
MULTI-AGENT PATHFINDING
WITH REAL-TIME HEURISTIC
SEARCH

Martin Bakoš

20.4.2022

Presentation structure

■ Introduction

■ Problem formulation

■ Related work

– A*

– WHCA*

– FAR

– RTAA*

■ BMAA*

■ Experiments

■ Conclusion

INTRODUCTION

Motivation

Goal:

■ Suitable MAPF algorithm for NPCs in video games

Requirements:

■ Limited amount of time

■ Re-tasking

■ Unknown map

■ Dynamically changing map

■ Restricted agent communication

■ Non-complete control

PROBLEM
FORMULATION

Problem definition

Green – startin location

Red – goal location

We will define MAPF as pair (G, A).

Where:

■ G = (N, E, c) – undirected weighted graph

– N – graph nodes

– E ⊆ N × N – graph edges

– c: E → [0,inf) – cost function

■ A = {a1 , . . . , an} – agents

– ai = (ni
start , ni

goal) – pair of start and goal node

Graph assumptions

We are assuming graph corresponding to rectangular 8 neighbor grid.

■ Node corresponds to cell

– Cell can’t be blocked by stationary obstacle

■ Neighbors are connected via edge

■ Every node has a loop

■ Cost of edge is:

– 1 between cardinal neighbors

– 2 between diagonal neighbors

– 0 if it is loop

Agent assumptions and colisions

■ The time will advance in discrete steps.

■ One agent occupies exactly one node

■ For every agent ai we define:

– ni
curr∈ N – current position

– P – prefix of path to goal

– P(n) – successor to node n on path

■ Central NPC controller executes agents movement

– Agent ai is moved from ni
curr to P(ni

curr) or

– Stays in place if

■ P(ni
curr) is not defined

■ Two agents would swap

■ Two agents would move to same node

Performance measures

■ Completion rate:

– percentage of agents in their goal locations

■ Completion time of an agent:

– undefined if agent is not in goal location

– time step when goal location was last reached

■ Travel distance of an agent:

– sum of the costs of the edges traversed

■ Completion time and Travel distance for MAPF:

– Mean of all agent’s completion time /travel distance

These measures cannot be optimized simultaneously!

Completion rate will be our main metric.

RELATED WORK

A*

■ Single-agent pathfinding

■ Graph search:

– Monotonous (consistent)

heuristic is required

■ f-value for n is f(n) = g(n) + h(n)

where:

– g(n) – minimum path cost

from current to n

– h(n) – heuristic estimate

path cost from n to goal

■ Complete and optimal

■ Foundation for our algorithm

Online MAPF

■ Windowed Hierarchical Cooperative A* (WHCA*)

■ Flow Anotated Replanning (FAR)

WHCA*

■ Plans collision free path for limited amount of

moves

=> window

■ Uses reservation table

– This adds time dimension

■ Limit must be chosen carefully to

– avoid conflicts

– not exceed available time

■ WHCA* requires all agents under complete

control

■ Animation

https://www.youtube.com/watch?v=DRx-17AHaw4

FAR

■ Combines WHCA* with flow annotations

■ Agents must reserve their next moves

■ Reservations are not incorporated in to planning,

– Agent will wait for their turn

– Reservations can cause deadlock

■ Temporarily move agent from goal

location

■ Only a partial solution

■ Original graph is transformed to flow annotated

graph

■ A* is then used to find paths

Flow annotated graph

■ Lowers the number of collisions

– Especially head to head collisions

■ Undirected graph → Directed graph

– move directions

■ Preserves reachability

Transformation for grid:

– Rows are alternately connected via westbound

and eastbound edges

– Columns are alternately connected via

northbound and southbound edges

– Add diagonal edge to sources and sinks.

– Edges in one-cell-wide corridors remain

undirected

Real-Time Heuristic Search (RTHS)

■ RTHS algorithm

■ Implementation:

– A* with limited number of

expansions

– Move along path to node s

to be expanded by A*

– Update heuristic according

to f(n)

Real-Time Adaptive A* - (RTAA*)

Idea:

■ Repeat:

– Compute prefix

– Execute first move

– Update heuristic

Advantages:

■ Constant amount of search

■ Short computation time

■ Small amount of lost search

BMAA* - BOUNDED
MULTI-AGENT A*

BMAA* - Overview

Idea:

■ Every agent runs RTAA*

■ Central NPC controller executes moves

Properties:

■ Modular design

■ Works in real-time

■ Losses only small amount of search

■ No coordination needed

■ Complete control not required

Algorithm parameters:

■ Expansions

– Limit for A* expansions

■ Vision

– Agent vision distance

■ Moves

– Number of moves before RTAA* re run

■ Push

– Whether agent can push other agent

■ Flow

– Whether to use flow annotated graph

BMAA* -
NPC-Controller

■ Time is initialized with 0

■ Invokes in every time stamp

■ A := agents currently under

control of system

■ Pushed agents will return to

their goal positions

BMAA* - Search
& RTAA* update

■ Find path if:

– Path is undefined

■ Agent was pushed

away from path

– Executed limited amount

of moves

■ Update heuristic by f-value of to

be expanded node

– Admissibility is preserved

– Consistency is preserved

– Goal will be reached

BMAA* - RTAA*

■ Each agent has his own

heuristic values

■ Obtained path is only

approximation

■ Get Neighbors

– Nodes not blocked by

stationary obstacle

– If flow is True

■ Only neighbors from

flow annotated graph

■ Generated lazily

■ Cached for later use

EXPERIMENTS

Evaluated Algorithms

Algorithms

■ FAR

■ A*- Replan

■ BMAA*

■ BMAA*-c

■ BMAA*-f

■ BMAA*-f-c

Parameters

■ Octile heuristic

■ Time limit of 30 seconds

■ FAR & A* Replan

– Reservation size = 3

■ BMAA*

– Expansions = 32

– Moves = 32

– Vision = sqrt 2

– Push = False

– Flow = False

-f => Push = True

-c => Flow = True

Completion rates

■ 3 maps from

– Dragon Age: Origins

– WarCraft III

– Baldur’s Gate II

■ Number of agents

– from 25 to 400 in

increments of 25

– from 400 to 2000 in

increments of 200

Observation:

■ Noticible change around 200

agents

FAR vs BMAA*

FAR

■ Sharing paths

– Congestion in choke points

BMAA*

■ Longer paths

– Agents avoids each other

■ Dead ends

■ Incompletes

Results

■ Best results in each row are in

bolt

■ Results in TABLE II and TABLE III

are from runs with at most 200

agents.

■ Undefined completion time was

set to 30 seconds

Observation:

■ BMAA* performs really good on

DAO-lak307d map

SUMMARY

Summary for BMAA*

■ Can deal with

– Limited amount of time

– Re-tasking

– Unknown map

– Dynamically changing map

– Restricted agent

communication

– Non-complete control

■ Suitable MAPF algorithm for

NPCs in video games

■ Uses

– RTAA*

– Central NPC controller

■ Suffers form

– Dead ends

– Longer paths

Sources

■ https://cpb-us-w2.wpmucdn.com/sites.wustl.edu/dist/b/810/files/2018/08/cig18-

bmaa-25hln9r.pdf

■ https://www.aaai.org/Papers/ICAPS/2008/ICAPS08-047.pdf

■ https://www.aaai.org/Papers/AIIDE/2005/AIIDE05-020.pdf

■ https://www.aaai.org/Papers/Workshops/2006/WS-06-11/WS06-11-010.pdf

■ https://github.com/igrek51/coop-pathfinder

■ https://starcraft2.com/en-us/

■ Images from: https://www.researchgate.net/

https://cpb-us-w2.wpmucdn.com/sites.wustl.edu/dist/b/810/files/2018/08/cig18-bmaa-25hln9r.pdf
https://www.aaai.org/Papers/ICAPS/2008/ICAPS08-047.pdf
https://www.aaai.org/Papers/AIIDE/2005/AIIDE05-020.pdf
https://www.aaai.org/Papers/Workshops/2006/WS-06-11/WS06-11-010.pdf
https://github.com/igrek51/coop-pathfinder
https://starcraft2.com/en-us/
https://www.researchgate.net/

THANK YOU FOR YOUR
ATTENTION

