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Abstract
This paper offers an overview of current work in the appli-
cations of various machine learning techniques on the Multi-
Agent Path Finding (MAPF) problem. It also offers improve-
ment suggestions and possible paths for further research.

Introduction
Multi-Agent Path Finding (MAPF) recently appeared to be
an interesting problem with many real-world applications.
It can serve not only for industrial use in automated ware-
houses or autonomous cars but also as a big help for emer-
gencies in environments that are toxic, dangerous, or diffi-
cult to access for humans (Sartoretti et al. 2019a) (Stern et
al. 2019).

Classical Multi-Agent Path Finding task and many of its
variants are analyzed and defined in (Stern et al. 2019). As
it is stated there, MAPF problem is not clearly defined – in
different papers, various metrics are optimized and differ-
ent conflict types are taken into account. In this work, in-
cluded research papers are not focusing on one standardized
problem type, as they assume various constraints and have
diverse motivations in mind. For these purposes, I decided
to treat MAPF as the task of finding collision-free paths for
all agents (virtual or embodied) from their starting point to
their respective goals. Sometimes it is enough to find a valid
solution, other times we also want to optimize time or path
length.

The solution for MAPF-related problems is sought via
many learning methods, especially various types of rein-
forcement learning (RL), neural networks (NN), and genetic
algorithms (GA). The major approach is, however, central-
ized planning and its working solutions are already deployed
to real industrial use. What is the motivation behind explor-
ing machine learning methods in this context? Even finding
an approximate solution to MAPF belongs to NP-hard prob-
lems. As number of agents increases, classical planning runs
into a problem with the curse of dimensionality, because the
size of joint action-state space is exploding. Machine learn-
ing methods, especially RL and NN, are hot topics and are
expected to be more capable of scalability. Another reason
for learning is the fact that centralized planning solutions do
not take into account some technical inaccuracies in robotic

movement (not perfectly constant speed) or computational
resources do not suffice for a more complex model of the
world. Such model can be a graph containing few places
and edges weighted by distances between them, while real
robots need some extra time for turning in corners, velocity
is different on crooked paths etc.

Reinforcement learning is a set of techniques for finding
the most rewarded behavior. Although there are modifica-
tions for continuous time, standard RL is operating in dis-
crete time steps. Every time step, the agent can observe the
environment state, choose one action, and obtain a reward R
(which can be zero). This process can be described as a par-
tially observable Markov decision process (POMDP), which
brings the important assumption that state in time t does not
depend on any other previous steps, given a state and an ac-
tion in time t− 1 (Sutton and Barto 2018).

POMDP is a quadruple (S,A, p, γ):
S . . . set of states
A . . . set of actions
γ ∈ (0, 1 > . . . discount factor
pi(St+1 = si, Rt+1 = r|St = s,At = a) ... probability of
following state will be si and reward will be equal to r given
the current state s and an action a.
For every time step, Gt =

∑∞
k=0 γ

kRt+1+k is discounted
sum of rewards and the goal of learning is to learn policy

π : state→ action

which maximizes E(R0).

Problem specification

Before a presentation of chosen interesting recent research
results, a brief overview of different approaches will be pre-
sented in this section, but one terminology note at first.
Because methods described bellow use different mecha-
nisms for making decisions about the next step(s), the term
decision-maker will be used for all algorithms in the follow-
ing text. In some works, the term planner can be encoun-
tered, but the term is not used in this way as methods do not
fit the definition of a planner in the classical-planning-way
sense.



Problem space definition
The main factor influencing the complexity of the problem is
what the decision-maker knows about the space. In the cou-
pled (centralized) approach, all the information available to
some robots is considered together at the moment of com-
putation. This does not mean that the whole plan must be
created in advance. The planning can happen at each step.
Further, this does not imply, that the decision-maker ac-
tually needs to know the whole truth about the reality as
the decisions can be based on estimates. This approach is
computationally demanding. On the contrary, in the decou-
pled approach, the path is created for each agent separately.
This way has an obvious problem with conflicts because
there is simply no guarantee that the shortest paths for two
robots will not collide. For this reason, dynamically coupled
decision-makers seem to be a good solution. They are oper-
ating in a decoupled space until they need to solve a conflict.
Then they expand the space necessarily.

Available information
The information available at the moment of decision can dif-
fer. Optimal results are obtained if a complete information
about the world is presented. Unfortunately, not just that
scalability problem appears, but it is also in some cases un-
realistic to have all information about the world.

Focus of view consists of information from all its sensors
filtered based on its relevancy or distance from an agent. In
the contrast to the use of information about the whole world,
we can decide to use just the information collected from the
FOV of agents.

Again, there exists a compromise solution, where only
some information is shared, so the space of possible so-
lutions is not so big, but agents have a wider knowledge of
the environment.

Possible combinations
All types of information can be then used in a coupled or de-
coupled approach. Most of the later discussed papers focus
on the decoupled approach together with incomplete infor-
mation. In this case, the goal of learning could be to teach an
agent to move in space effectively, to solve conflicts, and to
not block the path between the other agent and its goal. This
method of course cannot be significantly better than the be-
havior of humans. There is no guarantee of the optimality
with respect to time or sum of path lengths, but it is a picture
of many real applications (motion in unknown space or with
other agents whose intentions are not known) and it demands
fewer resources.

Current Work
Now is the time for presenting recent research focusing on
various aspects of the problem and various solution tech-
niques. Recent research can be divided into following groups
– reinforcement learning policy, communication, nature-
inspired algorithms, and agent’s motion, which will be de-
scribed in this section.

Reinforcement learning policy
In this section, papers that develop reinforcement learning
policies are described. As was mentioned above, RL focuses
on finding policies for the selection of the best next step.

PRIMAL The key algorithm in this section is Pathfind-
ing via Reinforcement and Imitation Multi-Agent Learning
(PRIMAL) (Sartoretti et al. 2019a). It is a planning algo-
rithm based on actor-critic reinforcement learning (Barto,
Sutton, and Anderson 1983) and imitation learning. A de-
tailed description will be offered, as it is a core paper for
MAPF learning.

Motivation Centralized planning is able to find optimal
paths for all agents, but it can take a lot of time for big envi-
ronments with many robots. During the execution can hap-
pen some unpredictable things and the planner is forced to
replan new paths, which again takes a lot of time and can
make this algorithm to be inapplicable in practice. The goal
of this paper is to find an algorithm that can quickly decide
about the next action in every step based on actually avail-
able information. For this purpose, the considered world is
only partially observable and each agent is behaving accord-
ing to its policy in every step (decoupled approach).

World definition and available information Agents are
trained in a discrete partially observable grid world. Each
agent knows its FOV (in the paper, 10x10 squares was used),
a direction towards its goal, and an euclidean distance to the
goal (see Figure 1).

Technologies The algorithm is based on deep RL, specifi-
cally on Asynchronous Advantage Actor-Critic (A3C) algo-
rithm (Mnih et al. 2016). A3C is a reinforcement learning
algorithm based on deep neural networks. As can be seen in
Figure 2, it consists of many parallel agents, each with its
own copy of an environment. Thus, every agent can learn
independently on other agents, which is more robust and ef-
fective. It is an actor-critic method, so this network has two
goals – estimate a value function for every state and create a
good policy for every state, i.e. estimate true values for every
state-action pair and select the best action.

Learning itself is performed via distributed reinforcement
learning (Sartoretti et al. 2019b). Each agent has its own
copy of a neural network, whose weights are synchronized
with one common network after each step. Gradients ob-
tained from different agents are pushed to the common net-
work, so all agents are learning together.

The architecture of the neural network can be seen in fig-
ure 3. It is composed of convolution layers processing FOV
and fully connected layers for goal direction. Preprocess fea-
tures are then input into LSTM unit. The inputs of the net-
work are all information agent has (4x10x10 tensor with
FOV layers) and information about its goal. In contrast to
A3C, where the network learns only policy and value func-
tions, this network has also a blocking output – it is trained
to indicate whether the position of the agent is blocking an-
other agent on its way to the goal. The agent’s position is
considered to be blocking if another agent cannot reach its
goal or is delayed by 10 or more steps. This potential delay is
calculated just from a path found by A* (Hart, Nilsson, and
Raphael 1968) for one agent, so it is a heuristic, not a real de-



Figure 1: All available information for an agent. Agent is on
light blue position in the middle of the grid. Agent’s goal
position is explicitly known only if it is in agent’s focus of
view, but agent always has information about the direction
and a distance to its goal. source: Fig.6 of (Sartoretti et al.
2019a)

lay caused by learned policy (obviously, if it would be pos-
sible to compute shortest paths for every agent exactly and
quickly, no RL is needed). The agent itself does not know
the goals of other agents, but blocking output causes the
penalty, which affects the loss function and then learned pol-
icy. This penalty is the part of the solution for the most diffi-
cult thing – move away from their own goal (when the agent
obtains maximal reward) and does not block another agent
on its path to the goal. Two other things are contributing to
the achievement of such behavior, imitation learning of ex-
pert planner (ODrM* (Wagner and Choset 2015)) and very
dense training data. Expert planner shows paths worth to im-
itate and dense training data cause more conflicts and there-
fore more learning opportunities. A right setting of reward
function can by often tricky in RL. In this case, the authors
selected the reward function structure described in table 1.
Random environment size and obstacles density sampling at
the beginning of each episode exposes agents to many diffi-
cult situations and helps to learn more generalized policy.

Training At the beginning of every episode, a randomly
sized world is generated. Smaller worlds are more probable
because authors want agents to be exposed to the most dif-
ficult tasks. An obstacle density is also generated in random
and obstacles and agents are placed uniformly. There is just
checked, that none of the goals is separated from its agent
by obstacles (unreachable).

Results Results are compared to three planners - ORCA

Figure 2: An overall architecture of A3C. Every agent
interacts with its own separate copy of an environ-
ment. All agents contribute to one common network,
which learns value and policy functions. source:
https://medium.com/emergent-future/simple-reinforcement-
learning-with-tensorflow-part-8-asynchronous-actor-critic-
agents-a3c-c88f72a5e9f2

Table 1: PRIMAL structure of the reward function.
Action Reward
Move −0.3
Agent collision −2.0
No movement (on/off goal) 0.0/ −0.5
Finish episode +20
Blocking penalty −0.2

(Van Den Berg et al. 2011), ODrM* (Wagner and Choset
2015) and CBS (Sharon et al. 2015). Figure 4 shows that
all three main algorithm features (imitation learning, reward
structure, and density of obstacles) together are important
for reasonable performance. ODrM* needed minutes for re-
planning, while PRIMAL can decide the next action in less
than 0.2s.

As shown in figure 5, PRIMAL is quite good for environ-
ments with low obstacle density and very good for obstacle-
free worlds. It is outperformed in worlds with a high density
of obstacles. This problem was addressed in future work (de-
scribed later in this text).

GLAS One of the most recent papers is GLAS (Rivière
et al. 2020) – Global-to-Local Safe Autonomy Synthesis for
Multi-Robot Motion Planning with End-to-End Learning.

Motivation This paper combines both centralized and de-
coupled approach with their advantages. As in the case of
PRIMAL, GLAS tries to reduce the time necessary to recal-
culate new paths when something unpredicted happens. For
this reason, the output is a policy for every step action. It also
incorporates some part (called safety modul) which ensures



Figure 3: PRIMAL neural network architecture. Inputs are composed by agent’s observation and a goal position. Outputs is
policy for actions, value (serves as critic in the A3C) and an indicator of blocking positions.
source: Fig.3 of (Sartoretti et al. 2019a)

Figure 4: Primal episode length comparison.
Mean episode length during training, lower is better. The
dotted line shows the baseline, obtained from the expert
ODrM* planner. When we remove either environment sam-
pling, the blocking penalties, or imitation learning from our
approach, the policy converges to a worse solution. source:
Fig.5 of (Sartoretti et al. 2019a)

that potential collision will be solved and such a guarantee
is what a centralized approach is valued for.

World definition and available information GLAS op-
erates in continuous state/action space. The state is repre-
sented by position or position and velocity and possible ac-
tions are velocity or an acceleration. It could be categorized
as semi-decoupled approach with incomplete information.

Technologies Using continuous state/action space is al-
lowed by using Deep Sets (Zaheer et al. 2017), which are
also more efficient than convolution networks used by PRI-
MAL.

The safety module is fully differentiable, so it can become
a part of the loss function and help in policy learning.

Training Final loss function for a network is a combina-
tion of RL loss function and safety module, thus all deriva-
tions in backpropagation are computed with respect to this
new compound function. It was found that is better to use
this composition than to train network concerning RL loss
function only. This method causes nice cooperation with the
safety module, although the safety module has no trainable
parameters and therefore is not updated by backpropagation.
The safety module guarantees no collisions between agents.
For information about training data generation, see Figure 7.

Similarly to PRIMAL, GLAS also uses imitation learn-
ing, although the application is different. It tries to transfer
good global planner experience to local. To achieve this, at
the input of the network, all global-only information from
each expert trajectory is masked out, so the policy is learned
only on the data available for an agent.

Results Performance experiments are performed on a rel-
atively small count of robots (with a maximum of 16 robots)
in comparison to the high scalability of PRIMAL. Results,
however, turned out to be better than actual state-of-the-art
ORCA (see Fig. 8) and as it is able to efficiently solve the
problem in continuous space with a safety guarantee, it is
definitely worth mentioning.

(Cao, Sun, and Yan 2019) One of the possible real uses of
RL methods is autonomous underwater vehicles (AUV). On
such problem focuses following paper (Cao, Sun, and Yan
2019).

Motivation The motivation behind this paper includes
military purposes (underwater detection of enemy infiltra-
tors, their location and capture), rescue operations, scientific
exploration, or searching for resources. The problem does
not fit MAPF definition, it belongs to target searching (TS)
as the goal of these vehicles is to search the water for an
unknown moving target(s). It means that the goal position
is not defined in advance, the position is the part of the so-
lution result. Even so, the path to the goal can be long and
ineffective, obstacles and collisions can occur, and plan for
the path should dynamically changes, which is the reason
for including the paper in this overview.

World definition and available information The algo-
rithm operates on the grid map of size 64x64, where every
tile can be in one of three states - open, occupied, or un-
known, other inputs are the location of all possible bound-
aries and the position of AUV.

Technologies This algorithm works in three stages:

• create environment grid map from sonar information,

• search module is responsible for finding a potentially in-
teresting location,

• navigation module than calculates the path from a current
position to the selected goal.



Figure 5: Primal performance in comparison to planners
with complete information.
Success rates of the different planners in our three scenar-
ios. PRIMAL outperforms all planners in the top obstacle-
free world, slightly outperforms the others in low-obstacle-
density worlds, and is strongly outperformed in the high-
obstacle-density world. source: Fig.6 of (Sartoretti et al.
2019a)

For a purpose of this paper, the last two parts are poten-
tially interesting. Target searching is trained by reinforce-
ment learning. Inspired by PRIMAL and other following pa-
pers, the algorithm uses A3C, as it converges quicker than
DQN (Mnih et al. 2013) used in the previous version of this
algorithm. Navigation is divided into two problems – global
navigation to the target and local obstacle avoidance. Avoid-
ance is also solved by RL, specifically by a dual-stream Q-
learning and global navigation by DQN.

Results Authors run three different experiments – two
simulations and one experiment in a pool. Simulation ex-
periments focused on single- and multi-AUV setting. Both
experiments showed that the algorithm is able to find all tar-
gets and also has quite a good collision avoidance. The per-
formance was measured in terms of success rate and aver-
age path length and compared with three other heuristic ap-
proaches for target searching and won. As can be seen from
figures 9 and 10, the presented algorithm can find shorter
paths with a better success rate than all three other algo-
rithms.

Communication between agents
Information that an agent has at the time of decision can
describe the whole world, his focus of view, or can be en-
riched by information from other agents. If we decide to use

Figure 6: Neural network used in GLAS algorithm. As agent
is supposed to treat other agent differently from obstacles,
there are two separate networks for each of this types. An
input of the network are obstacles and neighbours in some
given radius around the agent.
source: Figure 2 of (Rivière et al. 2020)

communication as another source of information for the de-
cision, there is still a lot to do for effective implementation.
This section is dedicated to the exploration of recent trends.
What information should be shared, with which agents, how
to use the obtained information for improving decisions, and
so on –these are questions with no simple answer, but all can
be a subject of learning.

Communication between agents faces the same dimen-
sionality problem as the whole MAPF problem. With grow-
ing message size (in bits), the number of possibilities for one
agent in one step also grows. If potential message length
is enlarged by one bit, the size of a set containing all pos-
sible messages grows twice. Generally spoken, for space
with message size n, space size is 2n. Therefore, message
space size grows exponentially with the number of message
bits, which makes policy learning difficult, as state-action-
message space is growing too much.

(Freed, Sartoretti, and Choset 2020) Motivation In this
paper, the goal is a bitwise message policy parametrization,
which aims to solve the problem with the exponential growth
of message space and also presents a policy gradient esti-
mator capable of treating the message part of the gradient,
stay unbiased and decrease the variance compared to ”typi-
cal gradient estimators”. This helps to create a more robust
solution with faster convergence.

World definition and available information The prob-
lem is simplified as follows: every message has just one re-
cipient and a received message in time t influences just an
action selected in time t+1. Similarly, as in previous papers,
agents live in a grid world. The difference is that agents do
not know their own goals. Input information in every step is
the robot’s position and its neighbor’s goal, which encour-
ages the agent to communicate to learn its goal.

Technologies The output of this algorithm is a policy that
in each step chooses a message to be sent and its probability.
This policy is represented as a set of probabilistic distribu-
tions per each message bit. Each bit is therefore generated
independently, so adding a new message bit causes just lin-
ear growth (one new output must be added). This does not



Figure 7: Learning data are generated as follows:
1) generating random map with obstacles, start and end po-
sitions for some robots and expert trajectories generated by
good planner
2) masking all information which an agent can not see in the
real world
3) generate observation-trajectory pair from data above
source: Figure 1 of (Rivière et al. 2020)

Figure 8: Success rate and control effort with varying num-
bers of robots in a 8mx8m space. The shaded area around
the lines denotes a standard deviation over 5 repetitions. The
shaded gray box highlights validation outside the training
domain.
source: Fig.7 of (Rivière et al. 2020)

represent well dependencies between message bits, but it is
more efficient than generating messages from the joint space
of all bits. In theory, such a bitwise stochastic policy can rep-
resent any deterministic message policy. The author assumes
that the optimal policy is deterministic, so this approach is
in their opinion able to learn effective messaging.

Training Two networks are trained – one for the value
function and one for policy. The input of the policy network
is the agent’s observations and a message from the previous
step. Value network has different inputs – all environment
information, other agent’s action in the actual step, and in
the case of standard gradient estimation also a message from
the previous step. Both networks have similar architecture.

Results This paper presents two theoretical results – new
gradient estimator for the value function and policy gradi-
ent which includes messaging. This is allowed by simplifi-
cations stated above, but the paper proposes the possibility

Figure 9: Comparison of A3C and three previous heuristic
algorithms (cost, utility and policy).
source: Fig.9 of (Cao, Sun, and Yan 2019)

Figure 10: Comparison of A3C and three previous heuristic
algorithms (cost, utility and policy).
source: Fig.10 of (Cao, Sun, and Yan 2019)

of generalization into more message receivers.
Experiments were performed on two real physical agents

(robots) in a grid world. Possible actions are: left, right, for-
ward, back, not move and are combined with choosing 0/1
for every bit in the message. The episode ends once agents
are on their goals or after 256 steps.

Experiments showed, that message encoding together
with the newly proposed gradient improves the mean
episode reward and speeds up the achievement of the goal
(see Figure 11). This shows that better information sharing
can be useful for agent’s cooperation and learning.

As showed in (Freed, Sartoretti, and Choset 2020), uti-
lization of the potential of received information can also be
tricky if the information is not selected properly. In one of
the experiment settings, where they used a novel approach
for selecting messages, but ”old” gradient update, the learner
was not able to perform significantly better than a brute-
force search, so according to the authors, the algorithm is not
able to communicate effectively (share relevant information
or use obtained information for better action selection).

(Li et al. 2019) Motivation The previously mentioned pa-
per assumed communication with just one (closest) agent.
Paper does not deal with message recipients selection and it
is mentioned as included in ongoing work. Meanwhile, the
second paper to be mentioned (Li et al. 2019) also deals with
addressees selection.

World definition and available information Each agent
knows information from its FOV and the position of its goal.
Every step, each agent must decide its next action. The main



Figure 11: Figure presenting results of experiments authors
made. Best results are obtained when using both improve-
ments (one-hot encoding and an improved gradient) to-
gether. A higher value is better because it indicates, that
episode does not end prematurely before achieving goals.
Fig.3 of (Freed, Sartoretti, and Choset 2020)

goal is to learn two things – what information to share and
with whom. In contrast to the previous paper (Freed, Sar-
toretti, and Choset 2020) where communication was needed
to know its own goal, in this case, the agent knows its goal,
but communication can help him to move more effectively.

Technologies For selecting message receivers algorithm
uses graph neural networks (GNN). GNN can be in shortcut
viewed as a modification of convolutional neural networks
that are applicable to graphs.

Filtering information is addressed by convolutional neural
networks (CNN). CNN could be interpreted as a feature ex-
tractor and its inputs are information from the agent’s FOV.
Choosing whom to send a message is solved by GNN by
creating a matrix of communication graph. In such graph,
each node is one agent and the edges between them rep-
resent communication channels. In the result, the agent is
communicating only with agents which are connected by an
edge and are located within some radius, which is one of the
hyperparameters. Step action is then chosen by multi-layer
perceptron (MLP). MLP has an output of GNN as its input
and the same MLP is used by all agents (more specifically,
every agent has a copy of MLP with the same weights).

Training The training uses imitation learning (IL), specif-
ically learning from trajectories generated by Conflict-Based
Search (Sharon et al. 2015) on 30,000 generated cases (map
with obstacles, goals and agents). If a selected action leads
to a node or edge collision, such action is replaced by idle
action (the agent does not move). Because some episodes
can end with deadlock, some of those episodes are given to
an expert planner. The resulting trajectory which starts in a
deadlock position and ends with a successful solution (from
expert planner) became newly a part of training data, so this
solution can be learned in the future.

Results Presented results proved that this solution is faster
and more stable for a larger bunch of robots than classical

gradient estimator and most importantly is able to general-
ize to different numbers of agents. To be exact, the scalabil-
ity depends strongly on the agent count for which the net-
work was trained. After proper training, it works nicely for
cases with the smaller or the same amount of agents. Also,
models trained on greater groups are better on unseen data
in general.

Nature inspired path finding
Another widely used approach to many AI problems is evo-
lutionary algorithms and other techniques inspired by a na-
ture. MAPF is not an exception and two recent algorithms
are described in this section.

ACO One of algorithms inspired by nature is Ant Colony
Optimization (ACO) (Dorigo, Birattari, and Stutzle 2006). It
is an algorithm inspired by ants’ behavior while searching
for food.

Simulated ants move in the space and search for a goal
and ”secrete pheromones” while moving, which causes
other ants to follow the path with higher probability. Because
this can lead to local optima stuck or even into finding a path
to the goal which was randomly selected at first, a concept
of evaporation is introduced. It causes pheromones to fade
out over time. If the selected path was short, it is likely, that
ants can go to the goal and back faster and thus keep the
pheromones levels on the path high despite evaporation.

A solution to multi-agent pathfinding via ACO is offered
in (Zheng, Wang, and Xi 2018). First, this paper offers
some improvements in the path-finding ACO algorithm it-
self, which leads to secure and quicker convergence. Then
the multi-agent nature of the problem is considered by solv-
ing possible deadlocks and collisions and the speed of agents
is also taken into account. In more detail, each agent’s path is
changed dynamically according to occurrences of collisions
in the given radius around the agent (see figure 12).

In the beginning, the shortest path is found by ACO.
Then while robots are moving towards their goals, they can
block other agents and this is solved by the firework algo-
rithm, which is able to find the next promising position. Path
change (because of collision) for one agent can start chain
of changes for other agents. The algorithm tries to avoid
deadlocks and struggling in a local optima by incorporat-
ing the fireworks algorithm (Tan, Shi, and Tan 2010). For
whole algorithm summary, see figure 13. Results show im-
provement in the average time and path lengths. Unfortu-
nately, paper experiments are restricted to comparison with
traditional ACO and (Qu, Huang, and Ke 2015), so it is not
possible to assess the results in comparison with classical
planning results.

GA Genetic algorithms (Mitchell 1998) can also be ap-
plied to MAPF problem. One of the most recent papers is A
method for real-time dynamic fleet mission planning for au-
tonomous mining (Wahde, Bellone, and Torabi 2019). GA
are here used to effectively generate a conflict-free path also
with a schedule for a fleet of vehicles in the mine. It also
explored the dynamic version, where goals are dynamically
assigned to the vehicle after one mission is completed.



Figure 12: Obstacle avoidance scheme.
source: Fig.1 of (Zheng, Wang, and Xi 2018)

Dealing with motion in the real world
Motivation Possible usage in MAPF can be not just in the-
oretical path planning but also in an application to embod-
ied agents (robots). One of the main challenges for robots
are moving obstacles (e.g. humans or other robots). When
other robots are part of the same team and communication
is allowed or the policy is centrally planed, their moves are
predictable to some extent, which definitely can not be said
about humans. Despite the difficulty of predicting other au-
tonomous entities, modeling their behavior is one of the fre-
quently used approaches. As none of the previously men-
tioned papers deals with this problem, the following para-
graph will shortly present one possible solution.

Motion Planning Among Dynamic, Decision-Making
Agents with Deep Reinforcement Learning (Everett, Chen,
and How 2018) presents a possible approach. The main ad-
vantage of the newly presented algorithm is its ability to deal
with a previously unspecified number of movable obstacles.
This feature is really useful because the goal is to create
robots able to move e.g. in the office, where an amount of
pedestrians is variable and potentially large.

World definition and available information The goal is
to train policy and every discrete time step decide what to do
according to this policy. Action space is divided into 11 dis-
crete actions (combinations of direction and velocity). The
observable part of the environment state is the agent’s po-
sition, velocity, nearest agents (in a given radius), and sur-
rounding obstacles in the form of pictures or video frames.

Figure 13: Schema of whole decision algorithm. source:
Fig.2 of (Zheng, Wang, and Xi 2018)

Authors however propose to apply feature extraction to dis-
tinguish between different types of obstacles, so that furni-
ture and people are treated differently.

Technologies The ability to deal with the changing
amount of obstacles is achieved by using LSTM cells in the
neural network. LSTM cells are frequently used in linguis-
tics for a series of words processing. Because every sentence
has a different length, LSTMs are designed to deal with vari-
able input lengths. This property is used in this case to create
input to the following parts of the network from a bunch of
encoded information about obstacles around. In contrast to
the majority of papers dealing with movable obstacles, the
algorithm presented by (Everett, Chen, and How 2018) does
not have any models of obstacles’ behavior like assuming
people will not change their direction and velocity for some
time. The algorithm learns the proper reaction without any
modeling.

This algorithm is based on reinforcement learning, specif-
ically on A3C algorithm.

Training decision-maker was trained on a data set of 500
random scenarios and this dataset can be reused for a bench-
mark for future works.

Results Performance differs in dependency on the num-
ber of agents. For 6 or more agents, the newly proposed so-



lution is better than previous work on this topic (Chen et al.
2017). This new algorithm is better in execution time as well
as in a success ratio.

Future Work Proposals
In the previous section, various approaches to reliable path
planning with the cooperation and collision avoidance were
presented. Some of them are still on the start of their path to
algorithms usable in the real world and some, like PRIMAL,
have big potential to be a good solution to many problems.
Almost all authors also suggest improvements as part of re-
sult discussion.

PRIMAL itself was improved by its very authors (Sar-
toretti, Koenig, and Choset 2019). The new algorithm aims
to merge the advantages of PRIMAL with a centralized plan-
ner to improve the performance in very dense environments
(many obstacles or robots). The previous implementation
was outperformed by classical planners in this kind of world,
but PRIMAL was still able to lead effectively many robots to
their goals before stuck. They offer a simple solution – After
a fixed number of PRIMAL steps, if agents are not on their
goals yet, a centralized planner (ODrM*) has 5 seconds long
chance to plan the rest of the moves. It showed reasonable
improvement in the case of a small and middle environment
with a density of up to 30% and up to 64 agents. For larger
groups of agents, this approach is outperformed by central-
ized planners. The authors also propose future improvement
by inventing more clever struggle detection than just a num-
ber of steps.

(Li et al. 2019) is a promising communication algorithm,
but the policy is learned via multilayer perceptron and con-
flicts are solved poorly. If the action leads to the conflict,
it is just replaced by idle action. Imitation learning is not
so helpful for learning conflict-free policy, because the cen-
tral planner typically prevents collision a few steps ahead, so
there are no training data with ”bad” situations ( e.g. conflict
in next action, need to leave the goal and let another agent
pass). Collision avoidance is, on the contrary, addressed in
PRIMAL, motion planner, and improved ACO, where com-
munication could improve results, because more informa-
tion could lead to better decisions.

Conclusion
Presented papers cover different approaches and have differ-
ent goals - shortest paths, collision avoidance, communica-
tion. Of course, these objectives are mixed together in all pa-
pers, but there is not focus on all of them in one algorithm.
A common underlying thing for reinforcement learning is
the usage of A3C algorithm, while LSTM for an arbitrary
number of obstacles and graphs for communication are quite
interesting method transfers.

The main suggestion of this work is to combine suitable
collision avoidance module (preferably one with an ability
to deal with non-static obstacles), quick and good decen-
tralized policy learner with time- and space-effective com-
munication, which can lead to the decision-maker appli-
cable in (not only) commercial use. This paper presented

an overview of promising starting points for this ”ideal”
decision-maker.
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