
MULTI-AGENT PATHFINDING WITH REAL-TIME HEURISTIC SEARCH

Martin Bakoš

20.4.2022

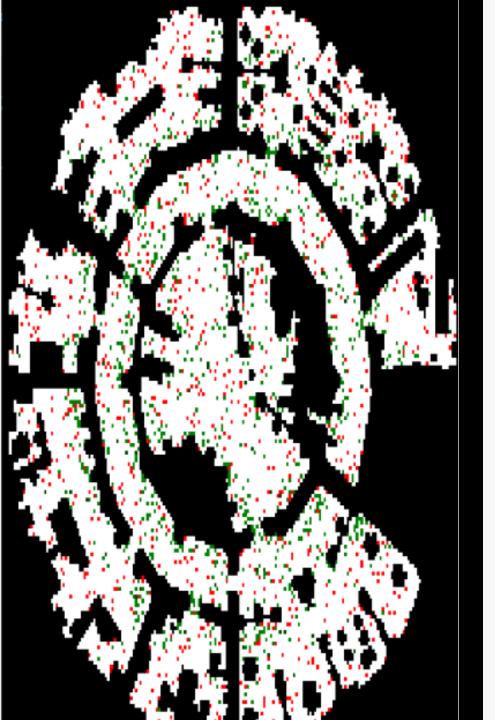
Presentation structure

- Introduction
- Problem formulation
- Related work
 - A*
 - WHCA*
 - FAR
 - RTAA*
- BMAA*
- Experiments
- Conclusion

INTRODUCTION

Motivation

Goal:


■ Suitable MAPF algorithm for NPCs in video games

Requirements:

- Limited amount of time
- Re-tasking
- Unknown map
- Dynamically changing map
- Restricted agent communication
- Non-complete control

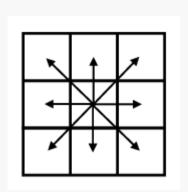
PROBLEM FORMULATION

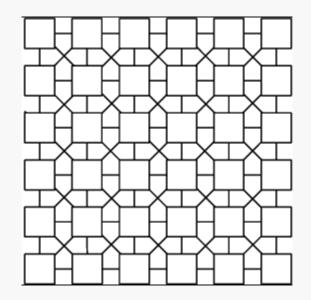
Problem definition

We will define MAPF as pair (G, A).

Where:

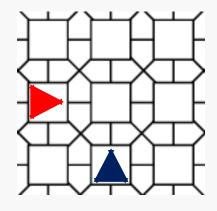
- G = (N, E, c) undirected weighted graph
 - **N** graph nodes
 - $E \subseteq N \times N$ graph edges
 - **c**: $E \rightarrow [0, inf)$ cost function
- $\blacksquare A = \{a^1, \ldots, a^n\} agents$
 - $a^{i} = (n^{i}_{start}, n^{i}_{goal}) pair of start and goal node$

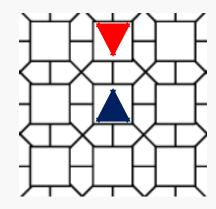

Green – startin location


Red – goal location

Graph assumptions

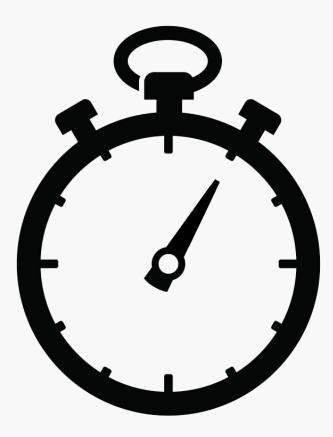
We are assuming graph corresponding to rectangular 8 neighbor grid.


- Node corresponds to cell
 - Cell can't be blocked by stationary obstacle
- Neighbors are connected via edge
- Every node has a loop
- Cost of edge is:
 - 1 between cardinal neighbors
 - $\sqrt{2}$ between diagonal neighbors
 - 0 if it is loop



Agent assumptions and colisions

- The time will advance in discrete steps.
- One agent occupies exactly one node
- For every agent a^i we define:
 - $n^{i}_{curr} \in N$ current position
 - *P* prefix of path to goal
 - P(n) successor to node *n* on path
- **Central NPC controller** executes agents movement
 - Agent aⁱ is moved from nⁱ _{curr} to P(nⁱ _{curr}) **or**
 - Stays in place if
 - $P(n^i_{curr})$ is not defined
 - Two agents would swap
 - Two agents would move to same node



Performance measures

- Completion rate:
 - percentage of agents in their goal locations
- **Completion time** of an agent:
 - undefined if agent is not in goal location
 - time step when goal location was last reached
- **Travel distance** of an agent:
 - sum of the costs of the edges traversed
- **Completion time** and **Travel distance** for MAPF:
 - Mean of all agent's completion time /travel distance

These measures cannot be optimized **simultaneously**! **Completion rate** will be our main metric.

RELATED WORK

A*

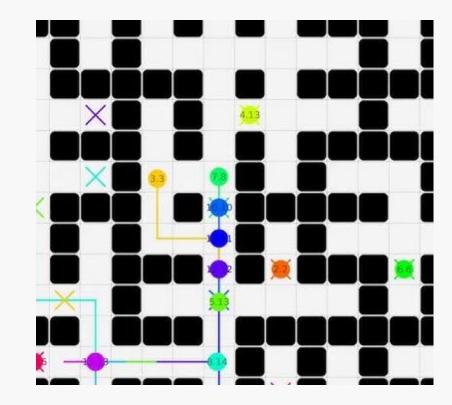
- Single-agent pathfinding
- **Graph** search:
 - Monotonous (consistent) heuristic is required
- *f-value* for *n* is *f*(*n*) = *g*(*n*) + *h*(*n*) where:
 - g(n) minimum path cost
 from current to n
 - h(n) heuristic estimate
 path cost from n to goal
- Complete and optimal
- **Foundation** for our algorithm

Algorithm 1 A*.

1:	procedure A*
2:	$P \leftarrow ()$
3:	$closed \leftarrow \emptyset$
4:	$open \leftarrow \{n_{curr}^i\}$
5:	$g(n_{curr}^i) \leftarrow 0$
6:	while $open \neq \emptyset$ do
7:	if open. $First() = n_{goal}^{i}$ then
8:	calculate P
<u>9:</u>	break
10:	$n \leftarrow open.Pop()$
11:	closed.Add(n)
12:	for $n' \in n.GetNeighbors()$ do
13:	if $n' \not\in closed$ then
14:	if $n' \not\in open$ then
15:	$g(n') \leftarrow \infty$
16:	<i>if</i> $g(n') > g(n) + c(n, n')$ <i>then</i>
17:	$g(n') \leftarrow g(n) + c(n, n')$
18:	$n'.parent \leftarrow n$
<i>19</i> :	if $n' \notin open$ then
20:	open.Add(n')

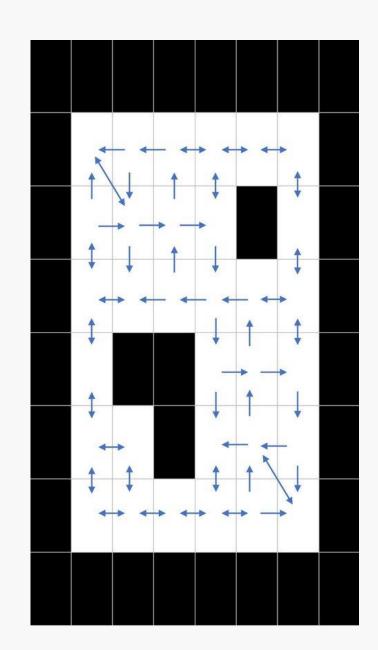
Online MAPF

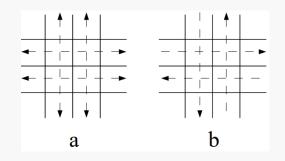
Windowed Hierarchical Cooperative A* (WHCA*)

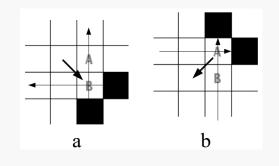

Flow Anotated Replanning (FAR)

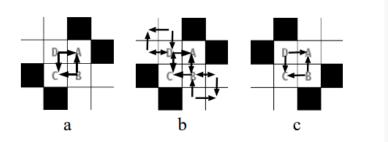
WHCA*

Plans collision free path for limited amount of moves


=> window


- Uses reservation table
 - This adds time dimension
- Limit must be chosen carefully to
 - avoid conflicts
 - not exceed available time
- WHCA* requires all agents under complete control
- Animation




FAR

- Combines WHCA* with flow annotations
- Agents must **reserve** their next moves
- Reservations are not incorporated in to planning,
 - Agent will wait for their turn
 - Reservations can cause deadlock
 - Temporarily move agent from goal location
 - Only a partial solution
- Original graph is transformed to flow annotated graph
- A* is then used to find paths

Flow annotated graph

- Lowers the number of collisions
 - Especially head to head collisions
- Undirected graph → Directed graph
 - move directions
- Preserves reachability

Transformation for grid:

- Rows are alternately connected via westbound and eastbound edges
- Columns are alternately connected via northbound and southbound edges
- Add diagonal edge to sources and sinks.
- Edges in one-cell-wide corridors remain undirected

Real-Time Heuristic Search (RTHS)

Idea:

- Repeat:
 - Compute prefix
 - Execute first move
 - Update heuristic

Advantages:

- Constant amount of search
- Short computation time
- Small amount of lost search

Real-Time Adaptive A* - (RTAA*)

- RTHS algorithm
- Implementation:
 - A* with limited number of expansions
 - Move along path to node s to be expanded by A*
 - Update heuristic according to *f*(*n*)

BMAA* - BOUNDED MULTI-AGENT A*

BMAA* - Overview

Idea:

- Every agent runs RTAA*
- Central NPC controller executes moves

Properties:

- Modular design
- Works in real-time
- Losses only small amount of search
- No coordination needed
- Complete control not required

Algorithm parameters:

- Expansions
 - Limit for A* expansions
- Vision
 - Agent vision distance
- Moves
 - Number of moves before RTAA * re run
- Push
 - Whether agent can push other agent
- Flow
 - Whether to use flow annotated graph

BMAA* -NPC-Controller

- Time is initialized with 0
- Invokes in every time stamp
- A := agents currently under control of system
- Pushed agents will return to their goal positions

Algorithm 2 BMAA*'s NPC Controller.

1: p	procedure NPC-CONTROLLER(A)
2:	for all $a^i \in A$ do
3:	a^i .Search-Phase()
4:	for all $a^i \in A$ do
5:	if $a^i P(n^i_{curr})$ is defined then
6:	$n \leftarrow a^i . P(n^i_{curr})$
7:	if $push \wedge n$ is blocked by agent a^j then
8:	a ^j .PushAgent()
<u>9:</u>	if n is not blocked by an agent then
10:	a^i .MoveTo (n)
11:	$time \leftarrow time + 1$

BMAA* - Search & RTAA* update

- Find path if:
 - Path is undefined
 - Agent was pushed away from path
 - Executed limited amount of moves
- Update heuristic by *f-value* of to be expanded node
 - Admissibility is preserved
 - Consistency is preserved
 - Goal will be reached

Algorithm 3 BMAA*'s Search Phase.

1: procedure SEARCH-PHASE2: if Search. $P(n_{curr}^{i})$ is undefined or time \geq limit then3: Search()4: if Search.open $\neq \emptyset$ then5: $n \leftarrow$ Search.open.First()6: $f \leftarrow g(n) + h(n)$ 7: Update-Heuristic-Values(Search.closed, f)8: limit \leftarrow time + moves

Algorithm 4 BMAA*'s Update Phase.

- 1: procedure UPDATE-HEURISTIC-VALUES(closed, f)
- 2: for $n \in closed$ do

3:
$$h(n) \leftarrow f - g(n)$$

BMAA* - RTAA*

- Each agent has his own heuristic values
- Obtained path is only approximation

Get Neighbors

- Nodes not blocked by stationary obstacle
- If flow is True
 - Only neighbors from flow annotated graph
 - Generated lazily
 - Cached for later use

Algorithm 5 BMAA*'s Version of A*. 1: procedure SEARCH $P \leftarrow ()$ 2: $exp \leftarrow 0$ 3: closed $\leftarrow \emptyset$ 4: 5: $open \leftarrow \{n_{curr}^i\}$ $g(n_{curr}^i) \leftarrow 0$ 6: while open $\neq \emptyset$ do 7: if open.First() = $n_{goal}^i \lor exp \ge expansions$ then 8: calculate P 9: break 10: $n \leftarrow open.Pop()$ 11: closed.Add(n)12: for $n' \in n$.GetNeighbors(flow) do 13: $d \leftarrow distance(n^i_{curr}, n')$ 14: if n' is blocked by an agent $\wedge d \leq vision$ then 15: if $n' \neq n_{goal}^i$ then 16: 17: continue if $n' \notin closed$ then 18: if $n' \notin open$ then 19: $g(n') \leftarrow \infty$ 20: *if* g(n') > g(n) + c(n, n') *then* 21: $g(n') \leftarrow g(n) + c(n, n')$ 22: n'.parent $\leftarrow n$ 23: if $n' \notin open$ then 24: open.Add(n')25: $exp \leftarrow exp + 1$ 26:

EXPERIMENTS

Evaluated Algorithms

Algorithms

- FAR
- A*- Replan
- BMAA*
- BMAA*-c
- BMAA*-f
- BMAA*-f-c

-f => Push = True -c => Flow = True

Parameters

- Octile heuristic
- Time limit of 30 seconds
- FAR & A* Replan
 - Reservation size = 3
- BMAA*
 - Expansions = 32
 - Moves = 32
 - Vision = sqrt 2
 - Push = False
 - Flow = False

Completion rates

- 3 maps from
 - Dragon Age: Origins
 - WarCraft III
 - Baldur's Gate II
- Number of agents
 - from 25 to 400 in increments of 25
 - from 400 to 2000 in increments of 200

Observation:

 Noticible change around 200 agents

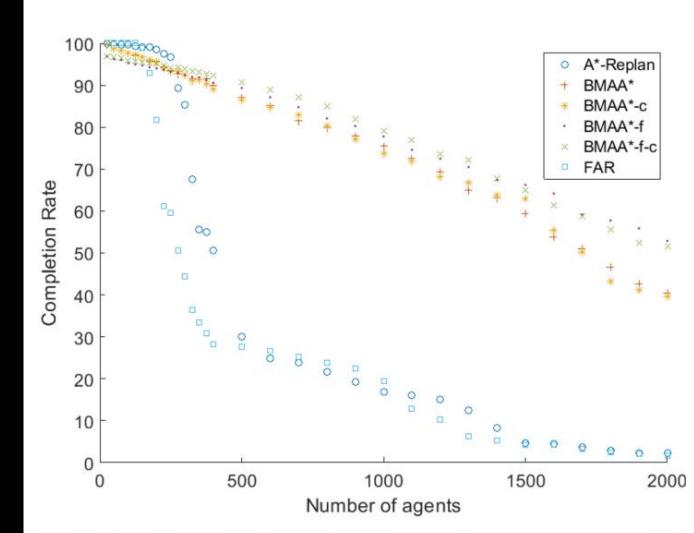


Fig. 2: Completion rates averaged over all MAPF instances.

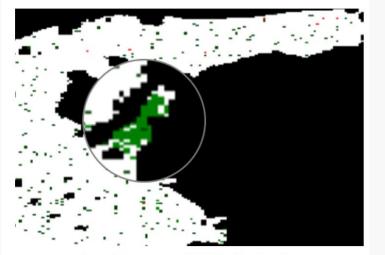


Fig. 4: Issue for BMAA*: Dead ends.

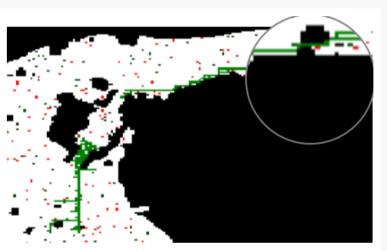


Fig. 3: Issue for FAR: One-cell-wide corridors.

FAR vs BMAA*

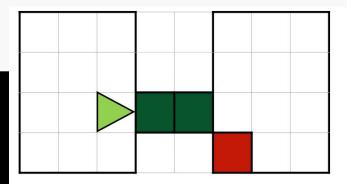


Fig. 5: Unsolvable MAPF instance for the BMAA* versions, where the triangular agent has to move to its red goal location while the green agents are already at their own goal locations in a one-cell-wide corridor.

FAR

- Sharing paths
 - Congestion in choke points

BMAA*

- Longer paths
 - Agents avoids each other
- Dead ends
- Incompletes

Results

- Best results in each row are in bolt
- Results in TABLE II and TABLE III are from runs with at most 200 agents.
- Undefined completion time was set to 30 seconds

Observation:

 BMAA* performs really good on DAO-lak307d map TABLE I: Completion rates averaged over all MAPF instances for each map.

Map Name	A*-Replan	BMAA*	BMAA*-c	BMAA*-f	BMAA*-f-c	FAR	Overall	
BGII-AR0414SR (320*281)	45	87	87	85	89	32	71	
BGII-AR0414SR (512*512)	14	80	79	82	83	07	58	
BGII-AR0504SR (512*512)	08	51	51	62	62	05	40	
BGII-AR0701SR (512*512)	08	48	49	64	65	06	40	
WCIII-blastedlands (512*512)	14	85	85	78	80	03	58	
WCIII-duskwood (512*512)	08	58	58	67	67	03	43	
WCIII-golemsinthemist (512*512)	10	59	59	72	72	04	46	
DAO-lak304d (193*193)	19	39	38	53	51	27	38	
DAO-lak307d (84*84)	60	79	77	68	64	60	68	
DAO-lgt300d (747*531)	12	65	65	77	77	10	51	
Overall	20	65	65	71	71	16	51	
TABLE II: Completion times (in seconds) averaged over all MAPF instances for each map.								
Man Nama	A* Penlan	BMAA*	BMAA*.c	BMAA*_f	BMAA* f.c	EAD	Overall	

Map Name	A*-Replan	BMAA*	BMAA*-c	BMAA*-f	BMAA*-f-c	FAR	Overall
BGII-AR0414SR (320*281)	2.8	1.2	5.1	2.2	5.6	3.8	3.5
BGII-AR0414SR (512*512)	8.8	3.6	6.6	3.0	6.8	12.9	7.0
BGII-AR0504SR (512*512)	12.3	8.6	12.7	6.3	12.5	16.0	11.4
BGII-AR0701SR (512*512)	12.7	4.0	5.4	3.2	4.5	15.0	7.5
WCIII-blastedlands (512*512)	8.8	1.4	1.5	2.2	2.3	21.0	6.2
WCIII-duskwood (512*512)	12.5	4.1	5.8	3.7	5.5	21.1	8.8
WCIII-golemsinthemist (512*512)	11.1	4.2	5.9	3.0	4.2	19.0	7.9
DAO-lak304d (193*193)	4.5	6.7	15.1	7.9	11.4	3.2	8.1
DAO-lak307d (84*84)	0.2	0.2	0.2	0.5	0.3	0.6	0.3
DAO-1gt300d (747*531)	8.3	1.4	1.6	2.2	2.4	10.5	4.4
Overall	8.2	3.5	6.0	3.4	5.5	12.3	6.5

TABLE III: Travel distances averaged over all MAPF instances for each map.

Map Name	A*-Replan	BMAA*	BMAA*-c	BMAA*-f	BMAA*-f-c	FAR	Overall
BGII-AR0414SR (320*281)	663	554	557	620	639	130	527
BGII-AR0414SR (512*512)	661	1538	1557	2080	2115	224	1363
BGII-AR0504SR (512*512)	407	2167	2231	3671	3783	227	2089
BGII-AR0701SR (512*512)	562	973	967	1267	1287	322	896
WCIII-blastedlands (512*512)	299	376	376	775	784	268	480
WCIII-duskwood (512*512)	367	1179	1188	1712	1737	257	1073
WCIII-golemsinthemist (512*512)	530	1205	1206	1371	1369	285	994
DAO-lak304d (193*193)	2154	1425	1460	1258	1295	148	1290
DAO-lak307d (84*84)	578	38	39	125	95	47	154
DAO-lgt300d (747*531)	435	403	404	592	603	289	454
Overall	666	986	998	1347	1371	225	932

SUMMARY

Summary for BMAA*

- Suitable MAPF algorithm for NPCs in video games
- Uses
 - RTAA*
 - Central NPC controller
- Suffers form
 - Dead ends
 - Longer paths

- Can deal with
 - Limited amount of time
 - Re-tasking
 - Unknown map
 - Dynamically changing map
 - Restricted agent communication
 - Non-complete control

Sources

- https://cpb-us-w2.wpmucdn.com/sites.wustl.edu/dist/b/810/files/2018/08/cig18bmaa-25hIn9r.pdf
- https://www.aaai.org/Papers/ICAPS/2008/ICAPS08-047.pdf
- https://www.aaai.org/Papers/AIIDE/2005/AIIDE05-020.pdf
- https://www.aaai.org/Papers/Workshops/2006/WS-06-11/WS06-11-010.pdf
- https://github.com/igrek51/coop-pathfinder
- <u>https://starcraft2.com/en-us/</u>
- Images from: <u>https://www.researchgate.net/</u>

THANK YOU FOR YOUR ATTENTION