
2021 Flatland Challenge, Team Learn

Richard Hájek, Ladislav Maleček, Matouš Melecký, Jaroslava Schovancová

Abstract

In this paper we report on experiments performed to ad-
dress the 2021 Flatland Challenge with Deep Reinforcement
Learning approaches. Leveraging the flatland-rl library [6],
we studied a Multi-Agent Reinforcement Learning (MARL)
system with different number of agents, evolution epochs,
and depth of the observation tree, and concluded that the
longer evolution and lower number of agents, the better for
the completion rate and the scores of the simulation. With
these consideration in mind we were able achieve completion
rates 0.35 to 0.99, and scores -0.7 to -0.13.

Introduction
The Flatland Challenge [6] tackles a principal challenge of
the transportation world: How to efficiently manage dense
traffic on complex railway networks? As this is a real-world
problem that many transportation and logistics companies
face, novel approaches have the potential to shape the way
traffic management systems are implemented around the
world.

While taking part in the NAIL052 Seminar on Artificial
Intelligence 2 course, we chose to approach the challenge
using the deep reinforcement learning techniques, explor-
ing the Single-Agent Reinforcement Learning (SARL) and
Multi-Agent Reinforcement Learning (MARL) approaches,
notably focusing on MARL algorithms for cooperative set-
tings, in particular the Multi-agent Actor Critic approach.

Our findings, particularly in the collaborative MARL
area, are summarized in this paper, structured as follows: in
Section Single-Agent Reinforcement Learning we summa-
rize the SARL approach. In Section Multi-Agent Reinforce-
ment Learning we provide a brief overview of the MARL ap-
proach, focusing particularly on the Actor Critic algorithm.
In Section Considerations we summarize what we learned
from reviewing the approaches taken by the winners of the
2020 Flatland Challenge, pointing out the considerations we
made to prepare a series of experiments, that are summa-
rized in Section Grid Scan of a Parameter Space. In Section
Summary we summarize our findings.

Acronyms
Throughout the paper we use the acronyms listed in Table 1.

RL Reinforcement Learning
SARL Single-Agent Reinforcement Learning

MARL Multi-Agent Reinforcement Learning
MDP Markov Decision Process
DQN Deep Q-Networks

TD Temporal Difference
MADDPG Multi-Agent Deep Deterministic Policy Gradient

PPO Proximal Policy Optimization

Table 1: Acronyms.

Single-agent Reinforcement Learning
The task of single-agent reinforcement learning is to train an
agent that would be able to act within some environment it
perceives while at the same time maximize some predefined
reward function. The agent should learn how to act through
trial and error.

The agent perceives the state of the environment through a
set of observations and receives reward signals. Usually, the
time is discrete as continuous time poses additional chal-
lenges. Traditional solutions of the reinforcement learning
work on basis of some dynamic programming and iteratively
operate over a simple data table, that captures its current
reward function. However, these approaches struggle when
the environment becomes more complex and do not scale
well. Due to this, the field of deep reinforcement learning
has recently emerged, where deep neural networks are used
as function approximators instead of the simple table storing
the estimated reward function.

The problem of navigating a train, that lies at the core
of the Flatland challenge, can be well modelled as a single-
agent reinforcement learning problem. The agent is the train
in the network and it observes some local subsection of in-
tersections and acts upon reward signals provided by some
heuristics, e.g. distance to its goal. The extension of the
single-agent-reinforcement learning, described in Section
Multi-Agent Reinforcement Learning, can further be used to
solve the whole flatland challenge problem of multiple trains
navigating through a common environment.

In the next Section Formalization and Key Concepts the
formalization of the problem is presented and key con-
cepts are introduced. Then, in Section Algorithms, a brief
overview of reinforcement learning algorithms is presented.



In the following sections, the SARL will be referred to as
simply reinforcement learning, or RL.

Formalization and Key Concepts
The formalism traditionally used to describe the environ-
ment of the reinforcement learning is the Markov Decision
Process (MDP). It is a tuple (S,A,R, P, ρ0), where

1. S is the set of states
2. A is the set of actions
3. R : S ×A× S → R, noted as rt = R(st, at, st+1) is the

reward function, that depends on the current state of the
world, the action taken and the resulting state.

4. P : S ×A→ P (S) is the transition probability function
5. ρ0 is the starting state distribution.

The state s ∈ S is a complete description of the world.
The agent can observe the whole state, in which case the en-
vironment is fully observable, but also it can be constrained
to only a subset of the state, making the environment par-
tially observable.

The policy function π : S → A is the mechanism through
which the agent makes decisions. The policies in deep re-
inforcement learning can be implemented as a deep neural
network. The policy can be deterministic or stochastic. A
trajectory T is a sequence of states and actions in the world.
Return G of the agent is the sum of rewards obtained during
time. In the case of infinite-horizon reinforcement learning,
meaning that the number of steps can be infinite, the reward
is discounted by some factor γ < 1 dependent on the time:

G =

∞∑
t=0

γtrt. (1)

Key information the agent needs to decide which actions
to take is provided by the value functions. A value of a state
or state-action pair is the expected return obtained by start-
ing in the said state-action pair and then following the policy
π.

The on-policy action-value function (also called the Q-
function) can be defined as

Qπ(s, a) = Eπ[G|s0 = s, a0 = a]. (2)

The value function V π(s) is similar, however, it only de-
pends on the starting state. The optimal action-value func-
tionQ∗ is the expected return if the agent follows an optimal
policy, meaning that it is the maximum of the of all possible
on-policy action-value functions. The optimal value function
is defined in a similar manner. It is evident that if the Q∗ is
known, the optimal action can be obtained from it directly.

Advantage function Aπ(s, a) can be defined as

Aπ(s, a) = Qπ(s, a)− V π(s). (3)

It expresses the relative advantage of the particular action a
in the state s compared to the action selected by the policy.

The Bellman equation is used to compute the optimal
action-value function Q∗

Qπ(st, at) = Es′∈S [r(s, a) + γmax
a′

Qπ(s′, a′)]. (4)

Algorithms
As shown in Fig. 1, the RL algorithms can be classified into
two main groups: model-free and model-based. The model-
based algorithms learn the full model of the world, while the
model-free algorithms side-step the model by directly learn-
ing the Q-function or policy. More commonly, the model-
free approach is employed, as estimating the whole model is
often implausible.
Q-Learning learns an approximator for the optimal

action-value function Q∗(s, a). This is accomplished by op-
timization based on the Bellman equation. The policy can be
inferred directly from the Q-function. During training, an ε-
greedy policy is used. This means that, for some parameter
0 < ε < 1, the agent picks the action as provided by the so-
far learned policy with probability of ε and with probability
1−ε it performs some other random action. This helps to bal-
ance the exploitation-exploration problem. In the beginning,
ε is low, as the initial policy is usually random. It is then as-
sumed that the policy improves during the training and the ε
is progressively increased. Often, experience buffer is used,
hence the experience can be reused and randomly sampled.
Therefore, this algorithm is off-policy, meaning that the cur-
rent policy is different from the one used when training (past
experiences that are used while training were generated us-
ing previous versions of the current policy). DQN [5] is a
typical example of a Q-learning method. It has been one of
the first algorithms that used deep neural networks in the RL.

Policy optimization techniques directly approximate the
policy function. The parameters of the policy are searched
for using gradient ascent on the advantage function. This
approach is on-policy and it can easily estimate both deter-
ministic and stochastic policies. One example of a policy
optimization algorithm is REINFORCE.

Actor-critic approaches combine the policy optimization
with Q-Learning. The actor is an approximator that learns
the policy and effectively controls how the agent behaves.
The critic evaluates the action by computing the value func-
tion. The training of critic and actor is performed separately.
One of the prominent examples of an actor-critic approach
is the Advantage Actor Critic (A2C) [4].

Multi-agent Reinforcement Learning
Scaling up from Single-agent RL to Multi-agent RL, the ac-
tion spaces become joined action states, with one dimension
per agent. The MARL approach can be challenging to grab:
we cannot use a simple-agent RL algorithm for each agent,
as with the single-agent we assume that the transition proba-
bilities remain constant. However, with multiple agents they
can change, therefore we need to use a joined transition ta-
ble. This breaks or invalidates the basic framework of most
theoretical analyses in the single-agent setting (but it is not
necessarily a deal breaker for more advanced algorithms).

In case we used a single policy to manage all agents,
we would experience an exponential growth of action space
with respect to the number of agents, which is known as
combinatorial nature of MARL.

Focusing on the decentralization vs. centralization aspect
of the agent behaviour, if we lean towards full decentraliza-



Figure 1: Taxonomy of reinforcement learning algorithms. Courtesy of [1].

tion, we would have to tackle the non-stationarity, as there is
a need for communication between agents in order to miti-
gate the limited observability of a single agent. If we lean to-
wards fully centralized approach, we would have to fight the
scalability, but the agent would have had a full observation
and could have acted upon it without any communication
issues.

Additionally, with a MARL system we need to find a
proper balance to address instability of experience replay,
increased variance in policy gradients, as well as tackling
data efficiency due to the curse of dimensional sparsity.

MARL – Overview
MARL Systems and the Cooperation Distinction Re-
view [9] discusses three different MARL information struc-
tures: fully cooperative, fully competitive, and the mix of the
two.

In a fully cooperative system, the agents collaborate to op-
timize a common long-term return. Learning goals in MARL
are multidimensional, and objectives of solo agents do not
necessarily align. In a fully cooperative MARL system, the
reward function is shared among all the agents. Recognised
variations may be

• Common accumulated reward – it allows the use of
single-agent RL with identical value and Q function.

• Team-average reward – the agents are allowed to have dif-
ferent reward functions which can be kept private, but the
goal for cooperation is to optimize the long-term average
reward model.

The team-average reward approach probably is not ex-
actly what we look for, due to the agents needing to be able
to handle many different maps & situations. One of the pos-
sible considerations may be to define different reward func-
tions for the slower and the faster trains.

The common accumulated reward is a special case of
team-average reward approach. It requires incorporation of
communication protocol, as it cannot predict the behavior of
agents with different and hidden reward function (policy).

MARL Systems and the Centralization Distinction A
fully decentralized approach suffers from observability of
only the local action and reward, and thus from non-
convergence in general. Majority of cooperative MARL set-
tings involve homogenous agents with a common reward
function that aligns all agents interests.

Highlighting applications of cooperative setting is robot
team navigation, mostly decentralized setting with network
agents sharing some personal information/observations.

It is essential to make the distinction based on centraliza-
tion or cooperation to hold for the execution. Training can
be, and often is, done in the centralized fashion, e.g. action-
critic approaches that will be mentioned later in this section.

MARL Algorithms for Cooperative Setting
Review [3] discusses these three MARL algorithms for co-
operative settings: Q-Learing and Deep Q-Networks (DQN),
Policy Gradient Algorithms, and Multi-Agent Actor Critic.

Q-Learing and Deep Q-Networks The Q function is be-
ing periodically updated with the most recent parameters,
can, and often does, use bootstrapping, in order to stabilise
learning, benefiting also from the replay buffer technique,
one can store previous “situations”, transitions.

The Q-Learning can be directly applied to multi-agent
settings, by separating each agent and learning its own Q-
function. Nevertheless, due to the non-stationarity, due to
multiple agents, it can hinder convergence, as it violates the
Markov assumption required for convergence. Another dif-
ficulty arises from the use of a replay buffer, since the tran-
sition probabilities change in a non-stationary environment.



Policy Gradient Algorithms Most of the advanced tech-
niques use Temporal Difference (TD) approach, where the
bootstrapping uses just some of the previous steps, and the
Q value function defined from the current policy, using the
gradient directly on the policy itself, and always moving in
the direction of the current observed situation.

The inner workings of the algorithm leads naturally to
high variance gradient estimates. We suppress this to a cer-
tain degree in single-agent settings by utilizing baseline esti-
mators, but that proved to be difficult in multi-agent settings
due to the non-stationarity.

Multi-Agent Actor Critic One of the criteria taken into
account in Multi-agent Actor Critic approach is the locality
of information: the learned policies use solely the local in-
formation, and do not assume a differentiable model of the
environment (all advanced settings), neither do assume any
particular structure of communication, which does not need
to be differentiable. The lead idea of Actor Critic algorithm
is the use of centralized training with decentralized execu-
tion. This approach renders Q-Learning unnatural to use, be-
cause the Q function cannot infer the same information from
two very different inputs. But action-critic methods are well
suitable due to the critic being used only in training.

The gradient forN agents parametrized by θi and policies
πi reads

∇θiJ(θi) = Es∼pµ,ai∼πi [∇θi logπi(ai|oi)Qπ
i (x, a1, . . . , aN )] ,

(5)
where the Qπ

i (x, a1, . . . , aN ) is a centralized action-
value function that takes as input actions of all agents
a1, . . . , aN , in addition to some state information x. Q func-
tions for each agent are learned separately, which results
in a possibility of having an arbitrary reward function. We
can further extend the above idea to work with deterministic
policies, together they are called multi-agent deep determin-
istic policy gradient (MADDPG).

The primary motivation behind the MADDPG is the sup-
pression of non-stationarity. The policies change but not in
regards to the global critic function, which sees the environ-
ment as stationary, which contributes to the stabilization of
the training.

MARL in Flatland context
We have mentioned common approaches in MARL and now
we will specify how we can deploy these techniques to our
very specific domain.

State and action representation
In Flatland, the environment is represented by a 2D grid ar-
ray of arbitrary size, where each cell represents one place
on the grid. Cell specifies one of few possible situations, ei-
ther there is nothing, a station or one of many types of train
tracks. We can see the representation on Figure 2.

The naive approach is feeding the RL algorithm the grid
without any processing. Such approach results in a solver
with a limited size of the input and with low transfer-ability
between different maps. In order to alleviate the problem,
the grid transformed into an observation tree. Observation

tree is a representation of the immediate surroundings of the
agent. The size of this observation tree depends on the train-
ing hyper-parameters. The tree consists of crossing types,
lengths between crossings, train station types.

Actions are represented in a simple go left, go right, con-
tinue straight bases. We only allow agents to make an ac-
tion when they reach a junction. This is a side effect of dis-
cretization the problem in time from continuous real time to
discrete steps between decisions.

Other rules that are incorporated into the environment are:
only one train can be present on a cell, each train has its
starting and finishing position, trains cannot turn around on
a single cell.

Reward
All of the aforementioned algorithms require a reward func-
tion. The possible methods of rewarding agents are plenty,
for example, punish the agents if they get stuck by colliding
into each other, reward them for successfully reaching the
final state. Furthermore specific reward function are men-
tioned in the next section.

Transferability
One of the desired properties is being able to apply the al-
ready trained agents to many different maps and situations,
preferably being able to add and remove custom amount of
agents. To our best knowledge this is mostly achievable only
for decentralized approaches where a single agent is con-
trolled independently from others. The decentralization here
means only that the RL algorithm is fed only a state of one
agent, the weights can possibly be shared. With usage of the
decentralized approach are only be limited by the amount of
space on the map for each agent and some inherently learned
behavior that expect some specified agent density.

Considerations
During the survey phase of the project we have studied ap-
proaches of the winning teams in the 2020 and 2019 compe-
titions, notably the JBR HSE team’s approach [2], and the
Netcetera’s ai-team-flatland [8].

JBR HSE approach
The key lessons we took from the JBR HSE approach fol-
low:

• domain-specific simplifications of the task greatly im-
prove the results: agent cannot make a decision when
not at an intersection, and agent’s episode ends after it
reached the goal or got itself into a deadlock (while the
default behaviour was continuation along the path),

• two observations have been used: a local tree observation
with fixed depth, where each edge and the vertex to which
it leads has a vector of features calculated for a given
section of the path – e.g. the length of the path, the dis-
tance from the end of the edge to the destination, etc. The
signs of the minimum distance to the destination, noting
whether the agent is at the intersection or in front of it, the
agent got into the deadlock, etc.



• each agent is assigned an ID,

• reward function weighting in deadlocks and successful
accomplishments:

rt = 0.01?∆d−5?is deadlocked+10?succeeded, (6)

where ∆d denotes a change of distance to the goal since
the decision has been made.

• used a Proximal Policy Optimization (PPO) algorithm [7]
with Actor Critic approach. The Critic approximates the
value function, while the Actor learns a randomized pol-
icy that maximizes the expected value of total reward,

• the team has added communication mechanism, where
agents generate messages and send them to all neighbour-
ing trains, and any received messages are averaged into a
single message. A self-attention mechanism was used to
determine the weights with which the messages will be
averaged,

• one particularly interesting idea we noticed was observa-
tion that most deadlocks occurred due to the same start
times of the trains. Therefore, the team took actions so
that only some agents are picked to start their journey, and
only when one of them finishes, the next agent is allowed
to start its journey. At the training time, agents are picked
based on how close they are to their goal. This approach
performed well for small environments. During the appli-
cation time, classifier is trained to determine probability
of reaching the goal – agents wait until the probability be-
comes sufficiently large.

ai-team-flatland approach
The key lessons we took from the ai-team-flatland ap-
proach [8] follow:

• the whole environment has been represented as a map of
switches with directions, i.e. a directed graph,

• the team tried different RL approaches, however, with-
out further specifications of which approaches have been
tried,

• in the 1st round, the base implementation leveraged a
DQN

• reward function considerations: the team added more in-
formation about the future deadlocks, and penalization for
getting into one; they decreased negative reward per step,
and added a penalty for stopping and for invalid actions,
included valid actions in the observation vector,

• the team propagated information about tracks behind an
agent, in order to avoid agent blocking other agents be-
hind it,

• the team applied a voting system resembling an ensem-
ble system: several models trained, that worked in differ-
ent states and environments, next action was the most fre-
quent action proposed by models.

• in the 2nd round, the team ran with a sparser, bigger net-
work with more trains, with different speeds and intro-
duced malfunctions,

• the team identified several problems: as it is easy to get
into a deadlock, the outcome rarely gains positive reward;
deadlocks were more costly, e.g. a train blocked the only
route in the local area; local observations were limiting,
as an agent got information about other agents too late,

• the team considered a prioritized approach as a way to
solve conflicts between agents: a conflict occurred for ac-
tive agents e.g. when two or more agents wanted to oc-
cupy the same cell, or in a case of a swap conflict, when
they wanted to surpass each other from different direc-
tions.

• the team decided to build a un-directed conflict graph,
where the edges represent conflits. By assigning prior-
ity to the agents, they converted the conflict problem to
a graph coloring problem, where two agents in a conflict
cannot have the same priority,

• applying a heuristic, they gave a higher priority to the
agents with the highest degree, i.e. highest number of con-
flicts, and checked that the blocked agent cannot have the
highest priority,

• for agents that were ready to depart, they chose the fastest
agents that have a free path,

• the team ensured global observation, i.e. supplemented
the agents with information about the whole path to goal.

Grid Scan of a Parameter Space
We implemented a toy model of a MARL system in coop-
erative mode with action critic algorithm, in order to better
compare and understand the benefits of different approaches.
However, we focused in particular on a grid scan of a param-
eter space that we describe below.

For our experimentation we adopted the flatland-rl li-
brary [6] enhanced by a simple DQN algorithm, which
serves as a baseline application for the Flatland challenge,
prepared by the organizers. Our main objective was to un-
derstand its behavior under different conditions.

We identified parameters for our study: the number of
agents, the number of evolution epochs, and a depth of the
observation tree that we fed into the network. With these
parameters, which define the simulation parameters, we per-
formed a grid scan of the phase space, and compared the
completion rate and the score of each simulation run.

We ran the simulation for N ∈ {1, 2, 4, 8} agents, with
different number of epochs E ∈ {1, 32, 64, 128, 256, 512},
and the depth of the observation tree d ∈ {2, 4}. The com-
pletion rates and scores for the simulations with differentN ,
E, and d are shown in Table 2.

From both the completion rate plots, and the scores plots,
it seems that
• the lower the number of agents N , the better,1

• the higher the number of epochs of the training, the better,
• for the choice of the depth of the observation tree d ∈
{2, 4}, we see only a little difference, where the smaller d
seems to have converged slightly faster.
1Completion rate closer to 1 is better, while scores closer to 0

are better.



Each simulation produces a dynamic visualisation of the
activity of the trains. In Fig. 2 we show a snapshot of this
map for a simulation with 2 trains, and in Fig. 3 with 8 trains.
The higher the number of trains (agents), the larger the map.

We have not performed a systematic study of simulations
with N > 8, as from our initial grid scan it seemed that it
would not bring much benefit, in terms of completion rate
and the scores dependence.

Summary
When approaching the Flatland challenge, we have re-
viewed options which Single- and Multi-Agent Reinforce-
ment Learning systems can offer to study a transportation
system. We have studied approaches taken by the 2020 Flat-
land challenge winners.

We implemented a toy model of a cooperative Multi-
Agent Reinforcement Learning (MARL) system with ac-
tion critic algorithm. And with the flatland-rl library in-
tegrated with a DQN algorithm, we studied a Multi-
Agent Reinforcement Learning system with different num-
ber of agents (N ∈ {1, 2, 4, 8}), evolution epochs E ∈
{1, 32, 64, 128, 256, 512}, and depth of the observation tree
d ∈ {2, 4}, and concluded that the longer evolution and
lower number of agents, the better for the completion rate
and the scores of the simulation. In our simulations, tak-
ing into account these observations, we achieved comple-
tion rates 0.35 to 0.99, and scores -0.7 to -0.13. We briefly
reviewed the dynamic visualizations of maps of the simula-
tions.

Acknowledgements
Computational resources for this project were in part
supplied by the project ”e-Infrastruktura CZ” (e-INFRA
LM2018140) provided within the program Projects of Large
Research, Development and Innovations Infrastructures.

Contributions
Jaroslava Schovancová

Team leader and organiser; past approaches research; report
co-author & editor.

Ladislav Maleček

Reinforcement learning research and programming; report
co-author & editor.

Matouš Melecký

Related work and past approaches research; report co-
author.

Richard Hájek

Programming and parameter optimization; experimental re-
sults; report co-author.

References
[1] Joshua Achiam. Spinning up in deep reinforcement

learning, 2018. URL: https://spinningup.openai.com/
en/latest/index.html.

[2] Florian Laurent, Manuel Schneider, Christian Scheller,
Jeremy Watson, Jiaoyang Li, Zhe Chen, Yi Zheng,
Shao-Hung Chan, Konstantin Makhnev, Oleg Svid-
chenko, Vladimir Egorov, Dmitry Ivanov, Alek-
sei Shpilman, Evgenija Spirovska, Oliver Tanevski,
Aleksandar Nikov, Ramon Grunder, David Galevski,
Jakov Mitrovski, Guillaume Sartoretti, Zhiyao Luo,
Mehul Damani, Nilabha Bhattacharya, Shivam Agar-
wal, Adrian Egli, Erik Nygren, and Sharada Mo-
hanty. Flatland competition 2020: Mapf and marl
for efficient train coordination on a grid world,
2021. http://arxiv.org/abs/2103.16511 arXiv:2103.
16511.

[3] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter
Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments,
2020. http://arxiv.org/abs/1706.02275 arXiv:1706.
02275.

[4] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Maria Flo-
rina Balcan and Kilian Q. Weinberger, editors, Pro-
ceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 1928–1937, New York, New
York, USA, 20–22 Jun 2016. PMLR. URL: http://
proceedings.mlr.press/v48/mniha16.html.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforce-
ment learning, 2013. http://arxiv.org/abs/1312.5602
arXiv:1312.5602.

[6] Sharada Mohanty, Erik Nygren, Florian Laurent,
Manuel Schneider, Christian Scheller, Nilabha Bhat-
tacharya, Jeremy Watson, Adrian Egli, Christian
Eichenberger, Christian Baumberger, Gereon Vienken,
Irene Sturm, Guillaume Sartoretti, and Giacomo
Spigler. Flatland-rl : Multi-agent reinforcement learn-
ing on trains, 2020. http://arxiv.org/abs/2012.05893
arXiv:2012.05893.

[7] John Schulman, Oleg Klimov, Filip Wolski, Prafulla
Dhariwal, and Alec Radford. Proximal policy opti-
mization, 2020. URL: https://openai.com/blog/openai-
baselines-ppo/.

[8] Evgenija Spirovska. Leverage reinforcement learn-
ing for building intelligent and adaptive trains that
can successfully navigate a railway, 2020. URL:
https://blog.netcetera.com/leverage-reinforcement-
learning-for-building-intelligent-and-adaptive-trains-
that-can-successfully-9f4cdef80162?gi=ac3088425cec.



Table 2: Grid scan results of the multi-agent simulations, for N ∈ {1, 2, 4, 8} agents, with different number of epochs E ∈
{32, 64, 128, 256, 512}, and different depth of the observation tree d ∈ {2, 4}. In the left column we show the completion rate,
in the right column the score.



Figure 2: Map of a simulation with 2 trains.

[9] Kaiqing Zhang, Zhuoran Yang, and Tamer
Başar. Multi-agent reinforcement learning:
A selective overview of theories and algo-
rithms, 2021. http://arxiv.org/abs/1911.10635
arXiv:1911.10635.



Figure 3: Map of a simulation with 8 trains.


