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Standard methods for APR
• semantics-driven (or synthesis-based) 


• use a constraint solver to synthesize repairs


• generate-and-validate 

• mutate software guided by a search strategy (Genetic Improvement - GI) 


• have first seen industrial uptake [1]


• in [1], authors suggest a system, that tracks bugs during a workday, and 
searches for potential fixes overnight


• Both validation strategies are costly (run for hours)
[1] Haraldsson, Sæmundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic 

Improvement Became an Overnight Success. 10.1145/3067695.3082517. 



Genetic Improvement (GI)

• uses computational search 
methods to improve existing 
software [1]

Table 1: Sets of single operators available to the GI. One member of a 
given set can be changed to another member of the same set. [1]

[1] Haraldsson, Sæmundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic 
Improvement Became an Overnight Success. 10.1145/3067695.3082517. 



Genetic Improvement (GI)

[1] Haraldsson, Sæmundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic 
Improvement Became an Overnight Success. 10.1145/3067695.3082517. 

if (a && b) {
    c = 1;
} else {
    c = 0;
}

if (a || b) {
    c *= 2;
} else {
    c /= -1;
}



Genetic Improvement (GI)
Genetic Algorithm - Individual [1]

[1] Haraldsson, Sæmundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic 
Improvement Became an Overnight Success. 10.1145/3067695.3082517. 
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Deep learning based program repair tools
• learn bug fixing patterns from existing databases and treat the automated 

program repair problem as a neural machine translation task


• DL-based program repair has shown competitive results to standard 
approaches [1]


• several large-scale language models based on the Transformer architecture 
[2] have been introduced


• CoCoNut [3]


• Codex (by OpenAI) → Github Copilot


• chatGPT (by OpenAI)
[1] Zhang, Quanjun, et al. "A Survey of Learning-based Automated Program Repair." arXiv preprint arXiv:2301.03270 (2023). 
[2] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017). 
[3] Lutellier, Thibaud, et al. "Coconut: combining context-aware neural translation models using ensemble for program repair." Proceedings of the 29th 

ACM SIGSOFT international symposium on software testing and analysis. 2020.



Bigram language model

• predicts the next token only by the current token

[1] https://vitalflux.com/n-gram-language-models-explained-examples/



Transformer

[1] https://jalammar.github.io/illustrated-transformer/



Codex
• The Codex model series is a descendant of GPT-3 series that's been trained 

on both natural language and billions of lines of code. [1]

[1] OpenAI API. (n.d.). Retrieved March 7, 2023, from https://platform.openai.com/docs/guides/code  



chatGPT
• ChatGPT is powered by gpt-3.5-turbo, OpenAI’s most advanced language model.


• it is possible to have a conversation with language model and the previous chat history si taken 
into account

[1] OpenAI API. (n.d.). Retrieved March 7, 2023, from https://platform.openai.com/docs/guides/chat  

https://platform.openai.com/docs/guides/chat


Comparison



QuixBugs benchmark
• A multi-lingual program repair benchmark set based on the Quixey Challenge


• small, yet challenging programs (40 in total)


• https://github.com/jkoppel/QuixBugs

[1] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: A multi- lingual program repair benchmark set based on the Quixey Challenge,” in 
Proceedings Companion of the 2017 ACM SIGPLAN international conference on systems, programming, languages, and applications: software for 
humanity, 2017, pp. 55–56.  

https://github.com/jkoppel/QuixBugs


QuixBugs 
Bitcount
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Evaluation
• remove contained comments (comments sometimes contains the solution)


• ask chatGPT if the code contains a bug and how it can be fixed


• manually check whether the given answer is correct or not


• same code with fixed bug


• description of how to fixe the bug


• repeat 4 times to account for the heuristic nature of chatGPT


• success if at least one request fixes the bug 



Evaluation



Results

• standard APR approaches - 7 / 40 bugs fixed


• CoCoNut - 19 / 40 fixed


• Codex - 21 / 40


• chatGPT - 19 / 40 fixed



Results



Results

Execute requests multiple times!



Answers classification
• different classes of chatGPT answers have been identified:


• More information required 

• No bug found 

• Correct fix provided 

• Tries to fix something else 

• Provides fix but introduces new bug 

• Alternative implementation



Answers classification



Answers classification

Let’s use the full potential of the dialogue 
system!



Discussion with chatGPT



Discussion with chatGPT



Do hints help?
• a checkmark with an asterisk (*) 

defines that a solution was found 
without a follow-up request being 
necessary in this run


• after adding hints, chatGPT solved 
31 out of 40 problems (77.5%)


• Codex - 21 / 40


• CoCoNut - 19 / 40


• standard APR - 7 / 40



Is it worth it?
• Despite its great performance, the question arises whether the mental cost 

required to verify ChatGPT answers outweighs the advantages that ChatGPT 
brings. 


• Overall, we find that participants who had access to an AI assistant based on 
OpenAI's codex-davinci-002 model wrote significantly less secure code 
than those without access. Additionally, participants with access to an AI 
assistant were more likely to believe they wrote secure code than those 
without access to the AI assistant. Furthermore, we find that participants who 
trusted the AI less and engaged more with the language and format of their 
prompts (e.g. re-phrasing, adjusting temperature) provided code with fewer 
security vulnerabilities. [1]

[1] Perry, Neil, et al. "Do Users Write More Insecure Code with AI Assistants?." arXiv preprint arXiv:2211.03622 (2022).


