
Maroš Bratko 14.3.2023

An Analysis of the Automatic Bug
Fixing Performance of ChatGPT
Seminar on Artificial Intelligence 2

[1] Sobania, D., Briesch, M., Hanna, C., & Petke, J. (2023). An analysis of the automatic bug fixing performance of chatgpt. arXiv preprint arXiv:2301.08653.

Table of contents

• Overview of methods for Automated Program Repair (APR)

‣ standard methods

‣ deep-learning based methods

• Comparison of chatGPT with other models

• Benchmark

• Methodology

• Results

• Dialogue hints

Standard methods for APR
• semantics-driven (or synthesis-based)

• use a constraint solver to synthesize repairs

• generate-and-validate

• mutate software guided by a search strategy (Genetic Improvement - GI)

• have first seen industrial uptake [1]

• in [1], authors suggest a system, that tracks bugs during a workday, and
searches for potential fixes overnight

• Both validation strategies are costly (run for hours)
[1] Haraldsson, Sæmundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic

Improvement Became an Overnight Success. 10.1145/3067695.3082517.

Genetic Improvement (GI)

• uses computational search
methods to improve existing
software [1]

Table 1: Sets of single operators available to the GI. One member of a
given set can be changed to another member of the same set. [1]

[1] Haraldsson, Sæmundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic
Improvement Became an Overnight Success. 10.1145/3067695.3082517.

Genetic Improvement (GI)

[1] Haraldsson, Sæmundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic
Improvement Became an Overnight Success. 10.1145/3067695.3082517.

if (a && b) {
 c = 1;
} else {
 c = 0;
}

if (a || b) {
 c *= 2;
} else {
 c /= -1;
}

Genetic Improvement (GI)
Genetic Algorithm - Individual [1]

[1] Haraldsson, Sæmundur & Woodward, John & Brownlee, Alexander & Siggeirsdottir, Kristin. (2017). Fixing Bugs in Your Sleep: How Genetic
Improvement Became an Overnight Success. 10.1145/3067695.3082517.

GI Community

Deep learning based program repair tools
• learn bug fixing patterns from existing databases and treat the automated

program repair problem as a neural machine translation task

• DL-based program repair has shown competitive results to standard
approaches [1]

• several large-scale language models based on the Transformer architecture
[2] have been introduced

• CoCoNut [3]

• Codex (by OpenAI) → Github Copilot

• chatGPT (by OpenAI)
[1] Zhang, Quanjun, et al. "A Survey of Learning-based Automated Program Repair." arXiv preprint arXiv:2301.03270 (2023).
[2] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
[3] Lutellier, Thibaud, et al. "Coconut: combining context-aware neural translation models using ensemble for program repair." Proceedings of the 29th

ACM SIGSOFT international symposium on software testing and analysis. 2020.

Bigram language model

• predicts the next token only by the current token

[1] https://vitalflux.com/n-gram-language-models-explained-examples/

Transformer

[1] https://jalammar.github.io/illustrated-transformer/

Codex
• The Codex model series is a descendant of GPT-3 series that's been trained

on both natural language and billions of lines of code. [1]

[1] OpenAI API. (n.d.). Retrieved March 7, 2023, from https://platform.openai.com/docs/guides/code

chatGPT
• ChatGPT is powered by gpt-3.5-turbo, OpenAI’s most advanced language model.

• it is possible to have a conversation with language model and the previous chat history si taken
into account

[1] OpenAI API. (n.d.). Retrieved March 7, 2023, from https://platform.openai.com/docs/guides/chat

https://platform.openai.com/docs/guides/chat

Comparison

QuixBugs benchmark
• A multi-lingual program repair benchmark set based on the Quixey Challenge

• small, yet challenging programs (40 in total)

• https://github.com/jkoppel/QuixBugs

[1] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: A multi- lingual program repair benchmark set based on the Quixey Challenge,” in
Proceedings Companion of the 2017 ACM SIGPLAN international conference on systems, programming, languages, and applications: software for
humanity, 2017, pp. 55–56.

https://github.com/jkoppel/QuixBugs

QuixBugs
Bitcount

QuixBugs
Bitcount

Evaluation
• remove contained comments (comments sometimes contains the solution)

• ask chatGPT if the code contains a bug and how it can be fixed

• manually check whether the given answer is correct or not

• same code with fixed bug

• description of how to fixe the bug

• repeat 4 times to account for the heuristic nature of chatGPT

• success if at least one request fixes the bug

Evaluation

Results

• standard APR approaches - 7 / 40 bugs fixed

• CoCoNut - 19 / 40 fixed

• Codex - 21 / 40

• chatGPT - 19 / 40 fixed

Results

Results

Execute requests multiple times!

Answers classification
• different classes of chatGPT answers have been identified:

• More information required

• No bug found

• Correct fix provided

• Tries to fix something else

• Provides fix but introduces new bug

• Alternative implementation

Answers classification

Answers classification

Let’s use the full potential of the dialogue
system!

Discussion with chatGPT

Discussion with chatGPT

Do hints help?
• a checkmark with an asterisk (*)

defines that a solution was found
without a follow-up request being
necessary in this run

• after adding hints, chatGPT solved
31 out of 40 problems (77.5%)

• Codex - 21 / 40

• CoCoNut - 19 / 40

• standard APR - 7 / 40

Is it worth it?
• Despite its great performance, the question arises whether the mental cost

required to verify ChatGPT answers outweighs the advantages that ChatGPT
brings.

• Overall, we find that participants who had access to an AI assistant based on
OpenAI's codex-davinci-002 model wrote significantly less secure code
than those without access. Additionally, participants with access to an AI
assistant were more likely to believe they wrote secure code than those
without access to the AI assistant. Furthermore, we find that participants who
trusted the AI less and engaged more with the language and format of their
prompts (e.g. re-phrasing, adjusting temperature) provided code with fewer
security vulnerabilities. [1]

[1] Perry, Neil, et al. "Do Users Write More Insecure Code with AI Assistants?." arXiv preprint arXiv:2211.03622 (2022).

