
Colorectal Cancer Dataset

FINAL PROJECT PRESENTATION

Seminar on Artificial Intelligence 2 NAIL052

Morelli Davide - Rishikesh Kumar

A little refresh on what was done so far...

What we tried to do next

We tried to work in two parallel directions:

Trying to improve the classification of CANCER STAGE

Trying new tasks:

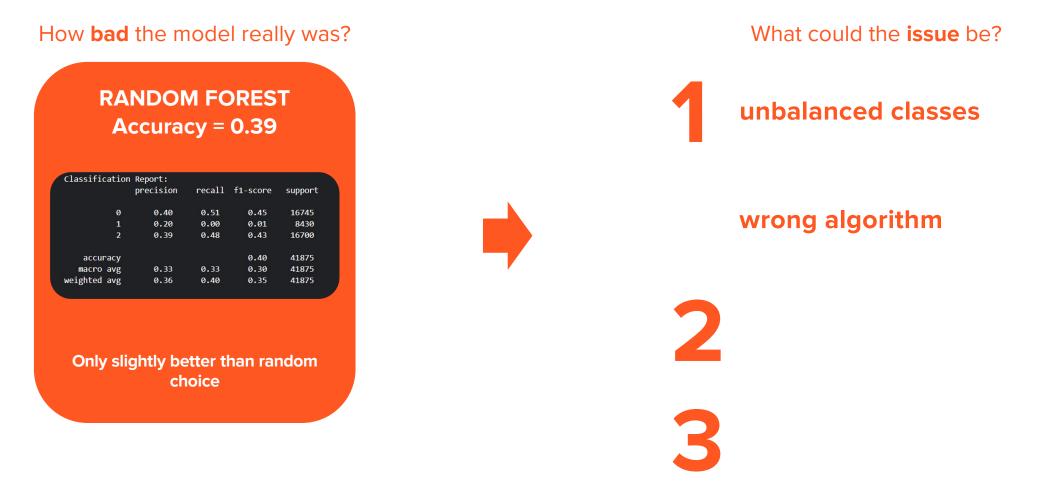
classification of mortality/survival prediction and regression on healthcare cost/ mortality rate

How **bad** the model really was?

RANDOM FOREST

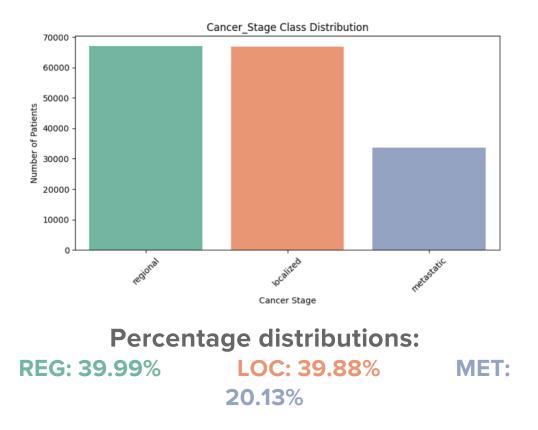
Accuracy = 0.39

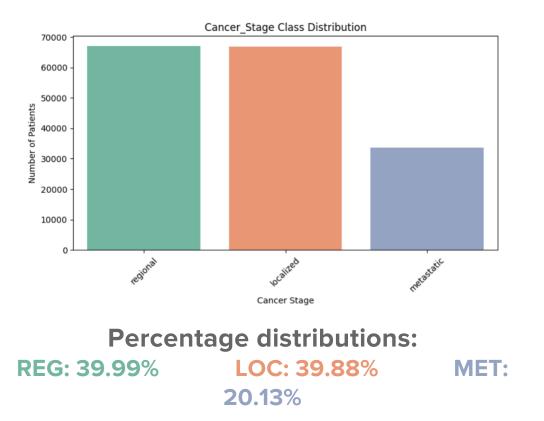
Classification					
	precision	recall	f1-score	support	
0	0.40	0.51	0.45	16745	
0	0.40	0.51	0.45	10/45	
1	0.20	0.00	0.01	8430	
2	0.39	0.48	0.43	16700	
accuracy			0.40	41875	
macro avg	0.33	0.33	0.30	41875	
weighted avg	0.36	0.40	0.35	41875	


Only slightly better than random choice

How **bad** the model really was? What could the **issue** be? **RANDOM FOREST** Accuracy = 0.39 Classification Report: precision recall f1-score support 2 0.45 16745 0 0.40 0.51 0.20 0.01 8430 0.00 0.39 0.48 0.43 16700 0.40 41875 accuracy 0.33 0.30 41875 macro avg 0.33 weighted avg 0.36 0.40 0.35 41875 R Only slightly better than random

choice


How **bad** the model really was? **RANDOM FOREST** unbalanced classes Accuracy = 0.39 Classification Report: precision recall f1-score support 0.45 16745 0 0.40 0.51 0.20 0.01 8430 0.00 0.39 0.48 0.43 16700 accuracy 0.40 41875 0.33 0.30 41875 macro avg 0.33 weighted avg 0.36 0.40 0.35 41875 2 Only slightly better than random choice R


What could the **issue** be?

How are the classes unbalanced?

How are the classes unbalanced?

How can we solve this?

Trying new, different models:

Naive-Bayes

Classification	Report:				
	precision	recall	f1-score	support	
localized	0.40	0.41	0.40	13360	
metastatic	0.21	0.26	0.23	6744	
regional	0.40	0.35	0.37	13396	
accuracy			0.35	33500	
macro avg	0.34	0.34	0.34	33500	
weighted avg	0.36	0.35	0.36	33500	

Accuracy: 0.353

Trying new, different models:

Logistic regression					
Classification	Dopont :				
Classification					
	precision	recall	f1-score	support	
localized	0.40	0.42	0.41	13360	
metastatic	0.22	0.11	0.14	6744	
regional	0.40	0.48	0.44	13396	
Ŭ					
accuracy			0.38	33500	
macro avg	0.34	0.34	0.33	33500	
weighted avg	0.37	0.38	0.37	33500	

Logistic regression

Accuracy: 0.381

Trying new, different models:

k-NN (k = 5)

Classification	Report: precision	recall	f1-score	support	
localized metastatic regional	0.40 0.20 0.40	0.53 0.17 0.30	0.45 0.18 0.35	13360 6744 13396	
accuracy macro avg weighted avg	0.33 0.36	0.33 0.37	0.37 0.33 0.36	33500 33500 33500	

Accuracy: 0.366

New feature engineering ideas

- (CLASS SUGGESTION) Ignoring features that are outcome-dependant
- Continuous feature quantization using bins
- Ordinal encoding of Obesity_BMI

	Obesity_BMI	Obesity_BMI_encoded	Age	Age_Band	Tumor_Size_mm	Tumor_Size_Category
0	Overweight	2	77	60-79	69	Large
1	Overweight	2	59	40-59	33	Medium
2	Normal	1	66	60-79	17	Small
3	Obese	3	83	80+	14	Small
4	Normal	1	66	60-79	34	Medium

How did the models improve? ACCURACY

Survival prediction classification

LogisticRegression: ACC=0.600, ROC_AUC=0.498 RandomForest: ACC=0.584, ROC_AUC=0.501 GradientBoosting: ACC=0.600, ROC_AUC=0.498 MLPClassifier: ACC=0.564, ROC_AUC=0.501

Survival prediction classification

LogisticRegression: ACC=0.600, ROC_AUC=0.498 RandomForest: ACC=0.584, ROC_AUC=0.501 GradientBoosting: ACC=0.600, ROC_AUC=0.498 MLPClassifier: ACC=0.564, ROC_AUC=0.501

Mortality prediction classification

LogisticRegression: ACC=0.599, ROC_AUC=0.498 RandomForest: ACC=0.586, ROC_AUC=0.501 GradientBoosting: ACC=0.599, ROC_AUC=0.502 MLPClassifier: ACC=0.557, ROC_AUC=0.504

Survival prediction classification

LogisticRegression: ACC=0.600, ROC_AUC=0.498 RandomForest: ACC=0.584, ROC_AUC=0.501 GradientBoosting: ACC=0.600, ROC_AUC=0.498 MLPClassifier: ACC=0.564, ROC_AUC=0.501

Mortality prediction classification

LogisticRegression: ACC=0.599, ROC_AUC=0.498 RandomForest: ACC=0.586, ROC_AUC=0.501 GradientBoosting: ACC=0.599, ROC_AUC=0.502 MLPClassifier: ACC=0.557, ROC_AUC=0.504

Healthcare costs

regression

LinearRegression: MSE=747066258.45, R2=-0.001 RandomForestReg: MSE=760362250.74, R2=-0.018 GradientBoostingReg: MSE=747256776.59, R2=-0.001 MLPRegressor: MSE=748217485.37, R2=-0.002

Survival prediction classification

LogisticRegression: ACC=0.600, ROC_AUC=0.498 RandomForest: ACC=0.584, ROC_AUC=0.501 GradientBoosting: ACC=0.600, ROC_AUC=0.498 MLPClassifier: ACC=0.564, ROC_AUC=0.501

Mortality prediction classification

LogisticRegression: ACC=0.599, ROC_AUC=0.498 RandomForest: ACC=0.586, ROC_AUC=0.501 GradientBoosting: ACC=0.599, ROC_AUC=0.502 MLPClassifier: ACC=0.557, ROC_AUC=0.504

Healthcare costs

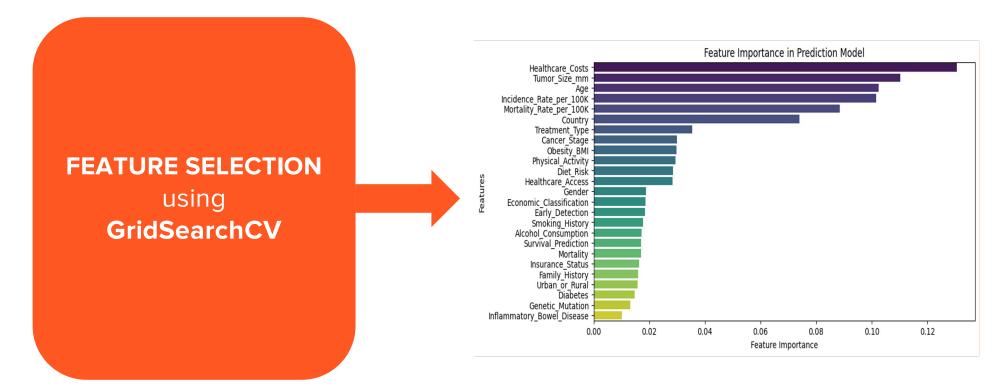
regression

LinearRegression: MSE=747066258.45, R2=-0.001 RandomForestReg: MSE=760362250.74, R2=-0.018 GradientBoostingReg: MSE=747256776.59, R2=-0.001 <u>MLPRegressor</u>: MSE=748217485.37, R2=-0.002

Mortality rate regression

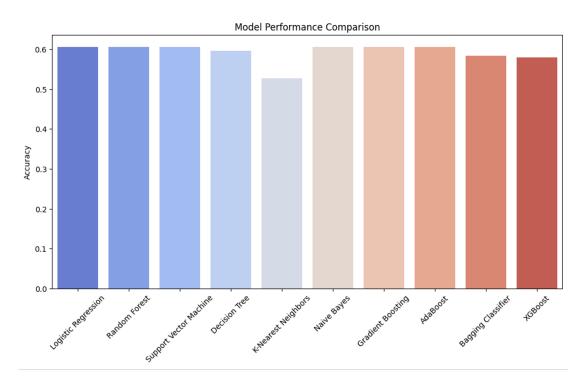
LinearRegression: MSE=52.26, R2=-0.001 RandomForestReg: MSE=53.15, R2=-0.018 GradientBoostingReg: MSE=52.27, R2=-0.001 MLPRegressor: MSE=55.46, R2=-0.062

Deep learning


We tried to use **Deep Learning** to discover the best parameters for our new tasks

DL Survival Model --Epoch 1/30 4188/4188 - 5s - 1ms/step - accuracy: 0.5980 - auc: 0.5014 - loss: 0.6753 - val accuracy: 0.5996 - val auc: 0.4971 - val loss: 0.6734 Epoch 2/30 4188/4188 - 4s - 855us/step - accuracy: 0.5996 - auc: 0.5002 - loss: 0.6736 - val accuracy: 0.5996 - val auc: 0.5026 - val loss: 0.6732 Epoch 3/30 4188/4188 - 4s - 877us/step - accuracy: 0.5996 - auc: 0.5032 - loss: 0.6733 - val accuracy: 0.5996 - val auc: 0.4996 - val loss: 0.6732 Epoch 4/30 4188/4188 - 4s - 856us/step - accuracy: 0.5996 - auc: 0.5062 - loss: 0.6732 - val accuracy: 0.5996 - val auc: 0.5035 - val loss: 0.6733 Epoch 5/30 4188/4188 - 4s - 895us/step - accuracy: 0.5996 - auc: 0.5060 - loss: 0.6732 - val accuracy: 0.5996 - val auc: 0.4964 - val loss: 0.6732 Epoch 6/30 4188/4188 - 4s - 854us/step - accuracy: 0.5996 - auc: 0.5065 - loss: 0.6731 - val accuracy: 0.5996 - val auc: 0.5020 - val loss: 0.6735 Epoch 7/30 4188/4188 - 3s - 834us/step - accuracy: 0.5996 - auc: 0.5119 - loss: 0.6730 - val accuracy: 0.5996 - val auc: 0.4977 - val loss: 0.6734 DL Model: ACC=0.600, AUC=0.503

This brought no improvement compared to the previous results


Feature importance

Which are the best features to focus on?

Try again with important features

We tried the same trainings as before but with only the most important features and this time we increased the amount of models used

Comparing with others on Kaggle

For Cancer_Stage prediction we didn't find any other notebook so we have only our result to go with We found another notebook analysing Survival_Prediction

SONAWANE LALIT · 3MO AGO · 317 VIEWS

Best Model: Gradient Boosting with Accuracy: 60.61%

So our result is in line with theirs, also the best model is for both **Gradient Boosting**

Thank you for the attention