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Abstract 

The goals of Flatland Challenge are resolving problems of train 
scheduling and rescheduling. To address these issues we used 
AI search and planning techniques. In this report we produce 
the classical AI search and planning techniques to review 
transport planning problems with the help of the framework 
provided by NeurIPS flatland Challenge. Multi-Agent Path 
Finding (MAPF) is a problem of finding paths for multiple 
agents and those paths must be collision free. To solve the 
scheduling and rescheduling issues of dense railway network 
we are using an optimized technique of MAPF. The techniques 
used will resolve collision and deadlock problems and provide a 
smooth transportation environment. 

1 Introduction 

NeurIPS 2020 Flatland Challenge is a railway scheduling 

competition which was held in partnership with German, 

Swiss, and French railway companies. This research challenge 

deals with the real key problem in the transportation world. 

The Flatland Challenge (Mohanty et al. 2020) is a research 

competition designed to come up with solutions addressing 

transportation issues not only in railway but also in other areas 

of transportation and logistics “How to efficiently manage 

dense traffic on complex rail networks?” this competition is 

organized by AIcrowd, and this edition of the challenge is 

affiliated with the AMLD2021 and ICAPS 2021 conferences. 

This is a real-world problem faced by many transportation and 

logistics companies around the world such as the Swiss 

Federal Railways, Deutsche Bahn and SNCF (Li. J, et al. 

2021). 

The Flatland challenge was initiated in the year 2019, the 

key concept of it is to answer “How can trains learn to 

automatically coordinate among themselves, so that there are 

minimal delays in large train networks?”, at the core of this 

challenge lies the general vehicle rescheduling problem 

(VRSP) (Li et al. 2007). In 2020, the organizers came up with 

new issues regarding transportation and added them onto the 

2019 version. The Flatland Challenge is a train planning 

problem. The task of this competition is to design a plan such 

that the trains reach their goal / destination position within a 

time limit without colliding with each other. 

Multi-Agent Path Finding (MAPF) deals with multi- agent 

path finding problems, how to move agents from start to 

target locations on a graph without vertex and edge collisions 

(Stern R et al. 2019). 

 

2 Flatland Challenge Environment 
 

2.1 Problem Definition 

Flatland environment is the core concept for a simulation 

which contains all of the concepts like the railway network 

itself (turns, one-ways, crossroads, turnouts, etc.) and its 

agents (trains). The railway networks comprise of a 2D 

rectangular grid with width and height, and number of cities 

and stations. Each city contains multiple parallel rail tracks, 

and each rail track in a city contains one or more stations. 

Let’s assume that there are k trains t1, t2, t3….tk each of them 

has its starting point and a destination point, here we 

discretize time into timesteps from 0 to Tmax. To maximize the 

reward, we give commands to the trains at every timestep so 

that we move as many trains as possible to their goal cells as 

soon as possible. We are interested in each agent reaching its 

destination but we also strive to reach a global goal that all 

trains reach their destinations.  

Each grid is of size 1 x 1 and contains one of the seven base 

types of tracks as shown the figure below Figure 1, that 

determines how the train can move through the cells. In 

addition to that, some of these base track types can be rotated 

in up to four directions. This creates up to 27 different rail 

types. 
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Figure 1: Eight rail types: (a) straight, (b) curve, (c) simple switch, (d) 

diamond crossing, (e) single slip switch, (f) double slip switch, (g) tri- 

symmetrical switch, and (h) symmetrical switch (Li. J, et al. 2021). 

 

The Flatland grid contains sparse railways that 

essentially create limitations on the movement of the 

agents. Trains must legally move around the grid through 

these various rail types without colliding. Another rather 

important conflict that must be solved in the challenge are 

deadlocks where trains get stuck in a position and cannot – 

without interruption – continue to their final destinations. 

The basic conflicts are when two or more trains occupy the 

same cell or when they exchange positions at same 

timestep – that is forbidden and must be solved at the 

beginning. 
 

 
Figure 2: Flatland map with a grid before the execution of any 

plan. (Source: AIcrowd [2020]) 

 

Each Flatland object has an assigned timestep limit and 

all trains are required to reach their target within that limit. 

The train which does not reach its goal position within that 

timestep limit will be kept on an incomplete trains list. For 

each train that is on the incomplete list there is a penalty 

subtracted from the reward function. Time is discretized 

into timesteps from 0 to Tmax, where 

 

𝑇_𝑚𝑎𝑥 = 8 ∗ (𝑤 + ℎ + ⌈|𝐴|/|𝐶|⌉).                 equation 1 

 

In equation 1, w is the grid width, h is the grid height, A 

is the number of trains in the problem and C is the number 

of cities in the grid. The task is to command the trains in 

such a way that as many as possible get to their target 

stations without collisions in the shortest time. With these 

individual timestep costs, we will also analyze the total 

time (make-span) until the last agent arrives at its goal 

point. This gives birth to a reward function that is used 

and evaluates the efficacy of various algorithms on a 

local and global scale. 

Timestep 0 means there are no trains in the environment. 

To make the train appear in the environment with its initial 

orientation, which occupies one cell, we provide the 

departure time of the train and pass a command at that 

time. During the execution, the train makes only one action 

and occupies a single cell at each timestep. As per the 

commands passed, the train behaves accordingly and 

leaves the environment as soon as it reaches the 

destination position if and only if there are no conflicts 

during the transition and it doesn’t suffer a malfunction. If 

a conflict occurs or a malfunction happens then the train 

becomes still for a given number of timesteps and it cannot 

make any sort of transition. This helps raise issues in the 

execution as the penalties inquired by these delays are 

visible in the final score. 

The train has to perform a particular action at every 

timestep from the start to the target position, either it has to 

wait or move forward, turn left or right. Collision of trains 

occurs only when two trains enter the same cell at the same 

timestep (or pass through each other). The Flatland 

Challenge considers the solution as valid if the trains reach 

their targets within a reasonable timeframe. In the 

environment we will come across four types of conflict 

situations a) tile conflict (collision) b) following conflict 

(can be eliminated by introducing elementary timesteps) c) 

cycle conflict (form of deadlock) and d) swapping conflict, 

illustrated in Figure 3 below. 
 

Figure 3: Conflict Situations. (Source: AIcrowd [2020]) 

 

2.2 Examples 

The following Figures 4 and 5 are visualizations of the 

Flatland problem with 4 and 32 agents respectively. Results 

obtained after running these simulations provided by 

AIcrowd can be seen in Figures 6 and 7, where the 

individual agents moved around the grid randomly. The five 

scores in each figure are reflecting five separate runtimes of 

the algorithm with again 4 and 32 agents respectively. The 

reward function takes into account runtimes and the number 

of trains that successfully got to their target locations on 

time. The precise calculation of the reward function can be 

found in the Flatland source code documentation.  
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Figure 4: 10 x 10 grid environment with 4 trains. 

 

 
Figure 5: 30x30 grid environment with 32 agents 

 
 

    
Figure 6: Scores of 5 Episodes for 4 trains. 

 

 

 
Figure 7: Scores of 5 Episodes for 32 trains 

 

3 Literature Review 

3.1 Multi-Agent Path Finding 

In the AI community, MAPF is one of the most researched 

domains. Finding an optimal path for all the agents from 

their initial state to the goal state without causing collision 

during their transition is NP-hard (G. Sharon et al. 2015). 

And while the problem is NP-hard, modern multi-agent 

pathfinding algorithms are able to find optimal paths for 

more than 100 agents in reasonable time. In most cases 

there will be an additional goal to reduce the sum of 

timesteps required for each agent to reach its goal state. 

Hence, lot of research in this area is done on finding the 

appropriate heuristics to solve the problem as quickly as 

possible. In recent days this research has practical 

applications in airplane taxiway scheduling (Li. J et al. 

2019), robot routing (W. Honig et al. 2018, 2019), traffic 

control, robotics, aviation and video games, etc. (G. Sharon 

et al. 2015). 

To solve the MAPF problem, the algorithms used are 

categorized into two classes: optimal and sub-optimal 

solvers. We usually apply optimal solvers when the number 

of agents is relatively small and the task is to find an 

optimal and minimal-cost solution. Whereas suboptimal 

solvers are used to find paths when the number of agents is 

high and finding the optimal solution is NP-hard.  

 

3.2 A* Search 

The A* search is an informed, best-first search algorithm. It 

is an extension of the Dijkstra algorithm by a heuristic 

function which makes the search more efficient – especially 

useful when working with large state spaces. It can be 

simply modified to be relevant for prioritized planning as 

well. The A* builds a tree of possible paths originating from 

the start node and always extends these paths one edge at a 

time until a certain termination criterion is met. The path 

extension order is determined by expanding nodes that 

minimize the evaluation function f(n) = g(n) + h(n), where 

g(n) represents the cost of travelling to the node n from the 

agent’s start node and h(n) represents the estimated cost of 

the cheapest path from node n to the target node based on 

the heuristic function. The A* algorithm terminates when 

the target node is expanded or when there are no more 

nodes to expand. 

The A* algorithm is complete when used on finite graphs 

with non-negative edge weights (Russell & Norvig [2009]) 

and optimal if the heuristic function is admissible. An 

admissible heuristic function is a distance function h that 

never overestimates the cost of getting to the target node 

from the current node. However, if the heuristic function is 

only admissible, it does not guarantee that g(n) obtained 

upon first expansion of the node is optimal. In order to 

guarantee that the g(n) of a node is optimal upon its first 

expansion, we must require that the heuristic function is 

also consistent. 

 

3.3 Conflict Based Search 

Conflict Based Search (CBS) - as summarized by (Sharon et 

al. 2015) - is a tree-based search algorithm used to find the 

optimal solution for multiple agents by decomposing MAPF 

into a number of constrained single-agent pathfinding CB 

Searches. It is a two-level algorithm that is complete and 
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optimal and is able to solve large instances of MAPF 

problems. All these problems are resolved in time 

proportional to the size of the map and length of the 

solution, but there is a possibility of having an exponential 

number of such single-agent problems. 

At the beginning of the CBS the search tree contains only 

one node i.e., the root node without any constraints. Using 

this node, CBS – on its low level - finds the shortest path for 

the agents using one of the shortest path algorithms, mostly 

A* search algorithm is used. 

Conflict tree (CT) is a binary tree that guides the overall 

search for the solution. Each node contains constraints for 

each agent’s paths and the cost of the solution based on the 

objective. The solution is in the node with the lowest cost, 

where there are the fewest constraints, and all agents are 

satisfying them and there are no conflicts between their 

paths.  

If nodes in the CT contain conflicts, we initially select the 

one with the lower cost and secondarily the one with fewer 

constraints (if they have the same cost). If they have the 

same cost and same number of constraints, one of them is 

arbitrarily selected and solved by splitting the node into two 

child nodes where each of them prohibits one of the 

conflicting agents from entering the conflicting cell. The 

CBS always splits the conflicting node into two, meaning it 

constrains only two agents in each step, even when there are 

more agents in conflict in the node in question. Before any 

implementation, this fact seems likely to play a negative role 

in the Flatland environment because the railways are sparse 

and contain a very high number of agents. 

 

3.4 Prioritized Planning 

Prioritized planning is a decoupled MAPF approach as it 

plans agent paths individually. It is sub-optimal because it 

doesn’t look at a global picture and does not enforce any 

cooperation between agents that could be obtained through 

coupled approaches which plan all agents together.  

Alike other successful participants using local search 

techniques we decided to solve a simplified problem by 

omitting potential breakdowns and deadlock situations and 

use a prioritized path planning algorithm to break down the 

number of trains into smaller subgroups. This algorithm is 

able to solve the Challenge in its first stages with few agents 

but with variable speeds (no tricky deadlock/breakdown 

situations). Based on the previous winners of the 

competition that used prioritized planning to reduce the 

number of agents that the CBS has to sift through, it is 

obviously a very effective approach. The question for testing 

is the group size. 

The prioritized planning algorithm is simple and fast but is 

not generally complete nor optimal. In our Flatland setting 

where the grid starts empty and allows the placement of 

agents in any order as well as time-step changes and also the 

agents disappear immediately from the grid after reaching 

their destination makes the prioritized planning algorithm 

complete. 

The prioritized planning approach is sensitive to the priority 

assignments to agents and is very sensitive to the correct 

assignment. There are various ordering heuristics that can be 

used to boost the prioritized planning algorithm. From 

research conducted on other Flatland participants we’ve 

noticed that Fast-First ordering was the most effective and 

decided to include it in our own implementation. 

 

3.5 Large Neighborhood Search (LNS) 

The LNS metaheuristic was proposed by Shaw. In LNS the 

neighborhood is defined implicitly by a destroy and a repair 

method. The destroy method destructs part of the current 

solution while a repair method rebuilds the destroyed 

solution. The destroy method typically contains an element 

of stochasticity such that different parts of the solution are 

destroyed in every invocation of the method. The 

neighborhood L(s) of a solution s is then defined as the set 

of solutions that can be reached by first applying the destroy 

method and then the repair method. The main idea behind 

the metaheuristic is that the large neighborhood allows the 

heuristic to navigate in the solution space easily, even if the 

instance is tightly constrained. This is to be opposed to a 

small neighborhood which can make the navigation in the 

solution space much harder. The destroy method is an 

important part of LNS. The most important choice when 

implementing the destroy method is the degree of 

destruction: if only a small part of the solution is destroyed 

then the heuristic may have trouble exploring the search 

space, as the effect of a large neighborhood is lost. If a very 

large part of the solution is destroyed then the LNS heuristic 

almost degrades into repeated re-optimization. This can be 

time-consuming or yield poor-quality solutions dependent 

on how the partial solution is repaired. This is why an 

educated neighborhood selection strategy is essential. 

 

3.6 Minimal Communication Policies (MCP) 

(Ma, Kumar, and Koenig 2017) MCP’s are decentralized 

robust plan-execution policies that can prevent collisions 

and deadlocks during plan execution for valid MAPF plans. 

Usually, they stop some trains so that the original plan 

maintains the ordering with which each train visits each 

cell. This ensures all trains reach their destinations within a 

finite number of timesteps. 

 

4 Methodology 

We have somewhat laid out our methodology higher, but 

to sum up:  

On the lower level of our Conflict Based Search we use 

the A* algorithm which can quickly find paths for 

individual agents and is subject to restrictions imposed by 

the corresponding node in the CT. We adopted the space-

time A* algorithm to find the shortest path for every agent 

that avoids collisions with the given paths of all other 

trains. Each state of space-time A* is a pair of a cell and a 
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timestep. We reviewed previous heuristics used for the 

A* algorithm in the Challenge and chose to use the 

Distance Map heuristic. It is consistent; hence the 

algorithm is admissible. It also showed more promise 

in the Challenge than the Manhattan Distance 

heuristic. For every agent, the heuristic calculates the 

distance to the agent’s target for every reachable cell 

by the agent. The heuristic function is formulated as 

follows  

hi,j = min(argmin (c(π0
i,j), c(π1

i,j ), . . .), ∞), 

 

we are searching for the minimal πk
i,j – the k-th possible 

path from node i to node j. function c takes a path and 

gives its length (cost). 

We apply the high level of the CBS algorithm to 

subgroups of trains in the grid. We use Prioritized 

Planning to do so. The groups differ in size, we didn’t 

restrict all groups to have a certain number of trains in 

each group. In different steps of the Flatland Challenge 

there are different numbers of agents in the grid, so we 

firstly use PP to break the agents into as many groups as 

there are different speeds of the trains. Then, if the number 

of agents in a group is higher than 8, we break them up 

into two either arbitrarily or preferably based on the 

distances from each of theirs targets. We assign higher 

priority to the ones that are faster and then also to the ones 

that are closer to their destinations. Individual path 

planning is done for the agents with higher priority first. 

In our implementation we took care of agent collisions. 

We did so by creating conditions in the run of the CBS 

which then fed these constraints to the A* algorithm to 

find collision-free paths. However, deadlocks are a 

separate problem that require significant attention in the 

Challenge in order to produce high ranking results. We 

addressed them by introducing a Communication Policy 

(CP) that recorded the intersections that a malfunctioned 

train was supposed to pass through. All trains that were 

supposed to pass through each of these intersections are 

then stopped in such a cell, so they do not block any 

additional trains and before passing any of these 

intersections in question. We use Prioritized Planning to 

prioritize the list of potentially affected trains based on 

how close they are to any of these intersections in 

question. We then run a partial replanning subroutine on 

every train in this list in the order of its priority. 

Firstly: 

Step 1: create a queue of trains passing through the  cell 

occupied by the malfunctioned train. 

Step 2: sort the queue based on the number of timesteps 

that it takes each train to reach this occupied cell. 

Step 3: pop the train with the highest priority and  

perform replanning on its route. 

Step 4: repeat steps 1-3 until the queue is empty. 

Secondly: 

Step 5: create a queue of trains passing through any of the 

intersections that the malfunctioned train was supposed to 

pass through on its way to its destination. 

Step 6: sort the queue based on the arrival times to any of 

these intersections in question (lowest time first). 

Step 7: pop the train with the highest priority and  

perform replanning on its route. 

 

As defined in the Flatland Challenge, the trains appear 

on the map at the start and disappear when they reach the 

goal state which makes our prioritized planning approach 

complete as it guarantees to find the optimal solution. At 

the beginning of the simulation, priorities are given to all 

the trains and are used throughout the simulation. Fast-First 

is the first ordering, if some trains have identical speeds, 

we apply the Near-First ordering that prioritizes the trains 

closer to their final destinations. In order to avoid the 

conflicts and make the trains reach their destination state 

safely, the highest priority should be given to the fast trains 

rather than the slower ones – this is a Fast-First heuristic 

that turned out to be more efficient considered to others 

(Rýzner 2020). 

To farther improve our algorithm, we used the LNS to 

replan possible train paths for a given group of trains (a 

certain neighborhood of trains). The selection of 

neighborhoods we mostly overtook from last year’s 

Flatland Challenge winners only with minor changes, 

mostly to the parameters. Our initial neighborhoods were 

always the size of 4 (unless there are fever trains left in the 

grid). The first two neighborhood selection methods are 

from (Li et al. 2021a): (1) the train-based strategy, which 

selects a train ai with the largest delay and 3 trains that 

prevent train ai from  reaching its target cell earlier; (2) the 

intersection-based strategy, which selects 4 trains that visit 

the same intersection (i.e., cell of rail types (c) to (g) in 

Figure 1); (3) the start-based strategy, which selects 4 

trains with the same start cell; and (4) the destination-based 

strategy, which selects 4 trains with the same target cell. 

 

5 Experimental Results 
5.1 Collisions  

We got our implementation to work very successfully on 

levels with a maximum of 32 agents and no malfunctions. 

The CBS was very efficient in finding the collision bound 

trains and finding an optimal solution. We used Prioritized 

Planning for breaking down the overall number of trains that 

the CBS had to run on. The most effective approach was 

when we limited the largest possible group of agents entering 

a CBS run to 8. The smallest could be as small as 1 agent - 

based on its subgroup chosen by the prioritization. 

In Figures 8 through 10 we can see three different settings 

with one smaller group limitation (maximum of 8 agents 

entering a CBS) and one larger group limitation (maximum of 

16 agents). 

In these figures runtime was the only factor we analyzed in 

percentages, with a runtime of 7865ms being 100%. It is a 
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limitation set for good representativity in our figures. It was 

produced as the hardest problem where we broke 32 agents 

down only into 2 groups of 16 agents for a CBS. For 

example in Figure 8, for 16 agents the runtime was 81% of 

the 7865ms cap, therefore 6370ms. 

It was based on research we have conducted in Figures 8-10 

(varying the maximal group sizes entering a CBS) that we 

decided to cap the group sizes entering a CBS at 8.  

 

Note: To more accurately test the optimal maximal group for 

a CBS, we would have to conduct more expansive research 

and would need more information about the evaluation itself. 

 

 
Figure 8: Max group of 16 in one CBS run 

 

 
Figure 9: Max group of 8 in one CBS run 

 

 
Figure 10: Max group of 4 in one CBS run 

 

5.2 Examples 
When we implemented our algorithm with all our heuristics 

and settings (as stated in Chapter 4) and with the knowledge 

from Subchapter 5.1 (groups entering a CBS are below 8 

trains per group) and kept the default Flatland Challenge 

reward function, we obtained results that can be seen in 

Figure 11. The scores in Figure 11 were obtained with 4 and 

32 agents in the environment, respectively. In comparison 

with the random agents that have no logic behind them, we 

have produced higher ranking scores (compare with Figures 6 

and 7).  

 

 
Figure 11: Average scores over 10 episodes for 4 and 32 trains resp. 

 

The default Flatland reward function takes the number of 

trains that successfully arrived at their target location and 

their runtimes as arguments. Because both algorithms - 

default Flatland setting with random agents and our 

implementation – managed to get all the trains to their 

locations on time, the only unit the score reflects is runtime. 

Therefore, our algorithm had on average ten times shorter 

runtimes than agents moving randomly in the Flatland 

example.  

 

5.3 Malfunctions 
As we didn’t manage to submit our techniques addressing 

malfunctions directly but have already implemented them, we 

ended up creating our own simulation and testing our 

replanning approach. We did effectively solve a malfunction 

problem by marking the intersections in question (as stated in 

the theoretical part) and running a CBS search with a 

constraint (blocked cell by malfunction and potential delays at 

intersections where the malfunctioned train was bound) for 

trains that had this cell or intersections in their path. 

In our simulation – as can be seen in Figure 12 - we had only 

two trains. Train number 1 malfunctioned and was still 

supposed to pass through the highlighted intersection. Train 2 

stopped a single step in front of the intersection in question 

and a replanning subroutine was called because train 1 was 

initially supposed to go through the intersection first. The new 

paths will have train 2 passing through the intersection first as 

the previous route is now blocked but there is an alternative 

route and because train 1 is assigned the lowest priority in the 

replanning as the malfunction may not be solved quickly. 

 

  
Figure 12: 20x20 grid with 2 agents and 2 Target stations 
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Figure 13: 20x20 grid with 3 agents and 3 Target stations 

 

In Figure 13 we complicated the situation by adding one 

more train and another intersection influenced by the 

malfunction of train 1. 

Step 1: List all the intersections affected by the malfunction 

(highlighted). 

Step 2: Calculate the times it will take all the trains to reach 

an affected intersection. 

Step3: Prioritize the list of affected trains by the shortest 

time it will take them to reach the affected intersection. 

Step 4: Replan the train on the top of the prioritized list. 

 

In our simulation the first train that needed replanning was 

train 2. Our algorithm found the alternative around the 

malfunctioned train 1. Secondly, it replanned train 3. 

 

Possible upgrade to our malfunction problem is to replan the 

trains before they stop near the affected intersection. We 

replan at the point when all the trains get to the affected 

intersections making our prioritizing redundant.  

 

6 Conclusion 

Apart from last year’s winners of the Challenge, we used a 

less adaptive LNS, which could have caused lower yielding 

scores in the more advanced rounds of the Challenge 

compared to theirs. When we saw on the first levels of the 

Challenge that the first method of choosing a neighborhood 

for replanning ((1): picking a train with the longest route 

and then 3 other trains at random – a slight change from 

our initial thought of choosing the 3 other trains based on if 

they play a role in delaying the initially chosen train) was 

the most effective and we made it our default. 

The Flatland Challenge was a challenging and 

sophisticated task for us to do for the AI 2 seminar. In this 

report we try to resolve the conflict between the trains to 

have a smooth railway transportation, using A* search and 

MAPF solvers. There are many other techniques available 

which are complete and optimal MAPF algorithms, even 

the previous competitors of the Challenge have used 

techniques like CBS, push and rotate, LNS and won the 

challenge. 

 

7 Contributions 

A. Leamer: Extensively researched the entire Flatland 

Challenge API and figured out where and how to 

incorporate the proposed classical AI algorithm code in the 

adopted Flatland Challenge Environment. As well as 

working hardly on the final report. 

R. Sharma: Collection of Data, for approaches and 

techniques related to Flatland Challenge in order to address 

the issues of the Challenge and from the AI crowd to 

prepare the Final Report and Presentation. Even, worked on 

result simulation. 

M. S. K: Implementation of the code viz., creating an 

agent which uses the search algorithm, developing custom 

observation, MAPF solver for replanning to resolve the 

Flatland Challenge issues. 
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