two agents share the same destination node

(unless an agent disappears when reaching its
destination)

• the number of agents is strictly smaller than the
number of nodes

No-swap constraint

Agents may swap position

Agents use the same edge at
the same time!

Swap is not allowed.

V1 V2

V3

V4

time agent 1 agent 2

0 v1 v2

1 move v2 move v1

time agent 1 agent 2

0 v1 v2

1 move v2 move v3

2 move v4 move v2

3 move v2 move v1

Agent at vi cannot perform move
vj at the same time when agent

at vj performs move vi

No-train constraint

Agent can approach a node
that is currently occupied but
will be free before arrival.

Agents form a train.

Trains may be forbidden.

time agent 1 agent 2

0 v1 v2

1 move v2 move v3

2 move v4 move v2

3 move v2 move v1

time agent 1 agent 2

0 v1 v2

1 wait v1 move v3

2 move v2 wait v3
3 move v4 wait v3
4 wait v4 move v2

5 wait v4 move v1

6 move v2 wait v1

Agent at vi cannot perform
move vj if there is another

agent at vj
V1 V2

V3

V4

Train collisions

If any agent is delayed then trains may cause
collisions during execution.

To prevent such collisions we may introduce more
space between agents.

Robustness

k-robustness
An agent can visit a node, if that node has not been
occupied in recent k steps.

1-robustness covers both no-swap and no-train
constraints

[Atzmon et al., SoCS 2017]

Other constraints

• No plan (path) has a cycle.
• No two plans (paths) visit the same same

location.
• Waiting is not allowed.
• Some specific locations must be visited.
• …

Conflicts – summary

Vertex conflict – two agents are at the same time at
the same vertex
Edge conflict – two agents use the same edge at the
same direction
Swapping conflict – two agents use the same edge
at different direction
Following conflict – one agent follows another one
(train)
Cycle conflict – agents are following each other
forming a “rotating cycle” pattern

Objectives

How to measure quality of plans?
Two typical criteria (to minimize):
• Makespan
– distance between the start time of the first agent

and the completion time of the last agent
– maximum of lengths of plans (end times)

• Sum of costs (SOC)
– sum of lengths of plans

(end times)

time agent 1 agent 2

0 v1 v2

1 wait v1 move v3

2 move v3 move v4

3 move v4 move v6

4 move v5 wait v6

Makespan = 4
SOC = 7

Complexity

Optimal single agent path finding is tractable.
– e.g. Dijkstra's algorithm

Sub-optimal multi-agent path finding (with two
free unoccupied nodes) is tractable.
– e.g. algorithm Push and Rotate

MAPF, where agents have joint goal nodes (it
does not matter which agent reaches which
goal) is tractable.
– reduction to min-cost flow problem

Optimal (makespan, SOC) multi-agent path
finding is NP-hard.

Applications

Offline MAPF Online MAPF
Warehouse Intersection

Fixed set of agents

Sequence of tasks One task per agent

Sequence of agentsFixed set of agents

One task per agent

Online Multi-Agent Pathfinding

Solving approaches

Search-based techniques
state-space search (A*)

state = location of agents at nodes
transition = performing one action for each agent

conflict-based search

Reduction-based techniques
translate the problem to another formalism
(SAT/CSP/ASP …)

Topics

• Aplications
– Warehouse (pickup-and-delivery)
– Intersections

• Extensions
– On-line MAPF
– Robust MAPF
– Large agents
– Kinematics constraints
– Continuosu time
– Capacitated arcs

• Solvers
– Search-based
– Compilation-based (SAT, CSP, ASP, PDDL)

• MAPF and learning

