

Automated vehicle

Jiri Harasim

Introduction
Urban Challenge
Boss and his architecture
Trajectory generation
On-road planning
Unstructured planning
Anytime D*

Introduction

Why do we develop automated vehicle at all?

Introduction

Why do we develop automated vehicle at all?

Army usage
Handicapped people
Laziness

Introduction

Why do we develop automated vehicle at all?

Army usage
Handicapped people
Laziness

In fact, for any robot it's important to be able to get
somewhere safely.

Introduction

Grand & Urban
challenge

Grand challenge 2004

230 km in The Mojave Dessert, California
1mil USD
nobody finished
15 teams

Grand & Urban challenge

Grand challenge 2005

211 km in The Mojave Dessert, California
2mil, 1mil, 500k
Stanley – Stanford Racing Team, 6:53
23 teams in finals – 4 more finished

Grand & Urban challenge

Urban challenge 2007

96 km in George Air Force Base, California
each finalist received 1mil, 2mil, 1mil, 500k
Boss – Tartan Racing, 4:10
89 teams, 11 in finals – 5 more finished

Grand & Urban challenge

Boss and his
architecture

 “Boss” and his architecture

Vehicle

Boss is modified Chevrolet Tahoe
Has 17 different sensors
Uses GPS and sensors to localize itself in his on-
board map
10x2.16GHz Core2Duo, runs Ubuntu 6.06
Has 60 parallel processes, around 500 GB HDD

 “Boss” and his architecture

 “Boss” and his architecture

Perception

Vehicle state – speed, global and local position
Road world model – information about roads, in-
tersections and parking zones
Moving obstacles – estimation of movement
Static obstacles – 2D map of free, dangerous
and lethal zones
Road blockages – clearly impassable zones

 “Boss” and his architecture

Mission planning

Computes the best route through the road network
Generates checkpoints
Uses gradient value function over the road network
Is easily updated

 “Boss” and his architecture

Behavioral executive

Accounts in actual traffic
Encodes rules of the roads
Implements error recovery system

 “Boss” and his architecture

Motion Planning

Receives goal from behavioral executive and
generates and safely executes trajectory
On-road driving
Unstructured driving

 “Boss” and his architecture

World model

Includes road network, static obstacles, tracked
vehicles and Boss himself
Static obstacles are represented in a regular grid
of cells
Dynamic obstacles are tracked and their future
position is estimated

 “Boss” and his architecture

Intersections

Typical rules, as you know them
Doesn't assign precedence to specific vehicle
If nobody moves on the intersection for 10 s,
Boss moves in assuming he has a precedence

Trajectory generation

 Trajectory generation

Trajectory generation is a part of a motion planner
Boss uses speed profiles with respect to what his
next plan is
It uses curvature profiles to approximate the shape
of the road

 Trajectory generation

Saved table of precomputed values for profiles,
which saves large amount of time
Selects set of trajectories and works with them
Has some level of freedom

On-road planning

 On-road planning

Plan generation

Generates trajectory along center-line and trans-
forms this trajectory into a set of goals to reach
For each goal uses trajectory generation described
before, generating smooth and sharp trajectories

 On-road planning

Velocity profiles

For every trajectory, there is a velocity profile to be
chosen
Boss chooses such profile, which maximizes speed
of a vehicle while being safe at the same time
Set of trajectories is evaluated against various
metrics and the best one is chosen

 On-road planning

Other moves

Line changing move
U-turn
Defensive driving
Executed by the same system, using correct goals

Unstructured planning

 Unstructured planning

Plan generation

Differs a lot from on-road planning

Boss uses lattice planner with (x, y, θ, v)
Boss uses Anytime Dynamic A* algorithm to find
solutions to problems (Anytime D*, AD*)
Heuristic function has a huge role in this algorithm

 Unstructured planning

Plan generation
Boss uses the cost map to avoid dynamic obstacles

 Unstructured planning

Error recovery

Uses the same lattice planner (x, y, θ, v)
Has error level

Never gives up

Usable for blockages, jammed roads, unpredictable
situations

Anytime D*

 Anytime D*

A* search

This is one of the basic search methods

Uses heuristic function to improve Dijkstra

Heuristic function h() must satisfy triangle inequality
for given state s as follows:

 h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

 Anytime D*

A* search
g(sstart) = 0; all other g-values are infinite; OPEN = { sstart };

While(sgoal is not expanded)

 remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

 insert s into CLOSED;

 for every successor s’ of s such that s’ not in CLOSED

 if g(s’) > g(s) + c(s,s’)

 g(s’) = g(s) + c(s,s’);

 insert s’ into OPEN;

 Anytime D*

Anytime Repairing A*

ARA* produces a suboptimal solution very fast and
gets optimum eventually

We add an ε, which we use to multiply heuristic
function with it, to find suboptimal solution

We add a v() value to every state, which holds value
of a state during an expansion

 Anytime D*

Anytime Repairing A*
set ε to large value;

g(sstart)= 0; v-values of all states are set to infinity; OPEN = { sstart };

while ε ≥ 1

 CLOSED = {};

 ComputePathwithReuse();

 publish current ε suboptimal solution;

 decrease ε;

 OPEN = OPEN U INCONS

 Anytime D*

ComputePathwithReuse function

While(f(sgoal) > minimum f-value in OPEN)

 remove s with the smallest [g(s)+ ε * h(s)] from OPEN;

 insert s into CLOSED;

 v(s)=g(s);

 for every successor s’ of s

 if g(s’) >g(s) + c(s,s’)

 g(s’) = g(s) + c(s,s’);

 if s’ not in CLOSED then insert s’ into OPEN;

 otherwise insert s’ into INCONS

 Anytime D*

D* Lite Algorithm
D* Lite produces a solution in an environment with
dynamic obstacles

D* Lite stores costs from every state to goal

Stores one step look-ahead value rhs(s) which
 rhs(s) = 0 if s = goal

 min s' from Succ(s) (c(s, s') + g(s')) otherwise

Works backwards

Isn't Anytime!

 Anytime D*

key(s)

 return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s))];
UpdateState(s)

 if s was not visited before
 g(s) = infinity;
 if (s != sgoal)
 rhs(s) = min s' from Succ(s) (c(s, s') + g(s'));
 if (s from OPEN)
 remove s from OPEN;
 If (g(s) != rhs(s))
 insert s into OPEN with key(s);

 Anytime D*

ComputeShortestPath()

while(min s' from OPEN (key(s))<key(sstart) OR rhs(sstart) != g(sstart))
 remove state s with the minimum key from OPEN;
 If (g(s) > rhs(s))
 g(s) = rhs(s);
 for all s' from Pred(s) UpdateState(s');
 else
 g(s) = infinity;
 for all s' from Pred(s) [{s} UpdateState(s');

 Anytime D*

Main()

g(sstart) = rhs(sstart) = infinity; g(sgoal) = infinity;
rhs(sgoal) = 0; OPEN = empty;
insert sgoal into OPEN with key(sgoal);
forever
 ComputeShortestPath();
 Wait for changes in edge costs;
 for all directed edges (u, v) with changed edge costs
 Update the edge cost c(u, v);
 UpdateState(u);

 Anytime D*

Anytime D*
Combines both, ARA* and D* Lite into Anytime
Dynamic algorithm

Has high ε, so generates suboptimal solution quickly

When change ocures, just sets high ε again

Need to consider under-consistency differently

 Anytime D*

key(s)

if (g(s) > rhs(s))

 return [rhs(s) + ε * h(sstart, s); rhs(s)];
else
 return [g(s) + h(sstart, s); g(s)];

 Anytime D*

UpdateState(s)

if s was not visited before
 g(s) = infinity;
If (s != sgoal) rhs(s) = min s' from Succ(s) (c(s, s') + g(s'));
If (s from OPEN) remove s from OPEN;
If (g(s) != rhs(s))
if s ! from CLOSED
 insert s into OPEN with key(s);
else
 insert s into INCONS;

 Anytime D*

ComputeorImprovePath()

while(min s from OPEN(key(s))<key(sstart) OR rhs(sstart) != g(sstart))
 remove state s with the minimum key from OPEN;
 If (g(s) > rhs(s))
 g(s) = rhs(s);
 CLOSED = CLOSED U {s};
 for all s' from Pred(s) UpdateState(s');
 else
 g(s) = 1;
 for all s' from Pred(s) U {s} UpdateState(s');

 Anytime D*

Main()

g(sstart) = rhs(sstart) = infinity; g(sgoal) = infinity;

rhs(sgoal) = 0; ε = ε0;
OPEN = CLOSED = INCONS = empty;
insert sgoal into OPEN with key(sgoal);
ComputeorImprovePath();
publish current ε-suboptimal solution;
forever
 if changes in edge costs are detected
 for all directed edges (u, v) with changed edge costs
 Update the edge cost c(u, v);
 UpdateState(u);

 Anytime D*

 if significant edge cost changes were observed
 increase ε or replan from scratch;
 else if ε > 1
 decrease ε;
 Move states from INCONS into OPEN;
 Update the priorities for all s from OPEN according to key(s);
 CLOSED = empty;
 ComputeorImprovePath();
 publish current ε-suboptimal solution;
 if ε = 1
 wait for changes in edge costs;

Thank you!

References

Anytime Dynamic A*(Likhachev, Ferguson, Gordon, Stentz, Thrun)

Search-based planning with motion primitives(Likhachev)

Motion planning in urban environments(Ferguson, Howard, Likhachev)

Autonomous driving in traffic(AI magazine volume 30 number 2)

carmotor.cz(DARPA Urban Challenge 2007 – velký den pro robotiku)

wikipedia

	Title
	Overview
	Long-term goal
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Development up to present
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

