DeepSeek V3

Liu, Aixin, et al. "Deepseek-v3 technical report." arXiv preprint arXiv:2412.19437 (2024).

Presented by Adnan Al Ali

Overview

- Mixture-of-Experts language model
- 671 B parameters, 37 B activated for each token
- **Cost-effective** training and efficient inference
- New state-of-the-art reached on certain benchmarks
- Together with DeepSeek R1 strongly impacted the LLM/tech market

Related Work

What lead to DeepSeek V3?

The Transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (**2017**).

What the Transformer introduced

- Originally an architecture for machine translation (MT)
- Replaced the RNNs and CNNs (popular in NLP at the time) by attention mechanism alone¹:
 - RNNs are difficult to parallelize
 - CNNs struggle with long distance relationships
- Encoder-decoder architecture

¹ The attention mechanism had been used before, in combination with other modules

How the Architecture Works

- The input is tokenized into ${\bf sub-word\ tokens\ from\ a\ fixed-size\ vocabulary\ and\ embedded\ into\ a\ vector\ \in\ \mathbb{R}^{d_{model}}$
- **Positional encodings** are added (attention mechanism is position-unaware by default)
- The encoder calculates a contextualized vector representation for each input token $\in \mathbb{R}^{d_{model}}$
- The decoder starts with an empty sequence and uses its previous outputs (**autoregressively** on inference) and the outputs of the encoder to generate the **next token**
- In the decoder, only tokens can attend to **earlier tokens only**

Scaled Dot-Product Attention

- The vector token representations are linearly transformed into 3 matrices: Queries, Keys, and Values
- "Compatibility" between the Keys and Queries:

softmax
$$\left(\frac{QK^T}{\sqrt{d_{keys}}}\right)$$

• Compatibility is used to weight the values as softmax $\left(\frac{QK^{T}}{\sqrt{d_{HOME}}}\right)V$

• One attention layer contains h such **attention heads** — the outputs are concatenated and linearly transformed back to d_{model}

Quiz question: what was the first decoderonly model?

Decoder-only Model

Liu, Peter J., et al. "Generating wikipedia by summarizing long sequences." arXiv preprint arXiv:1801.10198 (**2018**).

Multi-document Summarization

- Task: given a collection of source texts, generate a **Wikipedia**style summary
- Authors drop the encoder part entirely, instead feed the input tokens directly into the decoder as sequences:
 #Source1 lorem ipsum ... #Source2 dolor sit ... [SEP] #Wikipedia amet consectetur ...
- During training, predicting all tokens, including the sources
- On inference, the sources are given as if they were already generated

Source: Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Mixture of Experts

Dai, Damai, et al. "Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models." arXiv preprint arXiv:2401.06066 (2024).

Mixture of Experts

- Feed-forward (FFN) layers constitute two-thirds of a transformer model's parameters and store factual information^[1]
- The aim is to substitute them with a MoE layer a set of N smaller FFN layers of which only a subset of K is used for each token
- Output from the Self-Att layer for token $t: u_t$
- **Token-to-expert** affinity: $s_{i,t} = \operatorname{sigmoid}(u_t^T c_i)$ learned "expert centroid"
- **Top K** experts with the highest $s_{i,t}$ are considered:

^[1]Geva, Mor, et al. "Transformer feed-forward layers are key-value memories." arXiv preprint arXiv:2012.14913 (2020).

MoE Challenge: Knowledge Hybridity

- Previous architectures had a small number of experts (8 or 16) which had to cover diverse knowledge → hard to utilize at once
- Solution: fine-grained expert segmentation:
 - Segment each expert into m equally sized experts $(\frac{1}{m}$ of the original size)
 - Increase K' to mK
- Why it works combinatorial explosion/**flexibility**:
 - For N = 16, K = 2 the number of expert combinations is $\binom{16}{2} = 120$
 - Fine-grained by $m = 4: \binom{64}{8} = 4,426,165,368$

MoE Challenge: Knowledge Redundancy

- Some knowledge is **required for all/most tokens** and under the conventional architecture, all experts have to learn it
- Solution: shared expert isolation:
 - A small number (K_s) of experts is activated for each token
 - The remaining $K K_s$ experts are selected excluding the shared ones

Source: Dai, Damai, et al. "Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models." arXiv preprint arXiv:2401.06066 (2024).

MoE challenge: routing collapse

- Automatically learned expert routing may lead to repetitive selection of a few experts regardless of the token
- Solution: expert-level balance loss:
 - Per-token average expert affinity: $P_i = \frac{1}{T} \sum_{t=1}^{T} \frac{s_{i,t}}{\alpha_t}$

Per-token average expert utilization:

$$f_i = \frac{(N-K_s)}{(K-K_s)} \frac{1}{T} \sum_{t=1}^{T} \mathbb{1} [\text{Token } t \text{ selects Expert } i]$$
indicator

Loss function: $\mathcal{L}_{\text{ExpBal}} = \eta_1 \sum_i f_i P_i$ indicator

Quiz question: what's the goal of the DeepSeekMoE architecture?

- a) Adding more knowledge to the model
- b) Saving GPU memory
- c) Decreasing the number of computations
- d) Explicitly assigning expertise to parts of the model

Quiz question: what's the goal of the DeepSeekMoE architecture?

- a) Adding more knowledge to the model
- b) Saving GPU memory
- c) Decreasing the number of computations
- d) Explicitly assigning expertise to parts of the model

DeepSeek V2

Liu, Aixin, et al. "Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model." arXiv preprint arXiv:2405.04434 (2024).

Multi-Head Latent Attention

- In the original Transformer attention, the heavy **Key-Value cache** slows down the inference: 2(#heads)d(#blocks) values per token
- Solution: low-rank key-value joint compression:
 - Before applying the linear transformation into the **K**eys and **V**alues for each head, the attention input (h_t) is transformed into a low-dimensional compressed space: $c_t^{KV} = W^{DKV} h_t \in \mathbb{R}^{d_c}$
 - On inference, only the c_t^{KV} is **cached**
 - Similarly, the ${\bf Q}$ ueries are computed from a compressed vector
- Positional embedding (RoPE^[1]) are computed before the compression

^[1]Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." Neurocomputing 568 (2024): 127063.

arXiv:2405.04434 (2024).

Quiz question: why aren't the Queries cached?

- a) We don't need them in the future computations
- b) They are easier to compute
- c) They would take up too much memory
- d) They change dynamically and cannot be cached

Quiz question: why aren't the Queries cached?

- a) We don't need them in the future computations
- b) They are easier to compute
- c) They would take up too much memory
- d) They change dynamically and cannot be cached

Device-Limited Routing

- Individual experts are often loaded on different GPUs (expert parallelism)
- Communication between the GPUs is costly
- Solution: limiting the number of GPUs per token to M
- Implementation:
 - Select the top *M* devices based on the affinity and all the experts on those devices
 - Use the top $(K K_s)$ experts from the selection.
- For $M \ge 3$ results are **comparable to unrestricted** selection

DeepSeek V3

Liu, Aixin, et al. "Deepseek-v3 technical report." arXiv preprint arXiv:2412.19437 (2024).

Chapter 2: Architecture

Architecture

- Multi-head latent attention (as described in DeepSeek V2)
- Mixture of 256 experts (as described in DeepSeekMoE and V2)
- Two approaches to the experts load balancing:
 - **1.** Auxiliary-loss-free load balancing:
 - When computing the top $(K K_s)$ experts for a token t, a bias b_i is added to the affinity $s_{i,t}$
 - The bias is dynamically in-/decreased by a hyperparameter γ during the training to account for under-/overloaded experts
 - Complementary expert-level (auxiliary) balance loss (as described in DeepSeekMoE), with a small learning rate to preserve the performance^[1]

^[1]Wang, Lean, et al. "Auxiliary-loss-free load balancing strategy for mixture-of-experts." arXiv preprint arXiv:2408.15664 (2024).

Additional Training Objective: MTP

- **Multi-token prediction** (MTP) predicts D + 1 future tokens at each step (instead of one)
- Aim: **densify** the training process, enable the model to **pre-plan** for future token predictions
- MTP procedure:
 - Run the main model and obtain representations for each token
 - MTP modules are sequential: each taking the representations from the previous module concatenated with the true next token embeddings
 - Pass through a linear projection, a Transformers layer and the output head
- The embedding layer and the output head are shared

• MTP loss:
$$\mathcal{L}_{\text{MTP}} = \frac{\lambda}{D} \sum_{k=1}^{D} \mathcal{L}_{\text{MTP}}^{k}$$
 where $\mathcal{L}_{\text{MTP}}^{k}$ is the cross-entropy loss

Source:Liu, Aixin, et al. "Deepseek-v3 technical report." arXiv preprint arXiv:2412.19437 (2024).

Chapter 3: Infrasctructures

Training Infrastructure

- Trained on a cluster of **2048 NVIDIA H800 GPUs** (80 GB VRAM), 8 GPUs per node
- Expert parallelism spanning 8 nodes
 - This introduces communication overhead similar to the computation time
 - Solution: DualPipe overlapping communication and computation

Mixed-Precision Training

- Quantization to FP8 increases effectivity but is **limited by outliers**
- Most of the core computation (such as matric multiplication) is done in FP8
- Original precision is preserved in some modules
- Fine-grained quantization:
 - Standard practice: scale the maximum absolute value from the samples to the maximum representable FP8 → one outlier ruins the accuracy
 - Fine-grained approach: split the sequence into **blocks of size** N_C ; each block has its own scale based on its maximum absolute value

Inference: Pre-Filling (stage I)

- During pre-filling, the user's prompt is processed and cached items are pre-computed
- Minimum deployment unit: 4x8 GPUs
- Parallelism strategies for the attention modules:
 - 4-way Tensor Parallelism (TP4) (= weights distributed over 4 devices)
 - **Sequence Parallelism** (SP) (= sequence is split for some operations)
 - 8-way **Data Parallelism** (DP8) (= 8 independent copies of the sub-model)
- Parallelism strategies for the MoE modules:
 - 32-way **Expert Parallelism** (EP32) (= experts distributed over 32 devices)
- 32 redundant experts are maintained, dynamically changed.

Quiz question: what is being cached for each input token?

- \Box key projections for each head $k_{t,i}$
- \Box queries projections each head $q_{t,i}$
- \Box values projections each head $v_{t,i}$
- \Box compressed latent vector c_t^{KV} for keys and values
- \Box compressed latent vector c_t^Q for queries

Quiz question: what is being cached for each input token?

- \Box key projections for each head $k_{t,i}$
- \Box queries projections each head $q_{t,i}$
- \Box values projections each head $v_{t,i}$
- \blacksquare compressed latent vector c_t^{KV} for keys and values
- \Box compressed latent vector c_t^Q for queries

Inference: Decoding (stage II)

- During decoding, the model **predicts the tokens** autoregressively
- Minimum deployment unit: **40x8 = 320 GPUs**
- Attention parallelism: TP4 + SP + DP80
- Parallelism strategies for the MoE modules:
 - 320-way Expert Parallelism (EP320)
 - Each GPU hosts one expert
 - 64 GPUs host the shared and redundant experts

Chapter 4: Pre-Training

Training Data

- 14.8 T of multilingual diverse tokens, with a large portion of math and code
- Byte-Pair Encoding tokenization
- Data augmentation: FIM with the rate of 0.1
 - Text is split into three parts: f_{prefix} , f_{middle} , f_{suffix} and transformed: [BEGIN] f_{prefix} [HOLE] f_{suffix} [END] f_{middle} [EOS]

Hyper-Parameters

- Model parameters:
- 61 Transformer layers
- 128 attention heads
- attention dim: 128
- KV compressed dim: 512
- Q compressed dim: 1536

- hidden dim: 7168
- first 3 FFNs kept dense
- 256 routed experts
- 8 of them activated per tok
- max 4 nodes per tok

- 1 shared expert
- expert hidden dim: 2048
- 1 extra MTP token

- Training parameters
- AdamW with $\beta_1 = 0.9$, $\beta_2 = 0.95$, WD = 0.1
- Context window: 4096 (later extended using YaRN^[1])
- LR linear increase from 0 to 2.2×10^{-4} , constant for 10 T tokens, then decreased to 7.3×10^{-6}
- Gradient clipped to 1.0

- BS increased from 3072 to 15360 over 469 B tokens
- Auxiliary-free loss update $\gamma=0.001$, then 0 for the last 500 B tokens
- Complementary balance lost weight: $\eta_1 = 0.0001$
- MTP loss weight $\lambda = 0.3$ for the first 10 T tokens, then $\lambda = 0.1$

^[1]Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023).

	Benchmark (Metric)	# Shots	DeepSeek-V2 Base	Qwen2.5 72B Base	LLaMA-3.1 405B Base	DeepSeek-V3 Base
	Architecture	-	MoE	Dense	Dense	MoE
	# Activated Params	-	21B	72B	405B	37B
	# Total Params	-	236B	72B	405B	671B
English	Pile-test (BPB)	-	0.606	0.638	0.542	0.548
	ВВН (ЕМ)	3-shot	78.8	79.8	82.9	87.5
	MMLU (EM)	5-shot	78.4	85.0	84.4	87.1
	MMLU-Redux (EM)	5-shot	75.6	83.2	81.3	86.2
	MMLU-Pro (EM)	5-shot	51.4	58.3	52.8	64.4
	DROP (F1)	3-shot	80.4	80.6	86.0	89.0
	ARC-Easy (EM)	25-shot	97.6	98.4	98.4	98.9
	ARC-Challenge (EM)	25-shot	92.2	94.5	95.3	95.3
	HellaSwag (EM)	10-shot	87.1	84.8	89.2	88.9
	PIQA (EM)	0-shot	83.9	82.6	85.9	84.7
	WinoGrande (EM)	5-shot	86.3	82.3	85.2	84.9
	RACE-Middle (EM)	5-shot	73.1	68.1	74.2	67.1
	RACE-High (EM)	5-shot	52.6	50.3	56.8	51.3
	TriviaQA (EM)	5-shot	80.0	71.9	82.7	82.9
	NaturalQuestions (EM)	5-shot	38.6	33.2	41.5	40.0
	AGIEval (EM)	0-shot	57.5	75.8	60.6	79.6

Source:Liu, Aixin, et al. "Deepseekv3 technical report." arXiv preprint arXiv:2412.19437 (2024).

	Benchmark (Metric)	# Shots	DeepSeek-V2 Base	Qwen2.5 72B Base	LLaMA-3.1 405B Base	DeepSeek-V3 Base
	Architecture	-	MoE	Dense	Dense	MoE
	# Activated Params	-	21B	72B	405B	37B
	# Total Params	-	236B	72B	405B	671B
Code	HumanEval (Pass@1)	0-shot	43.3	53.0	54.9	65.2
	MBPP (Pass@1)	3-shot	65.0	72.6	68.4	75.4
	LiveCodeBench-Base (Pass@1)	3-shot	11.6	12.9	15.5	19.4
	CRUXEval-I (EM)	2-shot	52.5	59.1	58.5	67.3
	CRUXEval-O (EM)	2-shot	49.8	59.9	59.9	69.8
Math	GSM8K (EM)	8-shot	81.6	88.3	83.5	89.3
	MATH (EM)	4-shot	43.4	54.4	49.0	61.6
	MGSM (EM)	8-shot	63.6	76.2	69.9	79.8
	CMath (EM)	3-shot	78.7	84.5	77.3	90.7
	CLUEWSC (EM)	5-shot	82.0	82.5	83.0	82.7
	C-Eval (EM)	5-shot	81.4	89.2	72.5	90.1
	CMMLU (EM)	5-shot	84.0	89.5	73.7	88.8
Chinese	CMRC (EM)	1-shot	77.4	75.8	76.0	76.3
	C3 (EM)	0-shot	77.4	76.7	79.7	78.6
	CCPM (EM)	0-shot	93.0	88.5	78.6	92.0
Multilingual	MMMLU-non-English (EM)	5-shot	64.0	74.8	73.8	79.4

Source: Liu, Aixin, et al. "Deepseekv3 technical report." arXiv preprint arXiv:2412.19437 (2024).

Chapter 5: Post-Training

Reasoning Data Generation

- Reasoning data partially based on a DeepSeek-V2.5-based R1 prototype
- **Problem:** R1 models **overthink** and generate very long sequences
- Solution: create an expert model for data generation using SFT and RL pipeline (different for coding, math, general reasoning...)
- SFT is done on two kinds of samples: (problem, original response) and (system prompt, problem, R1 response); the system prompt guides the model through the reasoning
- During the RL, system prompt is removed, and responses are sampled at a high temperature
- Final result: **concise** answers retaining R1 **thinking patterns**

Supervised Fine-Tuning (SFT)

- Instruction-tuning datasets including 1.5M instances
- Largely generated:
 - Non-reasoning data responses generated by DeepSeek-V2.5 and verified by human annotators
 - Reasoning data generated by an **expert model** (see last slide)
- Hyperparameters:
 - 2 epochs
 - cosine LR decay from 5×10^{-6} to 1×10^{-6}

Quiz question: what is reinforcement learning?

Reinforcement Learning (RL)

- Two types of **reward models** (RM):
 - **Rule-based:** for questions that can be objectively validates (e. g. correct solution)
 - Model-based: for questions with a free-form ground-truth answers, a dedicated ML model is trained based on DeepSeek-V3 SFT
- Group relative policy optimization (**GRPO**) strategy:
 - Omits the critic (value) model
 - Group scores used instead
 - For a question q, outputs $\{o_1, o_2, \cdots, o_G\}$ are sampled from the old policy model $\pi_{\theta_{old}}$ and π_{θ} optimized by maximizing the objective...

Group Relative Policy Optimization (GRPO)

^[1]Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998. Figure source: Shao, Zhihong, et al. "Deepseekmath: Pushing the limits of mathematical reasoning in open language models." arXiv preprint arXiv:2402.03300 (2024).

	Benchmark (Metric)	DeepSeek V2-0506	DeepSeek V2.5-0905	Qwen2.5 72B-Inst.	LLaMA-3.1 405B-Inst.	Claude-3.5- Sonnet-1022	GPT-40 0513	DeepSeek V3
	Architecture	MoE	MoE	Dense	Dense	-	-	MoE
	# Activated Params	21B	21B	72B	405B	-	-	37B
	# Total Params	236B	236B	72B	405B	-	-	671B
English	MMLU (EM)	78.2	80.6	85.3	88.6	88.3	87.2	88.5
	MMLU-Redux (EM)	77.9	80.3	85.6	86.2	88.9	88.0	89.1
	MMLU-Pro (EM)	58.5	66.2	71.6	73.3	78.0	72.6	75.9
	DROP (3-shot F1)	83.0	87.8	76.7	88.7	88.3	83.7	91.
	IF-Eval (Prompt Strict)	57.7	80.6	84.1	86.0	86.5	84.3	86.1
	GPQA-Diamond (Pass@1)	35.3	41.3	49.0	51.1	65.0	49.9	59.1
	SimpleQA (Correct)	9.0	10.2	9.1	17.1	28.4	38.2	24.9
	FRAMES (Acc.)	66.9	65.4	69.8	70.0	72.5	80.5	73.3
	LongBench v2 (Acc.)	31.6	35.4	39.4	36.1	41.0	48.1	48.7
Code	HumanEval-Mul (Pass@1)	69.3	77.4	77.3	77.2	81.7	80.5	82.6
	LiveCodeBench (Pass@1-COT)	18.8	29.2	31.1	28.4	36.3	33.4	40.5
	LiveCodeBench (Pass@1)	20.3	28.4	28.7	30.1	32.8	34.2	37.6
	Codeforces (Percentile)	17.5	35.6	24.8	25.3	20.3	23.6	51.6
	SWE Verified (Resolved)	-	22.6	23.8	24.5	50.8	38.8	42.0
	Aider-Edit (Acc.)	60.3	71.6	65.4	63.9	84.2	72.9	79.7
	Aider-Polyglot (Acc.)	-	18.2	7.6	5.8	45.3	16.0	49.6
Math	AIME 2024 (Pass@1)	4.6	16.7	23.3	23.3	16.0	9.3	39.2
	MATH-500 (EM)	56.3	74.7	80.0	73.8	78.3	74.6	90.2
	CNMO 2024 (Pass@1)	2.8	10.8	15.9	6.8	13.1	10.8	43.2
Chinese	CLUEWSC (EM)	89.9	90.4	91.4	84.7	85.4	87.9	90.9
	C-Eval (EM)	78.6	79.5	86.1	61.5	76.7	76.0	86.5
	C-SimpleQA (Correct)	48.5	54.1	48.4	50.4	51.3	59.3	64.8

Source: Liu, Aixin, et al. "Deepseekv3 technical report." arXiv preprint arXiv:2412.19437 (2024).

Chapter 6: Conclusion, Limitations, and Future Directions

Conclusion

- DeepSeek-V3, a large MoE model with 671B parameters, 37B activated parameters
- MLA, DeepSeekMoe architecture, auxiliary-loss-free strategy, multi-token prediction training objective, FP8 training
- Distilled reasoning from the **R1** prototype
- **Strongest open-source model** at the time, comparable results to GPT-40 and Claude-3.5-Sonnet
- **2.788M** H800 **GPU hours** for full training (=57 days with 2048 GPUs)

Limitations

- Large deployment unit recommended (inaccessible to smaller teams)
- Generation speed is still limited (more advanced hardware anticipated)

Future Directions

- Consistently adhere to the **open-source** philosophy and longtermism
- Aiming toward the artificial general intelligence (AGI)
- Study and refine the architectures, possibly **beyond Transformer**
- Improve the quality and quantity of the **training data**, explore other sources of training signals
- Explore the **deep-thinking capabilities**
- Explore a more **comprehensive** way of **evaluation**, instead of optimizing for a fixed set of benchmarks

