Attention Is All You Need

Rem Lohinov

Before the age of ML

- Rule-based approaches
- Statistical approaches

The Problems with Traditional Architectures

Recurrent Neural Networks (RNNs):

 The vanishing and exploding gradient problems – It is hard to control gradients during backpropagation

Convolutional Neural Networks (CNNs)

Struggle with capturing long-range dependencies

What is the <u>attention</u>?

Global attention – takes into account <u>all elements in the input data</u> when calculating the <u>attention weights</u>

Attention weights – how important the element in the input sequence relative to the *current context*

Local attention – uses smaller window of input elements

Self-attention – attending to elements within the same sequence (either the input or the output)

Differences between attentions:

English: The cat sat on the mat.

French: Le chat était assis sur le tapis.

Attention Mechanisms: Query, Key, and Value

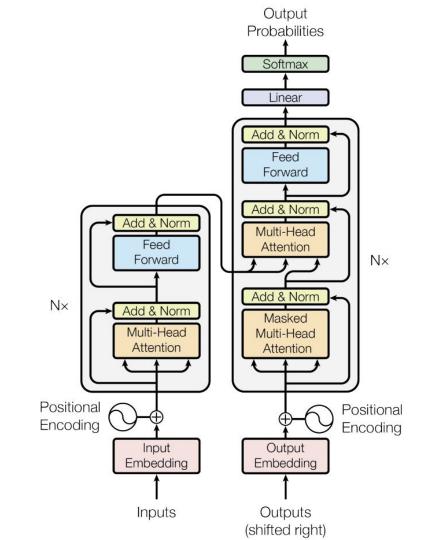
Query — the element we are currently focusing on

Key – other elements in the input data

Value – is associated with each Key, representing the information to be aggregated

The Transformer Architecture

- 1. Encoder-decoder structure
- 2. Self-attention layers for capturing relationships
- 3. Feed-forward networks
- 4. Layer normalization and residual connections
- 5. Multi-head attention



Positional Encoding

Self-attention mechanisms does not consider the order of elements in a sequence.

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

- Different formulas for even and odd elements, 2i+1<d_{model}
- Pos is the position in sequence

Encoder

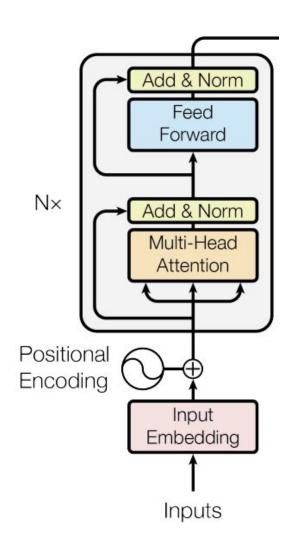
• Embedding

Positional Encoding

Multi-head self-attention

Feed-forward network

 Residual connections + layer normalization



Multi-Head Attention

Each head generates the **attention weights** that determine the relevance of each element in the input sequence for the current context.

->

The attention weights are then used to compute a weighted sum of the Value matrices.

-> Concatenation and Linear Projection ->

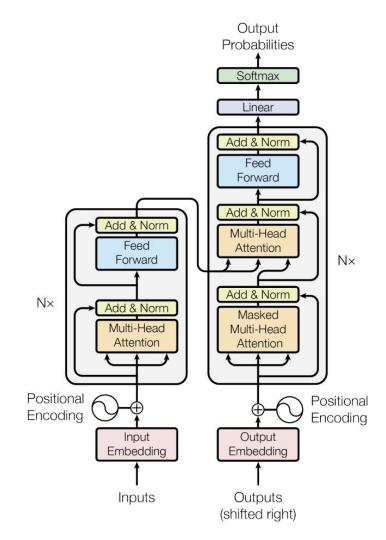
SINGLE OUTPUT

It	It				
is	is	The	The	The	The
in	in	Law	Law	Law	Law
this	this	will	will	will	will
spirit	spirit	never	never	never	never
that	that	be			
a	а		be	be	be
majority	majority	perfect	perfect	perfect	perfect
of	of	,	,	, 44	XAI.
American	American	but	but	but	but
governments	governments	its	its	its	its
have	have	application	application	application	application
passed	passed				
new	new	should	should	should	should
laws	laws	be	be	be	be
since	since	just	just	just	just
2009	2009	-//		- 11	NNIII.
ma <mark>ki</mark> ng ————	making	this	this	this	this
the	the				H >0. AT - 2 T
registration	registration	is	is	is	is
or	or	what	what	what	what
voting	voting	we	we	we	we
process	process	are	are	are	are
more	more	missing	missing	missing	missing
difficult	difficult	g	mooning	······································	mosmg
4500				111/4	
<eos></eos>	<eos></eos>	in	ın	in —	in
<pad></pad>	<pad></pad>	my	my	my	my
<pad></pad>	<pre><pad></pad></pre>	opinion	opinion	opinion	opinion
<pad></pad>	<pad></pad>				
<pad></pad>	<pad></pad>	<eos></eos>	<eos></eos>	<eos></eos>	<eos></eos>
<pad></pad>	<pad></pad>				3W. K. S. T. S. S.
<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>

Decoder

Masked multi-head self-attention

- Multi-head attention over encoder output
- Skip/residual connections
 everywhere against vanishing
 gradient problem



Training

 The dimensionality of the word embeddings and positional encodings (d_{model}).

Base: 512Big: 1024

The dimensionality of the feed-forward networks

Base: 2048Big: 4096

Number of attention heads:

o Base: 8

• Big: 16

• Training time:

Base: 12 hours

Big: 3.5 days

Results and Benchmarks

N. 1.1	BLEU		Training Co	Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3 \cdot$	10^{18}	
Transformer (big)	28.4	41.8	$2.3 \cdot$	$2.3 \cdot 10^{19}$	

Applications and Use Cases

- Machine Translation
- Text Summarization
- Sentiment Analysis: <u>emotion expressed in a piece of text</u>
- Question Answering :)
- Pretraining and Transfer Learning: BERT, RoBERTa
- Named Entity Recognition (NER): the objective is to identify and classify entities

Limitation, disadvantages

- Memory and Computational Requirements
- Lack of Interpretability: <u>especially self-attention mechanisms</u>
- Susceptibility to Adversarial Attacks: <u>funny</u>:), not <u>funny</u> outputs:(
- Ethical Considerations and Bias

Conclusion

Attention Is All You Need!