Multi-agent Path Finding Planning & Executing

Roman Barták

Charles University, Czech Republic

joint work Jiří Švancara and Ivan Krasičenko

Part I: Introduction to MAPF

Problem formulation, variants and objectives

Part II. Solving MAPF

Reduction-based solvers

Part III. From abstract to executable actions

Translation vs. model modification

Part IV. Demo

Part I: Introduction to MAPF

Problem formulation, variants and objectives

Part II. Solving MAPF

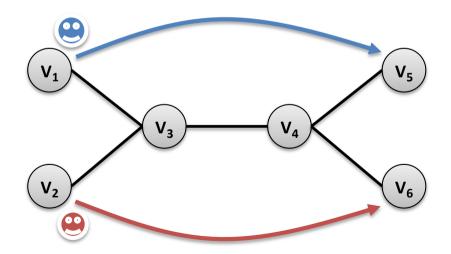
Reduction-based solvers

Part III. From abstract to executable actions

Translation vs. model modification

Part IV. Demo

- an (undirected) graph
- a set of agents, each agent is assigned to two locations (nodes) in the graph (start, destination)
- agents can **move** (to a neighboring node) or **wait**Find **plans** for all agents such that the plans **do not collide in time and space** (no two agents are at the same location at the same time).



time	agent 1	agent 2
0	V ₁	V ₂
1	wait $\mathbf{v_1}$	move v ₃
2	move v ₃	move v ₄
3	move v ₄	move v ₆
4	move v ₅	wait v ₆

Conflicts – summary

Vertex conflict – two agents are at the same time at the same vertex

Edge conflict – two agents use the same edge at the same direction

Swapping conflict – two agents use the same edge at different direction

Following conflict – one agent follows another one (train)

Cycle conflict – agents are following each other forming a "rotating cycle" pattern

Objectives

How to measure quality of plans?

Two typical criteria (to minimize):

Makespan

- distance between the start time of the first agent and the completion time of the last agent
- maximum of lengths of plans (end times)

Sum of costs (SOC)

sum of lengths of plans (end times)

time	agent 1	agent 2
0	V_1	V ₂
1	wait $\mathbf{v_1}$	move v ₃
2	move v ₃	move v ₄
3	move v ₄	move v ₆
4	move v ₅	wait v ₆

Makespan = 4 SOC = 7

Part I: Introduction to MAPF

Problem formulation, variants and objectives

Part II. Solving MAPF

Reduction-based solvers

Part III. From abstract to executable actions

Translation vs. model modification

Part IV. Demo

Express (model) the problem as a **SAT formula** in a conjunctive normal form (CNF)

```
Boolean variables (true/false values)

clause = a disjunction of literals (variables and negated variables)

formula = a conjunction of clauses

solution = an instantiation of variables such that the formula is satisfied
```

Example:

```
(X or Y) and (not X or not Y)
[exactly one of X and Y is true]
```

SAT model is expressed as a CNF formula We can go beyond CNF and use **abstract expressions** that are translated to CNF.

A => B	B or not A
sum(Bs) >= 1 (at-least-one(Bs))	disj(Bs)
sum(Bs) = 1	at-most-one(Bs) and at-least-one(Bs)

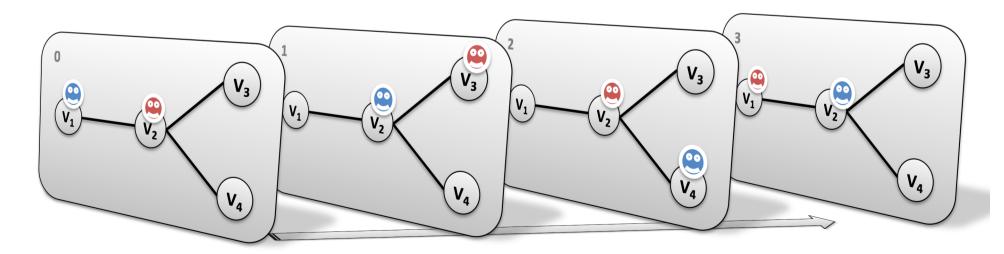
We can even use **numerical variables** (and constraints).

Classical SAT-based approach

In MAPF, we do not know the lengths of plans (due to possible re-visits of nodes)!

We can encode plans of a known length using a layered graph (temporally extended graph).

Each layer corresponds to one time slice and indicates positions of agents at that time.



Using **layered graph** describing agent positions at each time step B_{tav} : agent a occupies vertex v at time t

Constraints:

each agent occupies exactly one vertex at each time.

$$\sum_{v=1}^{n} B_{tav} = 1$$
 for $t = 0, \dots, m$, and $a = 1, \dots, k$.

no two agents occupy the same vertex at any time.

$$\sum_{a=1}^{k} B_{tav} \leq 1 \text{ for } t = 0, \dots, m, \text{ and } v = 1, \dots, n.$$

• if agent *a* occupies vertex *v* at time *t*, then *a* occupies a neighboring vertex or stay at *v* at time *t* + 1.

$$B_{tav} = 1 \Rightarrow \Sigma_{u \in neibs(v)}(B_{(t+1)au}) \ge 1$$

Preprocessing:

 $B_{tav} = 0$ if agent a cannot reach vertex v at time t or a cannot reach the destination being at v at time t

```
path(N,As) =>
                                                             Incremental generation of layers
    K = len(As),
    lower upper bounds (As, LB, UB),
    between (LB, UB, M),
    B = new array(M+1,K,N),
    B :: 0..1.
    % Initialize the first and last states
                                                             Setting the initial and destination locations
    foreach (A in 1..K)
        (V, FV) = As[A],
        B[1,A,V] = 1,
        B[M+1,A,FV] = 1
    end.
                                                             Agent occupies one vertex at any time
    % Each agent occupies exactly one vertex
    foreach (T in 1..M+1, A in 1..K)
        sum([B[T,A,V] : V in 1..N]) #= 1
    end,
    % No two agents occupy the same vertex
    foreach (T in 1..M+1, V in 1..N)
                                                             No conflict between agents
        sum([B[T,A,V] : A in 1..K]) #=< 1
    end,
    % Every transition is valid
    foreach (T in 1..M, A in 1..K, V in 1..N)
        neibs (V, Neibs),
                                                             Agent moves to a neighboring vertex
        B[T,A,V] #=>
        sum([B[T+1,A,U] : U in Neibs]) #>= 1
    end,
                                   foreach (T in 1..M1, A in 1..K, V in 1..N)
    solve(B),
                                       B[T,A,V] #=> sum([B[Prev,A2,V] :
    output_plan(B).
                                                A2 in 1..K, A2!=A,
                                                Prev in max(1, T-L)...T]) #= 0
                                                                                     K-robustness
                                   end
```

SAT encoding

At(x,a,t) – agent **a** is at node **x** at time **t** Pass(x,y,a,t) – agent **a** is going from node **x** to node **y** at time **t**

$$\forall a \in A : At(s_a, a, 0) = 1$$

$$\forall a \in A : At(g_a, a, T) = 1$$

$$\forall a \in A, \forall t \in \{0, \dots, T\} : \sum_{x \in V} At(x, a, t) \leq 1$$

$$\forall x \in V, \forall t \in \{0, \dots, T\} : \sum_{a \in A} At(x, a, t) \leq 1$$

$$\forall x \in V, \forall a \in A, \forall t \in \{0, \dots, T - 1\} :$$

$$At(x, a, t) \implies \sum_{(x,y) \in E} Pass(x, y, a, t) = 1$$

$$\forall (x, y) \in E, \forall a \in A, \forall t \in \{0, \dots, T - 1\} :$$

$$Pass(x, y, a, t) \implies At(y, a, t + 1)$$

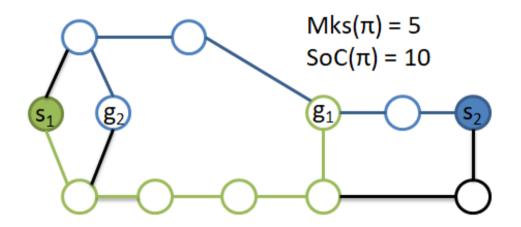
$$\forall (x, y) \in E : x \neq y, \forall t \in \{0, \dots, T - 1\} :$$

$$\sum_{a \in A} (Pass(x, y, a, t) + Pass(y, x, a, t)) \leq 1$$

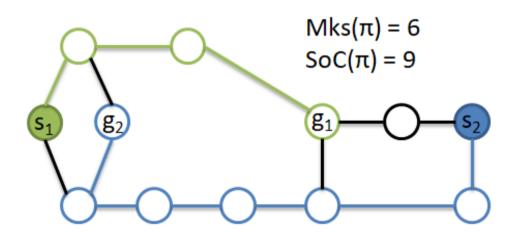
initial location goal location at most one node per agent at most one agent per node (no vertex conflict) from node to edge from edge to node no swapping conflict

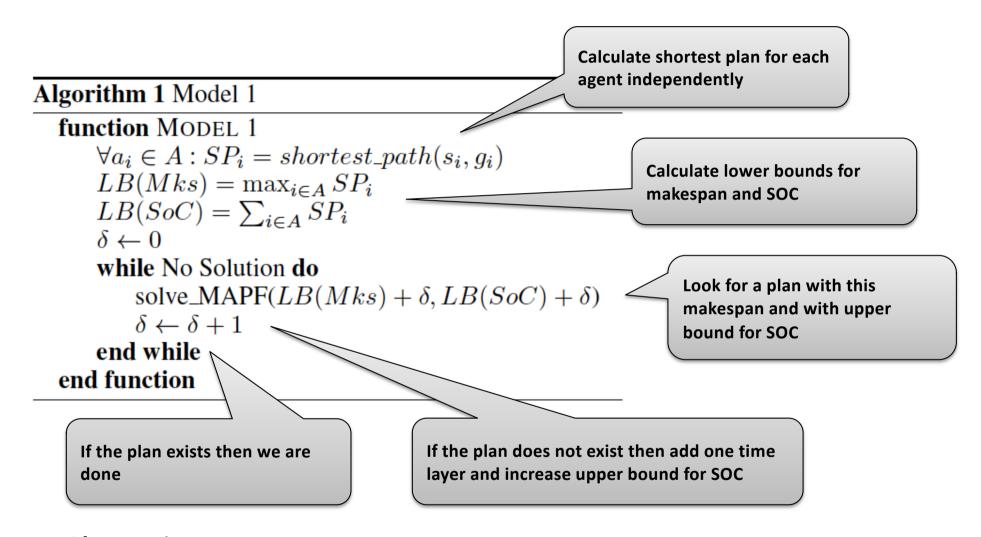
Makespan vs. Sum Of Costs

Makespan-optimal plan might be SOC-suboptimal



and vice versa, SOCoptimal plan may require larger makespan.





Observation:

 When we finally find the SOC-optinal plan, we noticed that a smaller makespan would be enough in many cases (but when this makespan was explored, the upper bound for SOC was too tight).

Core idea:

 Find a plan with minimal makespan and use the difference between SOC of that plan and the lower bound for SOC to find how many extra time layers are needed.

Calculate shortest plan for each **Algorithm 2** Model 2 agent independently function MODEL 2 $\forall a_i \in A : SP_i = shortest_path(s_i, g_i)$ $LB(Mks) = \max_{i \in A} SP_i$ Calculate lower bounds for $LB(SoC) = \sum_{i \in A} SP_i$ makespan and SOC $\gamma \leftarrow 0$ while No Solution do $SoC \leftarrow opt_MAPF(LB(Mks) + \gamma,$ Look for a plan with the minimal $LB(SoC), |A| * LB(Mks) + \gamma)$ makespan and for that makespan $\gamma \leftarrow \gamma + 1$ find the best SOC plan end while $\delta \leftarrow SoC - LB(SoC)$ $opt_MAPF(LB(Mks) + \delta, LB(SoC), SoC)$ Calculate the needed makespan end function and find best SOC plan for it

Classical pre-processing

 node x is not reachable from the start node at time t (or destination is not reachable from node x when starting at time t)

$$=> At(x,a,t)=0$$

Novel pre-processing (for SOC)

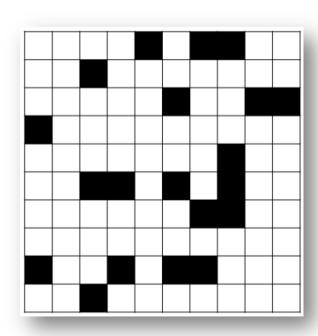
- Let Sp_a be length of the shortest path for agent a, minSOC be the lower bound for SOC, and minSOC+d be the current upper-bound for SOC
 - ⇒ agent a must be at its destination since time Sp_i+d

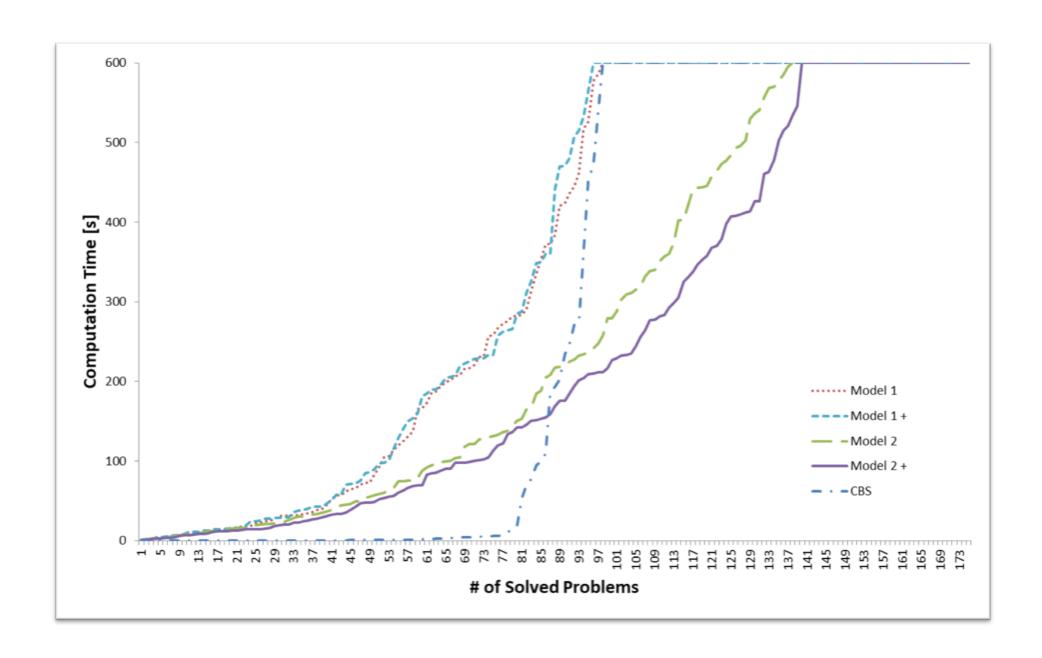
$$\Rightarrow$$
 $At(x,a,t) = 0 (x \neq g_a \& t \geq Sp_a + d)$

Experiment setup

4-connected grid maps (8x8 to 16x16) 20% randomly placed obstacles for grid WxW, we use W to 2W agents randomly placed starts/goals

five instances for each setting 175 unique problem instances time limit of 600 seconds





Results (another perspective)

	M. 1	M. 2	M. 1+	M. 2+	CBS
# of solved	97	137	95	139	97
# of fastest	0	4	3	46	88
# of fastest (without CBS)	9	8	6	118	_
IPC score	16.11	44.56	16.76	57.07	92.50
IPC score (without CBS)	57.19	110.54	53.93	134.29	_

Part I: Introduction to MAPF

Problem formulation, variants and objectives

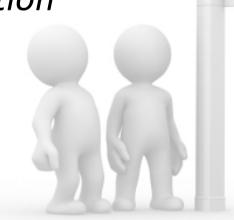
Part II. Solving MAPF

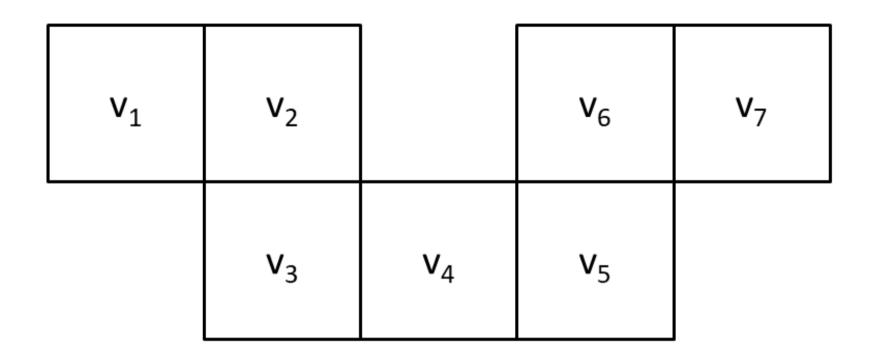
Reduction-based solvers

Part III. From abstract to executable actions

- Translation vs. model modification

Part IV. Demo





6 classical actions needed to go from v1 to v7 plus 4 turning actions during execution turning may take significant time (w.r.t. moving)

Abstract actions:

- move
- wait

Executable actions:

- move forward
- wait
- turn left/right + move
- turn back and move

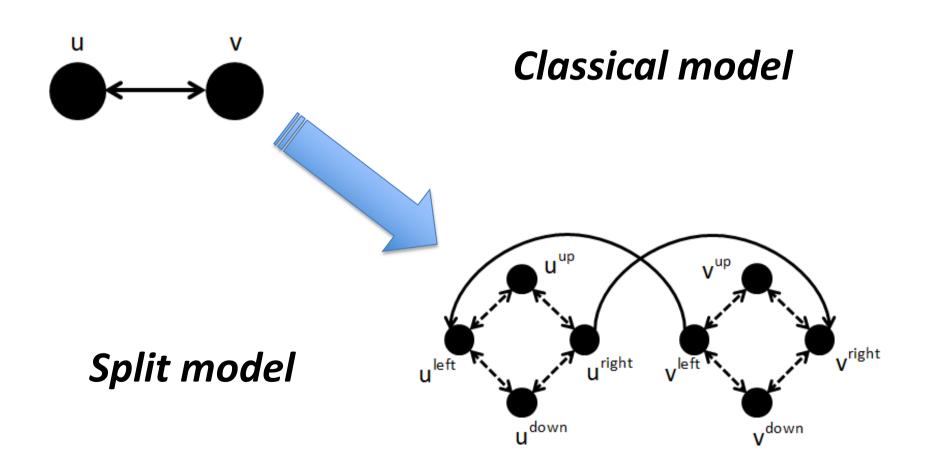
Times:

t_t – time to turn left/right

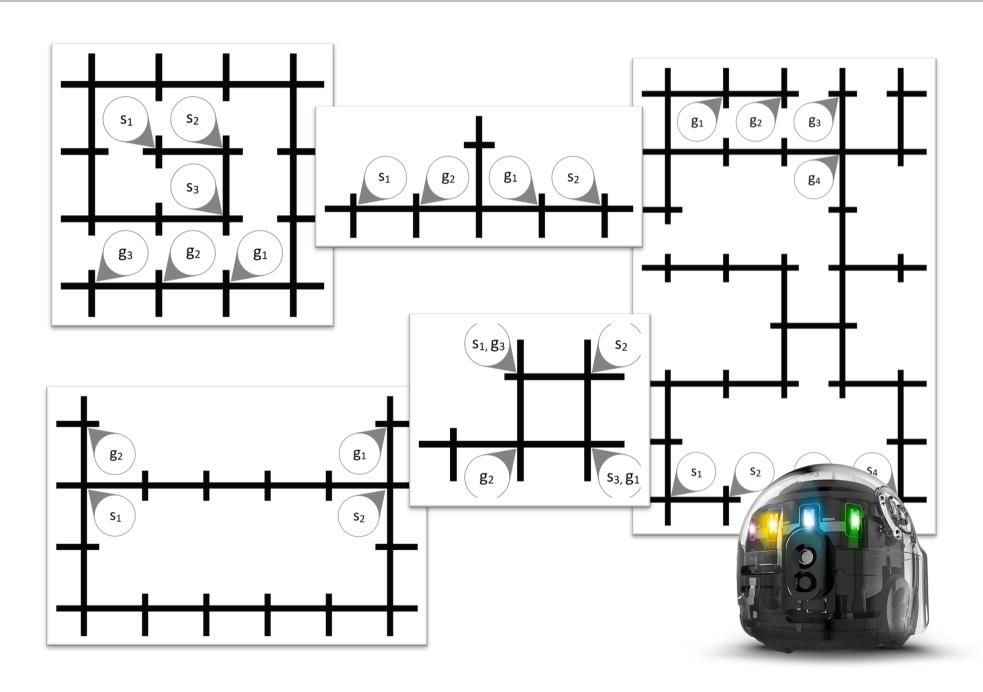
t_f – time to move forward

classic	classic+wait
t _f	$t_f + 2*t_t$
$t_f + t_t/2$	$t_f + 2*t_t$
$t_f + t_t$	$t_f + 2*t_t$
$t_f + 2*t_t$	$t_f + 2*t_t$

It is possible to assume turn actions during path finding by splitting the nodes.



Experiment setting



Some results

53	ea	ge 5 cm			10 cm					
81 82 81	Computed Failed Runs Makespan					ber of sions	Total Time [s]		Max Δ time [s]	
classic	14	14	5	0	1	0	NA	49.2	1.6	1.6
classic+wait	14	14	0	0	6	0	43.8	64.3	0	0
classic+robustness	16	16	0	0	0	0	32.7	56.3	1.7	1.5
classic+wait+robustness	16	16	0	0	0	0	50.1	74	0	0
split	22	22	0	0	0	0	30.3	52.3	1.3	2.3
split+wait	22	22	0	0	6	0	36.1	69.1	0	0
split+robustness	23	23	0	0	0	0	31.2	53.1	1.2	2.2
split+wait+robustness	23	23	0	0	0	0	37.5	72.2	0	0
w-split	36	66	0	0	0	0	30.2	54	0	0
w-split+robustness	36	66	0	0	0	0	30.2	54.1	0	0

Quality index	Computed Makespan		Failed Runs		Number of Collisions		Total Time		Max Δ time	
classic	5.00	5.00	2.00	5.00	2.75	5.00	1.90	4.93	1.52	1.61
classic+wait	5.00	5.00	5.00	5.00	2.12	5.00	3.69	4.10	5.00	5.00
classic+robustness	3.95	3.95	5.00	5.00	5.00	5.00	4.12	3.98	2.64	2.74
classic+wait+robustness	3.95	3.95	5.00	5.00	5.00	5.00	2.79	3.08	5.00	5.00
split	3.04	3.04	5.00	4.17	3.70	4.00	4.80	3.72	2.35	1.82
split+wait	3.04	3.04	5.00	5.00	2.73	5.00	4.11	3.50	5.00	5.00
split+robustness	2.87	2.87	4.17	4.17	4.33	4.50	3.67	3.57	3.14	2.69
split+wait+robustness	2.87	2.87	5.00	5.00	5.00	5.00	3.83	3.29	5.00	5.00
w-split	1.97	1.15	5.00	5.00	3.83	5.00	4.99	4.88	5.00	5.00
w-split+robustness	1.92	1.13	5.00	5.00	5.00	5.00	4.88	4.82	5.00	5.00

Part I: Introduction to MAPF

Problem formulation, variants and objectives

Part II. Solving MAPF

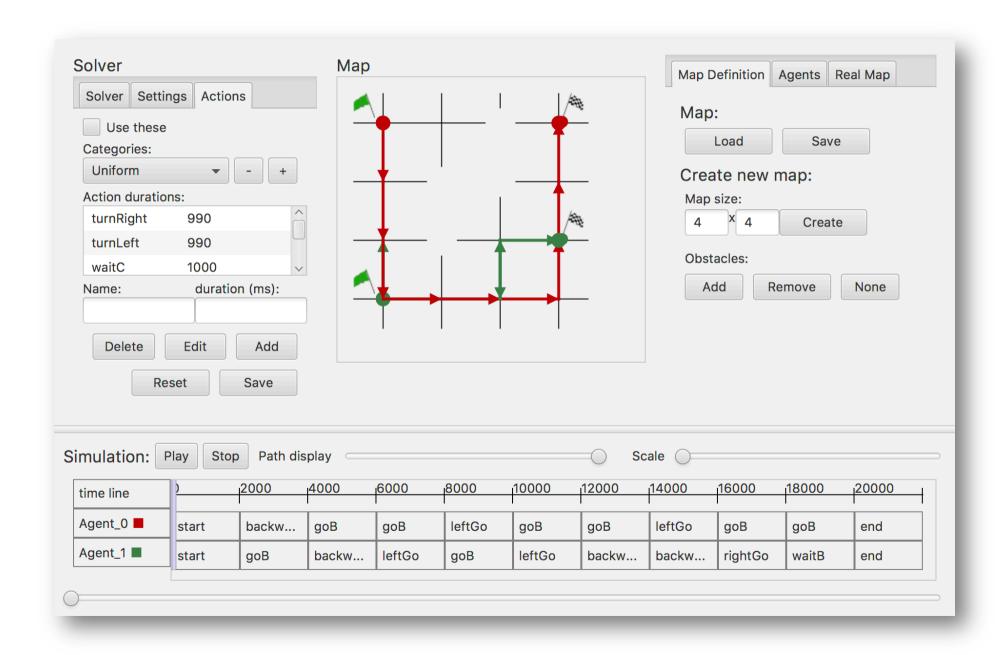
Reduction-based solvers

Part III. From abstract to executable actions

Translation vs. model modification

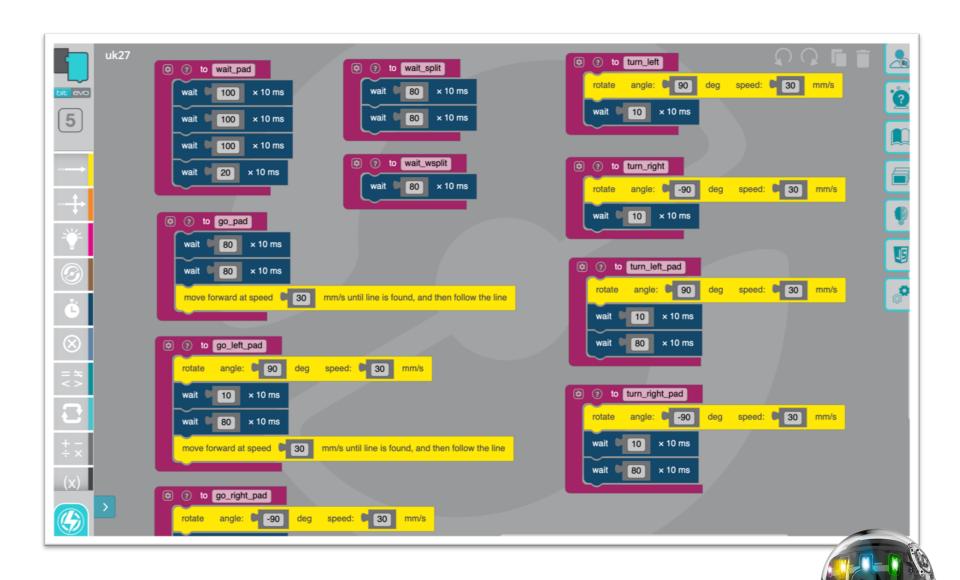
Part IV. Demo

MAPF software



Create a map

Ozoblocky



Roman Barták

Charles University, Faculty of Mathematics and Physics bartak@ktiml.mff.cuni.cz