
Algorithms and data structures I

TIN060

Ondřej Čepek

TIN060 Ondřej Čepek

2

Sylabus
1. Asymptotic notation
2. Graph algorithms
3. Extremal paths in graphs
4. Minimum spanning trees
5. Tree data structures
6. „Divide and conquer“ algorithms
7. Sorting
8. Hashing
9. Linear algebra algorithms

TIN060 Ondřej Čepek

3

How to compare algorithms (doing the same task)?
Time complexity of algorithms both depend on the “size”

Space complexity of algorithms of input data

How to measure the “size” of input data?

rigorously: number of bits necessary to encode the input data

Example: input consists of (natural) numbers a1, a2, … , an which are to be sorted

the size of data D coded in binary is |D| = d = élog2 a1ù + … + élog2 anù

Time complexity = function f(d) specifying the number of “steps” the algorithm
takes depending on the size of the input data

intuitively: the exact description of function f (constants, coefficients) is not so much
important, what matters is to which “class” f belongs (linear, quadratic, cubic,
exponential, …)

TIN060 Ondřej Čepek

4

Example: f(d) = ad + b linear algorithm

f(|D|) = ad2 + bd + c quadratic algorithm

f(|D|) = k2d exponential algorithm

What is a “step” of an algorithm?
rigorously: an operation of a given abstract machine (typically a Turing machine)

simplification (we shall use): step = operation executable in constant time, i.e.

in time independent of the size of input data

• arithmetic operations (addition, subtraction, multiplication, … for numbers stored
in some standard numerical data types – integer, longint, real, float)

• comparison of (two) values (numbers, characters)

• assignment (only for simple data types, not for arrays …)

Þ this also simplifies the way the size of input data is measured (all numbers
have a fixed size in memory)

Example: sort numbers a1, a2, … , an Þ the size of the input data is |D| = n

This simplification is OK when comparing the quality of different algorithms,
however it can lead to an error when deciding to which complexity class the given
problem belongs (numbers bounded by a constant versus unbounded numbers).

TIN060 Ondřej Čepek

5

Why is time complexity of algorithms important?
(many people – even some programmers – think that current computers are so fast

they solve everything in a few seconds anyway so why bother…)

Time it takes to execute f(n) operations (= time needed for the run of the algorithm)
for input data of size n based on the assumption that the hardware used is capable
of executing 1 million operations per second

n

f(n) 20 40 60 80 100 500 1000

n 20μs 40μs 60μs 80μs 0.1ms 0.5ms 1ms

n log n 86μs 0.2ms 0.35ms 0.5ms 0.7ms 4.5ms 10ms

n2 0.4ms 1.6ms 3.6ms 6.4ms 10ms 0.25s 1s

n3 8ms 64ms 0.22s 0.5s 1s 125s 17min

2n 1s 12days 36000y

n! 77000y

TIN060 Ondřej Čepek

6

The growth of a “manageable” size of input data based on hardware speed-up

(assuming that manageable size of input data for “current” hardware is x)

Manageable size of input data = maximum size for which the algorithm terminates in

some specified time t, where t = maximum time the user is willing to wait for results

Hardware speed-up

f(n) original 10 times 100 times 1000 times

n x 10x 100x 1000x

n log n x 7.02x 53.56x 431.5x

n2 x 3.16x 10x 31.62x

n3 x 2.15x 4.64x 10x

2n x x+3 x+6 x+9

TIN060 Ondřej Čepek

7

Asymptotic notation
Intuitively: allows to disregard the behavior on “small” data and to disregard additive

and multiplicative constants (coefficients) in the precise complexity functions, allows

to capture the important features needed to properly classify complexity functions

Rigorously:

f(n) is asymptotically less or equal than g(n), denoted by f(n) Î O(g(n)), if

$c>0 $n0>0 "n≥n0 : 0 ≤ f(n) ≤ c g(n)

f(n) is asymptotically greater or equal than g(n), denoted by f(n) Î Ω(g(n)), if

$c>0 $n0>0 "n≥n0 : 0 ≤ c g(n) ≤ f(n)

f(n) is asymptotically same as g(n), denoted by f(n) Î Q(g(n)), if

$c>0 $d>0 $n0>0 "n≥n0 : 0 ≤ c g(n) ≤ f(n) ≤ d g(n)

f(n) is asymptotically strictly smaller than g(n), denoted by f(n) Î o(g(n)), if

"c>0 $n0>0 "n≥n0 : 0 ≤ f(n) ≤ c g(n)

f(n) is asymptotically strictly greater than g(n), denoted by f(n) Î ω(g(n)), if

"c>0 $n0>0 "n≥n0 : 0 ≤ c g(n) ≤ f(n)

TIN060 Ondřej Čepek

8

Elementary graph algorithms
Notation:graph G=(V,E), V vertices (nodes), |V|=n, E edges (arcs), |E|=m

undirected graph: edge = unordered pair of vertices

directed graph : arc = ordered pair of nodes

Graph representations: adjacency matrix Q(n2)

neighbor lists Q(n+m)

Search on graphs

BFS – breadth first search
BFS(G,s)
for each uÎV do begin color[u]:=white; d[u]:=Maxint; p[u]:=NIL end;
color[s]:=grey; d[s]:=0; Queue:={s};
while Queue nonempty do
begin
u:=first in Queue;
for each v Î Neighbor(u) do if color[v]=white then

begin color[v]:=grey; d[v]:=d[u]+1; p[v]:=u; insert v at the end of Queue end;
color[u]:=black; delete u from Queue

end

TIN060 Ondřej Čepek

9

BFS remarks:

1. Searches the graph level by level, where each level is defined as a set of vertices
with the same distance (number of edges on the shortest path) form vertex s

2. Subsequently visits all vertices reachable from s and creates a shortest path tree

3. Is a basis for more sophisticated algorithms such as Dijkstra’s algorithm (single
source shortest paths in a graph with nonnegative weights on all edges) or Prim’s
algorithm (minimum spanning tree)

4. Works also on undirected graphs (no change is necessary)

5. When the input graph is given by neighbor lists, BFS runs in Q(n+m) time

BFS use (example): connectivity testing for an undirected graph

• select a vertex at random and run BFS from it

• graph is not connected Û some vertex remains white when BFS terminates

• counting the number of connected components: repeated runs of BFS from a
randomly selected white vertex (while a white vertex exists)

• again runs in Q(n+m) time

TIN060 Ondřej Čepek

10

DFS – depth first search
• undirected version – the main difference compared to BFS is that the active (grey)
vertices are not stored in a queue but on a stack (either explicitly created by DFS or
implicitly created by recursion – if DFS is a recursive routine)
• directed version – we shall study it in detail, let us assume that the input graph is
represented by neighbor lists

DFS(G)
begin for i:=1 to n do color[i]:=white;

time:=0;
for i:=1 to n do if color[i]=white then VISIT(i)

end;

VISIT(i) {simple version}
begin color[i]:=grey;

time:=time+1;
d[i]:=time;
for each j Î Neighbor(i) do if color[j]=white then VISIT(j);
color[i]:=black;
time:=time+1;
f[i]:=time

end;

TIN060 Ondřej Čepek

11

Edge classification for DFS on undirected graphs - (i,j) is a:

tree edge j is discovered from i j is white when (i,j) is scanned

back edge j is a predecessor of i in a DFS tree j is grey when (i,j) is scanned

forward edge i is a predecessor of j in a DFS tree j is black when (i,j) is scanned
(but not a direct parent) and moreover d(i) < d(j)

cross edge otherwise (none of the above j is black when (i,j) is scanned
three cases has occurred) and moreover d(i) > d(j)

Properties of DFS

1. Tree edges form a directed forest (DFS forest = set of DFS trees)

2. Vertex j is a successor of vertex i in a DFS tree Û There exists a path from i to j
formed only from white vertices at time d(i)

3. Intervals [d(i), f(i)] form a “legal parenthesis structure”, i.e. for each pair i¹j :

• either [d(j), f(j)] Ç [d(i), f(i)] = Æ

• or [d(i), f(i)] Ì [d(j), f(j)] and i is a successor of j in a DFS tree

• or [d(j), f(j)] Ì [d(i), f(i)] and j is a successor of i in a DFS tree

Corollary: j is a successor of i in a DFS tree Û [d(j), f(j)] Ì [d(i), f(i)]

TIN060 Ondřej Čepek

12

VISIT(i) {full version}

begin color[i]:=grey;

time:=time+1;

d[i]:=time;

for each j Î Neighbor(i) do

if color[j]=white

then begin VISIT(j);

label (i,j) as a tree edge

end

else if color[j]=grey

then begin report cycle detection;

label (i,j) as a back edge

end

else if d(i) < d(j)

then label (i,j) as a forward edge

else label (i,j) as a cross edge

color[i]:=black;

time:=time+1;

f[i]:=time

end;

Time complexity: still linear in the size of input data (neighbor lists), i.e. Q(n+m)

TIN060 Ondřej Čepek

13

Topological sort

Definition: Function t : V ® {1,2, … ,n} is a topological numbering of set V of vertices if

and only if t(i) < t(j) holds for every edge (i,j) Î E .

Observation: topological numbering exists only for acyclic graphs

Naïve algorithm:

1. Find a vertex with no outgoing edge and label it by the highest available number

2. Delete the numbered vertex from the graph, and if the graph is nonempty go to 1.

Time complexity: Q(n(n+m))

Sophisticated algorithm: a slight modification of DFS, runs in Q(n+m) time

Lemma: G contains a cycle Û DFS(G) discovers a back edge

Theorem: The numbering (ordering) of vertices of an acyclic graph G = (V,E) according

to decreasing finish times f(i), j Î V, is topological.

TIN060 Ondřej Čepek

14

Transitive closure of a directed graph

Definition: Directed graph G’=(V,E’) is a transitive closure of a directed graph G=(V,E) if
and only if every pair of vertices i,j ÎV such that i ¹ j satisfies the following condition:

there is a directed path from i to j in G Þ (i,j) Î E’

Transitive closure G’ represented by an adjacency matrix = reachability matrix of G

Reachability matrix of G can be computed in Q(n(n+m)) time by n runs of DFS

Strongly connected components of a directed graph

Definition: Let G=(V,E) be a directed graph. Set of vertices K Í V is called a strongly
connected component of G if and only if

1. A directed path from i to j and a directed path from j to i exists in G for every pair of
vertices i,j ÎK such that i ¹ j.

2. There is no set of vertices L which is a strict superset of K and fulfils property 1.

Naïve algorithm: compute a transitive closure (reachability matrix) and then “read out”
the strongly connected components from the matrix in Q(n2) time

TIN060 Ondřej Čepek

15

Sophisticated algorithm:

Input: directed graph G=(V,E) represented by neighbor lists

Phase1: DFS(G) supplemented by a construction of a linked list of vertices ordered by
decreasing finish times

Phase2: construction of the transposed graph GT

Phase3: DFS(GT) modified in such a way, that the vertices are selected in the main loop
according to the order given by the linked list from Phase1 (instead of an order
given by vertex numbers)

Output: DFS trees from Phase3 = strongly connected components of graph G

Definition: Let G=(V,E) be a directed graph. Then graph GT=(V,ET), where

(i,j) Î ET Û (j,i) Î E

is called the transposed graph of graph G.

Remark: Transposed graph can be constructed in Q(n+m) time and thus the whole
algorithm runs in Q(n+m) time.

Lemma: Let G=(V,E) be a directed graph and K be SCC in G. After the run of DFS(G):

1. Set K is a subset of vertices of a single DFS tree T

2. Set K constitutes a subtree of the given tree T

TIN060 Ondřej Čepek

16

Extremal paths in (directed) graphs

extremal path = shortest (longest) path (depends on context)

unweighted graph: path length = number of edges on the path (shortest paths by BFS)

weighted graph: denote

G = (V,E) directed graph

w : E ® R weight function

if p = (v0, v1, … ,vk) is a directed path (vertex repetition is allowed), then

w(p) = w(v0,v1) + w(v1,v2) + … + w(vk-1,vk)

Definition (weight of the shortest path from u to v)

d(u,v) = min { w(p) | p is a path from u to v } if $ path from u to v

¥ else

Definition (shortest path from u to v)

A shortest path from u to v is an arbitrary path from u to v for which w(p) = d(u,v)

TIN060 Ondřej Čepek

17

Negative cycles: negative cycle = a directed cycle with a total negative weight

• Graph w/o negative cycles: d(u,v) defined for all pairs of vertices u and v, and
for each pair at least one shortest path is simple
(i.e. w/o any cycles)

• Graph with negative cycles : if $ a path from u to v containing a negative cycle,
then we set d(u,v) = -¥

Single source shortest paths

Task: for a fixed vertex sÎV (the source) we want to compute d(s,v) for all v Î V \ {s}

What we shall cover:

1. acyclic graph (and arbitrary weights) ® DAG (critical path) algorithm

2. nonnegative weights (and any graph) ® Dijkstra’s algorithm

3. no restriction (any graph and weights) ® Bellman-Ford algorithm

TIN060 Ondřej Čepek

18

Trivial observations

Property 1 If p=(v0,v1, … ,vk) is a shortest path from v0 to vk, then "i,j : 0 ≤ i ≤ j ≤ k holds,

that the (sub)path pij=(vi, … ,vj) is a shortest path from vi to vj.

Property 2 If p is a shortest path from s to v and the last edge on p is (u,v)ÎE, then

d(s,v) = d(s,u) + w(u,v)

Property 3 If (u,v)ÎE is an edge, then d(s,v) ≤ d(s,u) + w(u,v).

Upper bounds for shortest paths

For every vÎV we shall maintain a value d(v), for which an invariant d(v) ≥ d(s,v) will

hold throughout the run of each of the algorithms.

Initialize (G,s);

for each vÎV(G) do

begin d(v) := ¥ ;

p(v) := NIL {predecessor on the output shortest path}

end;

d(s) := 0.

TIN060 Ondřej Čepek

19

After the initialization the algorithms repeatedly (in some order) perform relaxation

(possible lowering) of the upper bounds:

Relax (u,v,w);

if d(v) > d(u) + w(u,v) then

begin d(v) := d(u) + w(u,v);

p(v) := u

end.

Property 4 If (u,v)ÎE is an edge, then immediately after executing Relax (u,v,w) we

have d(v) ≤ d(u) + w(u,v).

Property 5 If Initialize (G,s) was executed, then " vÎV we have d(v) ≥ d(s,v) and this

invariant is maintained over any sequence of relaxation steps on the edges of G.

Moreover, once d(v) achieves its lower bound d(s,v), it never changes.

Property 6 If there is no directed path from s to v, then after Initialize (G,s) we have

d(v) = d(s,v) = ¥ and this equality is maintained over any sequence of relaxation steps.

Property 7 Let p be a shortest path from s to v and let (u,v) be the last edge on p.

Suppose Initialize (G,s) is performed and then a sequence of relaxation steps that

includes the call Relax (u,v,w) is executed. If d(u) = d(s,u) at any time prior to the call of

Relax (u,v,w), then d(v) = d(s,v) at all times after the call.

TIN060 Ondřej Čepek

20

DAG (directed acyclic graph) algorithm = critical path algorithm
DAG (G,w,s);
topologically sort the vertices of graph G;
Initialize (G,s);
for each (u Î V(G) in topological order) do

for each (v Î V(G) such that (u,v) Î E(G)) do Relax (u,v,w)

Theorem: Let G=(V,E) be an acyclic weighted directed graph and s Î V(G) an arbitrary
vertex. Then at the termination of DAG (G,w,s) we have d(v) = d(s,v) for each v ÎV(G).

Time complexity: DAG (G,w,s) runs in Q(n+m) because

• topological sort using DFS takes Q(n+m)

• the body of the algorithm takes Q(1) per vertex and Q(1) per edge, e.g. Q(n+m) in total

Application: Acyclic graph, where edges = activities and weights = activity durations. The
graph expresses dependencies among activities – each directed path represents
activities which must be performed sequentially. The task is to find a “critical path”, i.e.
the longest path from the source to the sink in the graph. Any delay on such a path
delays the whole project.

Solution: DAG can be modified by either

• reversing the signs of all weights or

• replacing ¥ by -¥ in Initialize (G,s) and reversing the inequality in Relax (u,v,w)

TIN060 Ondřej Čepek

21

Dijkstra’s algorithm

• assumption: all edge weights are nonnegative (" (u,v) Î E : w(u,v) ≥ 0)

• the set of vertices is split into two subsets during the run of the algorithm:

a) vertex v is in set S if its shortest distance from the source s was already computed,
and therefore d(v) = d(s,v) – after executing Initialize (G,s)) we have S = Æ

b) otherwise v belongs to set Q = V \ S where Q is implemented as a data structure
which supports efficient search and delete for vertex v with minimal d(v)

Dijkstra (G,w,s);
Initialize(G,s);
S := Æ; Q := V(G);
while (Q ≠ Æ) do

u := Extract-Min (Q);
S := S È {u};
for each (v Î V(G) such that (u,v) ÎE(G)) do Relax (u,v,w)

Theorem: Let G=(V,E) be a weighted directed graph with nonnegative edge weights and
let s Î V(G) be an arbitrary vertex. Then at the termination of Dijkstra (G,w,s) we
have d(v) = d(s,v) for each v Î V(G).

Time complexity: Q(n2) if Q is implemented as an array
Q((n+m)log n) if Q is implemented as a binary heap

TIN060 Ondřej Čepek

22

The Bellman-Ford algorithm
slower than Dijkstra but more general (can handle also negative edge weights)

Bellman-Ford (G,w,s);
Initialize(G,s);
for i:=1 to |V(G)|-1 do
for each ((u,v) ÎE(G)) do Relax (u,v,w);
{n-1 iterations, all edges are relaxed in an arbitrary order in every iteration}

for each ((u,v) ÎE(G)) do if d(v) > d(u) + w(u,v) then return FALSE;
{this signals an existence of a negative cycle reachable from the source}
return TRUE

Time complexity: Q(nm) (each iteration takes Q(m))

Lemma: Let G=(V,E) be a weighted directed graph with a weights function w and a
source vertex s. If G contains no negative cycles reachable from s then at the
termination of the algorithm we have d(v) = d(s,v) for every vertex v reachable from s.

Theorem: Let G=(V,E) be a weighted directed graph with a weights function w and a
source vertex s. Then at the termination of Bellman-Ford (G,w,s) we have:
• if G contains a negative cycle reachable from s, then the algorithm returned FALSE
• if G contains no negative cycle reachable from s, then the algorithm returned TRUE
and we have d(v) = d(s,v) for every vertex v ÎV(G).

TIN060 Ondřej Čepek

23

All pairs shortest paths
Task: compute d(u,v) for every (ordered) pair u,v of vertices

Assumption: graph G is represented by an adjacency matrix WG (if not, it can be
generated from the neighbor lists in Q(n2) time), which is defined by

0 if u=v

wuv = w(u,v) if u≠v and (u,v) Î E

∞ if u≠v and (u, v) Ï E

Simplification: assume that G has no negative cycles (some edges may have negative
weights as long as there is no negative cycle).

Aim: Generate the matrix DG for which duv = d(u,v).

Solution (using single-source algorithms): run a single source algorithm n times (each
run produces one row of the matrix DG)

• G acyclic: n times DAG ® time complexity Q(n(n+m))

• nonnegative weights: n times Dijkstra ® time complexity Q(n3) (array)
Q(n(n+m)log n) (heap)

• no restricion: n times Bellman-Ford ® time complexity Q(n2m) (Q(n4) for dense graphs)

We will try to improve the last value (the „no restriction“ case).

TIN060 Ondřej Čepek

24

„Matrix multiplication“ algorithms

We will proceed by induction on the number of edges on the shortest path. Define

duv(k) = minimal weight of a path from u to v, which contains at most k edges

1. k =1: duv(1) = wuv when organized into a matrix, we have DG(1) = WG

2. k -1 ® k: duv(k) = min{duv(k -1), min1≤i≤n{dui(k -1) + wiv}} = min1≤i≤n{dui(k -1) + wiv}

The last equality follows from the fact that for i = v, we have wv v = 0 and hence

DG(k+1) = DG(k) Ä WG

where the matrix multiplication Ä uses a „special“ scalar product in which:

• multiplication is replaced by addition and

• addition is replaced by minimum operator.

G contains no negative cycles ® every pair has a simple shortest path (w/o cycles)

® each shortest path has at most n -1 edges ® DG(n-1) = DG(n) = DG (n+1) = … = DG

Slow algorithm: compute DG(1), DG(2),… ,DG(n-1) by sequential multiplication

Time complexity: n-2 matrix multiplications of order n ® (n-2) times Q(n3) ® Q(n4)

Faster algorithm: compute only powers of 2 using the associative property of Ä.

Time complexity: log2n matrix multiplications ® log2n times Q(n3) ® Q(n3 log2n)

TIN060 Ondřej Čepek

25

The Floyd-Warshall algorithm

• similar „dynamic programming“ idea as matrix multiplication (building the solution
iteratively from „partial solutions“)

• main difference: induction on the set of „allowed intermediate vertices“ on shortest
paths, rather than on the number of edges on shortest paths

duv(k) = minimum weight of a path from u to v with intermediate vertices only from the
set of vertices {1, … ,k}

1. k=0: duv(0) = wuv and therefore DG(0) = WG

2. k -1 ® k: duv(k) = min{duv(k-1), duk(k-1) + dkv(k-1)}

Source of improvement: computing duv(k) takes Q(1) rather than Q(n) for scalar
product in the matrix multiplication algorithm

Floyd-Warshall (G,w);
DG(0) := WG;
for k:=1 to n do
for u:=1 to n do
for v:=1 to n do duv(k) = min{duv(k-1), duk(k-1) + dkv(k-1)};

return DG(n)

Time complexity: Q(n3)

TIN060 Ondřej Čepek

26

Minimum spanning trees
Input: Connected undirected graph G=(V,E) with a weight function w : E ® R.

Task: Find a minimum spanning tree of G, i.e. a connected acyclic subgraph G’=(V,T)
where T Í E with a minimum possible total weight w(T).

Fact: |T| = |V| -1 and thus we may w.l.o.g. Assume that " e Î E: w(e) ≥ 0

Idea: Sequentially add edges into a set A which fulfils an invariant that it is at every
moment a subset of some minimal spanning tree.

Definition: Let a set of edges A be a subset of some minimal spanning tree. Edge e Î E
is called safe for A if also A È {e} is a subset of some minimal spanning tree.

MST (G,w);
A := Æ;
for i := 1 to n -1 do
find (u,v) Î E which is safe for A;
A := A È {(u,v)};

return A

Definition: A partition (S,V \ S) of the vertex into two disjoint subsets is called a cut. Edge
(u,v) Î E crosses a cut (S,V \ S) if |{u,v} Ç S| = 1. A cut respects a set A of edges if no
edge in A crosses the cut. An edge is a light edge crossing a cut if its weight is the
minimum of any edge crossing the given cut.

TIN060 Ondřej Čepek

27

Theorem: Let G=(V,E) be a connected undirected graph with a weight function w: E®R,

let A Í E be a subset of some minimum spanning tree, and let (S,V \ S) be an arbitrary

cut which respects A. If (u,v) Î E is light for (S,V \ S), then it is safe for A.

Corollary: Let G=(V,E) be a connected undirected graph with a weight function w: E®R,

let A Í E be a subset of some minimum spanning tree, and let C be a connected

component (a tree) of the subgraph given by A. If (u,v) Î E is a light edge connecting C

to some other component of the subgraph given by A, then (u,v) is safe for A.

We shall describe two different strategies of selecting safe edges using the Corollary:

• algorithm Borůvka (1926) – Kruskal (1956)

always selects an edge with the smallest weight among all edges connecting

any two of the current components of the subgraph given by A

in every iteration it merges two trees of A into a single tree

at any moment, the edges in A form a forest

• algorithm Jarník (1930) – Prim (1957)

at any moment, the edges in A form a single tree

always selects an edge with the smallest weight among all edges connecting

this single tree with the rest of the graph (which is a set of isolated vertices)

TIN060 Ondřej Čepek

28

Kruskal (G,w); (similar to an older algorithm by Borůvka which works in stages)
sort all edges in E into a non-decreasing sequence by their weights;
A := Æ;
for each v Î V do Make-Set (v) ; {each vertex is in a single element set}
for each (u,v) Î E in the sorted order do
if Find-Set (u) ¹ Find-Set (v) then{vertices in different sets}

A := A È {(u,v)};
Union (u,v); {merge both sets}

return A
Time complexity: Q(m log m) if the sets are implemented by linked lists

Jarník-Prim (G,w,r); {r is a starting vertex, a root of the constructed tree}
Q := V(G);
for each vÎV(G) do key(v) := ¥ ;
key(r) := 0; p(r) := NIL;
while (Q ≠ Æ) do

u := Extract-Min (Q);
for each (vÎV(G) such that (u,v) ÎE(G)) do

if (v Î Q) and key(v) > w(u,v) then
key(v) := w(u,v);
p(v) := u

Time complexity: Q(n2) if Q is implemented as an array
Q(m log n) if Q is implemented as a binary heap

TIN060 Ondřej Čepek

29

Dynamic sets
dynamic – they change in time (size, content, …)

dynamic set element: accessible via a pointer and contains

• key – typically from some linearly ordered set

• pointer (or several pointers) to the next element (or elements)

• optionally some other data

Dynamic set operations
Let S be a dynamic set of elements, k a key value and x a pointer to an element:

Find(S,k) returns a pointer to an element with key k in set S or NIL

Insert(S,x) inserts into S an element pointed to by x

Delete(S,x) deletes from S an element pointed to by x

Min(S) returns a pointer to an element of S with a minimum key

Max(S) returns a pointer to an element of S with a maximum key

Succ(S,x) returns a pointer to an element of S with a key, which is
immediately succeeding a key of an element pointed to by x

Predec(S,x) the same for an immediately preceding element

TIN060 Ondřej Čepek

30

Binary search trees (BST)
dynamic data structure which supports all dynamic set operations

binary tree: every element of the dynamic set contains three pointers pointing to

• left child (left)

• right child (right)

• parent (parent)

binary search tree:

for every element x it must hold : all elements in the left subtree of x have smaller
(or equal) key than x and all elements in the right subtree of x have greater key
than x (WARNING – do NOT confuse a BST with a binary heap)

Find(x,k) {x is a pointer to the root of a BST containing set S}

while (x<>NIL) and (k<>key(x)) do

if (k< key(x)) then x := left(x)

else x := right(x)

return x

Time complexity is O(h), where h is the height of the BST in question

TIN060 Ondřej Čepek

31

Min(x) {x is a pointer to the root of a BST containing set S}
while (left(x)<>NIL) do x := left(x)
return x

Max(x) {x is a pointer to the root of a BST containing set S}
while (right(x)<>NIL) do x := right(x)
return x

Succ(x) {a pointer to the root of a BST containing set S is not needed}
if (right(x)<> NIL)
then return Min(right(x)) {x has a right child - Succ(x) is min in the right subtree}
else {x has no right child – climb up until a step from left child to parent is done}
begin y := parent(x)

while (y<>NIL) and (x=right(y)) do
begin x := y

y := parent(y)
end
return y

end

Predec(x) {symmetric to Succ(x)}

Time complexity of these search operations is again O(h)

TIN060 Ondřej Čepek

32

Now we describe the modifying operations Insert and Delete :

Insert(x,z) {x is a pointer to the root of a BST containing set S and
z is a pointer to the inserted element with left(z) = right(z) = NIL}

y := NIL
w := x
while (w<>NIL) do {going down the tree with a pair of pointers
begin y := w w (first) and y (second), when w reaches NIL,

if (key(z) < key(w)) then y points to an element, under which z
then w := left(w) should be placed}
else w := right(w)

end
parent(z) := y
if (y<>NIL)
then if (key(z) < key(y))

then left(y) := z
else right(y) := z

else x := z {z becomes a new root, the tree was empty}

Time complexity is again O(h).

TIN060 Ondřej Čepek

33

Delete has three cases, depending on the number of children of the deleted
element: 0,1, or 2 children

Delete(x,z) {x is a pointer to the root of a BST containing set S and
z is a pointer to the deleted element}

if (left(z) = NIL) or (right(z) = NIL)
then y := z
else y := Succ(z) {y now points to the element to be deleted}

if (left(y) <> NIL)
then w := left(y) {w points to the single child of y (if it exists) or to
else w := right(y) NIL (if y has no children) }

if (w <> NIL) then parent(w) := parent(y) {connecting the pointer upwards}
if (parent(y) = NIL)
then x := w {the root was deleted, w points to the new root}
else if (y = left(parent(y))) {y is a left child of its parent}

then left(parent(y)) := w {connecting the pointer downwards}
else right(parent(y)) := w

if (y <> z) then key(z) := key(y) {and also content(z) := content(y) e.g. copy
all content of y into z
(except of pointers to children and the parent)}

Time complexity is again O(h).

TIN060 Ondřej Čepek

34

Red-Black Trees
Disadvantage of „ordinary“ BST – all operations are O(h) which is O(log n) on
„balanced“ BST (with n nodes) but Ω(n) on „degenerated“ BST (the tree may
degenerate to a linked list of length n)

Aim: we want to guarantee O(log n) for all operations in the worst case

Red-Black Tree is a BST, in which every node has two suplementary attributes:

• color, which is either a) red or b) black

• type, which is either a) internal or b) external

Internal nodes are all nodes in the BST with a key, external nodes are artificially
added „new leaves“, e.g. each pointer to a descendant form an internal node which
is NIL is replaced by a pointer to an external node. External nodes have neither a
key nor a content, only color and a pointer to a parent.

Required properties of red-black trees (definition of red-black trees):

1. Every node is either red or black

2. Every external node is black

3. Both descendants of a red node (which must be internal due to 2.) are black

4. Every path from (an arbitrarily chosen but fixed) node x to the leaves in the
subtree rooted at x contains the same number of black nodes

TIN060 Ondřej Čepek

35

Observations:

• every internal node has exactly two descendants

• there are never two consecutive red nodes on any path (from a root to a leaf)(3.)

• every path (from a root to a leaf) has the same number of black nodes (4.)

• the longest path (from a root to a leaf) is at most twice as long as the shortest
path – the tree is „balanced“

Definitions:

• node height: h(x) = number of nodes (excluding x) on the longest path from x to
a leaf in the subtree rooted at x

• node black height : bh(x) = number of black nodes (excluding x) on any path
from x to a leaf in the subtree rooted at x (the definition is consistent thanks to 4.)

Lemma 1: Let x be an arbitrary node. Then a subtree rooted at x contains at least
2bh(x) – 1 internal nodes.

Lemma 2: Red-Black Tree with n internal nodes has a height at most 2 log2(n+1).

Corollary: Non-modifying operations (Find, Min, Max, Succ, Predec) on a BST
have a guaranteed O(log n) complexity on RBT without any further effort (we can
use the generic code for BST).

TIN060 Ondřej Čepek

36

Rotation (left and right)
Auxiliary operations needed to implement Insert and Delete operations which fulfil:

• they preserve the BST property – for each node x, the keys in the left subtree of x

are smaller than the key of x, keys in the right subtree are greater than the key of x

• they only redirect a constant number of pointers and thus run in O(1)

Inserting a node

Observation: if the root of a RBT is red, it can be re-colored to black without violating

any of the RBT properties. Thus we may assume that prior to node insertion the root

is black (and this property will be maintained in the sequel).

Preprocessing: the node is inserted using the standard insert operation for BST and

it is colored red.

Which RBT property may be violated after preprocessing? Only property 3. if both

the inserted node x and its parent node y are red. If y is red, it cannot be the root, so

it must have a parent node z (which must be black).

Now there are three cases to consider:

TIN060 Ondřej Čepek

37

1. Sibling of node y (uncle of node x) is red.
Action: Nodes y and the sibling of y are re-colored to black, z is re-colored to red. If

node z has a black parent node, we do nothing, if z has a red parent node, then
we have shifted the “fault” one level up and we iterate (there are three cases
again). If node z has no parent node (it is a root), we re-color it to black.

2. Sibling of node y is black and x is a right descendant of y and y is a left
descendant of z, or vice versa.

Action: If x is a right descendant of y and y is a left descendant of z, then perform
LeftRotation(y), in the symmetric case perform RightRotation(y). This action
transforms the problem to Case 3.

3. Sibling of node y is black and x is the same descendant of y as y is of z.
Action: If x is a left descendant of y and y is a left descendant of z, then perform

RightRotation(z) and re-color y to black and z to red. This satisfies all RBT
properties and we finish. The symmetric case is similar.

Time complexity of inserting a node is O(log n) :

• preprocessing (ordinary BST insert) is O(log n)

• action of case 1. is O(1) and is performed O(log n) times

• actions of cases 2. and 3. are both O(1) and each is performed at most once

TIN060 Ondřej Čepek

38

Deleting a node
Preprocessing: the node is deleted using the standard delete operation for BST.

Observation: the actually deleted node (let it be y) has at most one (internal)
descendant (let it be x) , if it has no internal descendants, then we mark as x one of
the external descendants of y

If y is red, there is no need for any action, all RBT properties are valid after the delete
of y as well. If y is black, then property 4. is violated (except when y is a root), since
the paths previously leading through y lose one from their black height while all other
paths maintain their black height unchanged.

If x is red, it suffices to re-color x to black and all RBT properties become valid. Thus
the only interesting case is when x is black.

Main idea: node x is made “doubly black” (which fulfils property 4.) and this “extra
black color” is shifted up the tree until it can be disposed of

Observation: if x is the root, then the extra black color can be deleted and the black
height of all nodes stays the same, if x is not the root, then parent(x) must have one
more internal descendant (let it be w), otherwise the paths to leaves violate property
4. (the external descendant of parent(x) would have a smaller black height than x)

We shall assume, that x is a left descendant of parent(x) (the other case is similar),
and we shall distinguish four cases according to the color of w and its descendants:

TIN060 Ondřej Čepek

39

1. node w is red (and thus has two black descendants)
Action: we exchange the colors of w and its parent (who is also the parent of x) and

perform LeftRotation(parent(x)), which turns the situation into one of cases 2,3,4

2. node w is black and has two black descendants
Action: we delete one black color from x and re-color w to red. If the common parent

is red we re-color it to black (and we are done), if it si black it gets the extra black
color. Such moves of a doubly black node upwards stop in the root the latest.

Remark: if case 2 follows after case 1, the process ends (the common parent of x
and w is red after case 1 and is re-colored to black in case 2)

3. node w is black, its left descendant is red and its right descendant black
Action: we exchange the colors of w and its left descendant and perform

RightRotation(w), which changes the situation to case 4

4. node w is black and its right descendant is red

Action: we re-color the right descendant of w to black and remove the extra black
color from x. If parent(x) is red, we re-color it to black and re-color w to red. Then
we perform LeftRotation(parent(x)).

TIN060 Ondřej Čepek

40

Time complexity of deleting a node is O(log n):

• preprocessing (ordinary BST delete) is O(log n)

• action of case 2 is O(1) and is performed O(log n) times

• actions of cases 1, 3, 4 are all O(1) and each is performed at most once

AVL trees
Definition (Adelson-Velskii, Landis) A BST is an AVL tree if and only if every node
x in the tree fulfils the inequality

|(height of the left subtree of x) - (height of the right subtree of x)| ≤ 1
Theorem The height of an AVL tree with n nodes is O(log n).

Corollary Non-modifying operations (Find, Min, Max, Succ, Predec) on an AVL
tree have a guaranteed O(log n) complexity (we can use the generic code for
BST).

Modifying operations Insert and Delete are implemented similarly as on an
ordinary BST with supplementary balancing using rotations (which are very
similar to rotations on RBT).

TIN060 Ondřej Čepek

41

Divide and conquer (Divide et impera) algorithms
• a design method for developing algorithms (not splitting up a problem in a set of

more or less independent subproblems)

• a typical divide and conquer consists of 3 steps

1. DIVIDE the task into several subtasks of the same type but on smaller data

2. SOLVE subtasks, either:

a) recursively by further divisions if the subtask is on big enough data

b) directly for subtasks on small enough data (solution is often trivial)

3. UNIFY the solutions of subtasks into a solution of the original task

Examples: Merge-Sort, Binary-Search

Analyzing time complexity

T(n) time to process a task of size n (assumption: if n < c then T(n) = Q(1))

D(n) time to divide a task of size n into a subtasks of the same size n/c

S(n) time to unify solutions of subtasks into a solution of the original task of size n

Þ recursive equation: T(n) = D(n) + aT(n/c) + S(n) for n ≥ c

T(n) = Q(1) for n < c

TIN060 Ondřej Čepek

42

Methods to solve recursive equations

1. substitution method

2. master theorem (“cook-book“ solution)

In both cases the following simplification is used:

• the assumption T(n) = Q(1) for small enough n is not explicitly written in the equation

• integrality is disregarded, e.g. n/2 is used instead of én/2ù or ën/2û

• the solution is given asymptotically (exact constants are not considered) Þ
asymptotic notation is used already in the recursive equation

Example: Merge-Sort T(n) = 2T(n/2) + Q(n)

Substitution method

• not really a solution method, it is a verification (proof) method

• guess the asymptotically correct solution

• check the correctness of the estimate (separately for the upper and lower bound) by

induction

Example: Merge-Sort again

TIN060 Ondřej Čepek

43

Master theorem

Let a ≥ 1, c > 1, d ≥ 0 be real numbers and let T : N® N be a non-decreasing function

such that for all n expressible as n = ck (where k Î N) we can write

T(n) = aT(n/c) + F(n)

where the function F : N® N satisfies F(n) = Q(nd). Let us denote x = logca. Then

a) if x < d, then T(n) = Q(nd),

b) if x = d, then T(n) = Q(nd log n) = Q(nx log n),

c) if x > d, then T(n) = Q(nx).

Examples:

• Merge-Sort T(n) = 2T(n/2) + Q(n)

• Binary-Search T(n) = T(n/2) + Q(1)

• Equation T(n) = 9T(n/3) + Q(n)

• Equation T(n) = 3T(n/4) + Q(n2)

• Equation T(n) = 2T(n/2) + Q(n log n)

TIN060 Ondřej Čepek

44

Square matrix multiplication
Input: matrices A and B of size n x n

Output: matrix C = A Ä B (also of size n x n)

Classical algorithm
begin for i:=1 to n do

for j:=1 to n do

begin C[i,j] := 0;

for k:=1 to n do C[i,j] := C[i,j] + A[i,k] * B[k,j]

end

end

Time complexity: T(n) = Q(n3) (n2 scalar products of length n)

Now assume that n is a power of 2 (n=2k), which allows a repeated division of A and B

into 4 matrices of quarter the input size (all the way to matrices of size 1 x 1), and let us

try “divide and conquer“ (we shall get rid of the n=2k assumption later)

TIN060 Ondřej Čepek

45

A = B = C =

C11 = (A11 Ä B11) Å (A12 Ä B21)

C12 = (A11 Ä B12) Å (A12 Ä B22)

C21 = (A21 Ä B11) Å (A22 Ä B21)

C22 = (A21 Ä B12) Å (A22 Ä B22)

Each scalar product is “split” into two halves and “completed” by the matrix addition.

Number of matrix operations of order n/2: 8 multiplications Ä and 4 additions Å

Number of (real number) additions in matrix additions: 4(n/2)2 = n2

Time complexity: T(n) = 8T(n/2) + Q(n2)

Master theorem: a=8, c=2, logca=3, d=2 T(n) = Q(n3)

(asymptotically the same as classical algorithm, but higher hidden constants)

To lower the time complexity we need to lower a=8 and keep or slightly raise d=2.

A11 A12

A21 A22

B11 B12

B21 B22

C11 C12

C21 C22

TIN060 Ondřej Čepek

46

Strassen’s algorithm (1969)
Uses only 7 sub-matrix multiplications of order n/2 (instead of 8)

M1 = (A12 Θ A22) Ä (B21 Å B22)

M2 = (A11 Å A22) Ä (B11 Å B22)

M3 = (A11 Θ A21) Ä (B11 Å B12)

M4 = (A11 Å A12) Ä B22

M5 = A11 Ä (B12 Θ B22)

M6 = A22 Ä (B21 Θ B11)

M7 = (A21 Å A22) Ä B11

Number of matrix operations of order n/2 : 7 multiplicat. Ä, 10 addit. Å and subtract. Θ

C11 = M1 Å M2 Θ M4 Å M6

C12 = M4 Å M5

C21 = M6 Å M7

C22 = M2 Θ M3 Å M5 Θ M7

Number of matrix operations of order n/2 : 8 additions Å and subtractions Θ
Time complexity: T(n) = 7T(n/2) + Q(n2)
Master theorem: a=7, c=2, logca=log27=x, d=2 T(n) = Q(nx) = Q(n2.81)

TIN060 Ondřej Čepek

47

Finding the k-th element out of n elements.
Input: unordered sequence of n (distinct) numbers

Output: k-th smallest number

Time complexity will be measured by the number of comparisons (like for sorting).

For k = 1 (minimum) and k = n (maximum) using n - 1 comparisons (trivially) suffices.

Pro k = n/2 (median) ?????? (we shall show how to solve the problem for general k)

First idea: sort the sequence, then choose k-th element Þ time complexity Ω(n log n)

Can be done better? Þ let’s try “divide and conquer“

• select a pivot and divide the sequence into three parts, namely m elements smaller

than the pivot, the selected pivot, and (n-m-1) elements greater than the pivot

• we need n-1 comparisons for this task

• if k>m+1 then throw away m+1 smallest elements and look for (k-m-1)-th element

among (n-m-1) elements greater than the pivot

• if k=m+1 then the pivot is the sought element and we are done

• if k<m+1 then throw away n-m greatest elements and look for k-th element

among m elements smaller than the pivot

This can end up disastrously … unless we make sure that the pivot is “well selected”.

TIN060 Ondřej Čepek

48

Algorithm (Blum et al. 1972)
1. Divide the sequence of length n into én/5ù 5-tuples (the last may be incomplete).

2. Find a median in each 5-tuple.

3. Recursively find a median of the selected set of én/5ù medians.

4. Use the median of medians as a pivot to divide the input sequence.

5. Unless the median of medians is the sought element, recursively search in the set
of smaller elements (than the pivot) or in the set of greater elements.

How “good” is the division using the pivot found by the above algorithm?

Claim: The set of elements smaller than pivot and the set of elements greater than
pivot contain at least 3n/10 elements each Þ step 5 uses at most 7n/10 elements

Let: T(n) = worst case number of comparisons necessary to find k-th out of n elements

T(n) = 7n/5 + T(n/5) + (n-1) + T(7n/10)

medians of 5-tuples (1.+2.) subproblem solution (5.)
median of medians (3.) division using the pivot (4.)

Theorem: T(n) = O(n)
Proof: by a substitution method (key fact: 1/5+7/10<1, not true for division into triples)

TIN060 Ondřej Čepek

49

Average case complexity of QuickSort
1. select a pivot (e.g. the leftmost element in the current subsequence)

2. divide all elements into three sets by comparing them with the pivot

3. recursively sort the sets of smaller (than pivot) elements and greater elements

The time complexity is again measured by the number of comparisons

Best case: pivot is always exactly in the middle (pivot = median)

T(n) = 2T(n/2) + (n-1) Þ T(n) = Q(n log n)

Worst case: pivot is always on the margin (pivot = max or pivot = min)

T(n) = T(n-1) + (n-1) Þ T(n) = Q(n2)

Average case: ???? (try „intuition“ first)

What happens if the pivot is always selected in a way which splits the sorted sequence
in a ratio of 99:1 or better?

T(n) = T(99n/100) + T(n/100) + (n-1) ≤ T(99n/100) + T(n/100) + n

Solution: T(n) = Q(n log n) which can be verified by analyzing the tree of recursive calls

Remark: this will happen for every constant ratio, i.e. any ratio independent of n

TIN060 Ondřej Čepek

50

Assumptions for a precise analysis:

1. the sorted sequence is {1,2, … ,n}, which can be assumed w.l.o.g.

2. each of the n! permutations has the same likelihood of appearing on the input

3. the pivot is always selected as the leftmost element in the current subsequence

4. each split of the sequence by the selected pivot preserves the randomness of the
order of both created subsequences

pivot likelihood small large

1 1/n 0 n-1

2 1/n 1 n-2

… … … …

n-1 1/n n-2 1

n 1/n n-1 0

T(n) = 1/n Σm+v=n-1(T(m) + T(v)) + (n-1) = 1/n Σi=0
n-1(T(i) + T(n-1-i)) + (n-1)

T(n) = 2/n Σi=0
n-1T(i) + (n-1)

with the initial condition T(1) = 0

TIN060 Ondřej Čepek

51

Lower bound for sorting using pair-wise comparisons
Observation: every (deterministic) sorting algorithm based on pair-wise comparisons can
be uniquely modeled by a decision tree, which is a binary tree with leafs corresponding
to permutations of the input sequence, and inner nodes corresponding to comparisons.

Example: decision tree for Insertion-Sort and n=3 (let us denote the input by a,b,c)

b x c

a x b

a x c

a x c b x ca b c

a c b c a b b c a c b a

b a c

The left branch always corresponds to “<“ and the right branch to “>” (w.l.o.g. we
assume that the inputs are pair-wise distinct to avoid ties)
The decision tree models a sound sorting algorithm Þ it must contain leafs with all n!
possible permutations of the input sequence.
Worst case number of comparisons = longest branch from root to leaf = tree height.
Theorem: A binary tree with at least n! leafs has height Ω(n log n).

TIN060 Ondřej Čepek

52

Sorting in linear time
• never compares pairs of elements (values, numbers) in the sorted sequence

• uses direct addressing (in an array) by the sorted values (keys)

Counting Sort
Input: n numbers from an interval 1 to k (and we shall assume k Î O(n))

Data structures: A[1..n] input array

B[1..n] output array

C[1..k] auxiliary array

Algorithm:

for i := 1 to k do C[i] := 0; {initialization}

for j := 1 to n do C[A[j]] := C[A[j]] +1; {each C[i] contains # of input numbers equal to i}

for i := 2 to k do C[i] := C[i] + C[i-1]; {each C[i] contains # of input numbers ≤ than i}

for j := n downto 1 do begin B[C[A[j]]] := A[j]; C[A[j]] := C[A[j]] – 1 end;

Time complexity: clearly O(k+n) and thus O(n) if k Î O(n)

Additional property: stability = equal values appear on the output in the same order in
which they appeared on the input

TIN060 Ondřej Čepek

53

Radix Sort
• historic usage: punch card sorting on a mechanical device

• task: sort n cards each having a d-digit number punched in the last d columns

• intuitive algorithm: sort into piles according to the most significant digit, then recursively
sort the individual piles (very demanding for the sorting device operator)

• radix sort: sort into piles according to the least significant digit, put piles together (in the
correct order), and sort similarly according to the second least significant digit etc.

• necessary condition: each sorting iteration (pass) is stable (two cards with the same
digit in the currently processed column must go to the output in the same order in which
they appeared on the input)

• contemporary usage (software versions of radix sort):

sorting data with multiple hierarchical keys (e.g. year, month, day)

sorting of alphanumerical keys (words)

counting sort can be used as a stable sort for the individual passes

• time complexity (when using counting sort as a subroutine)

O(d(n+k)) = O(n) if k Î O(n) and d is a constant

remark: numbers with different number of digits on the input: fill with zeros from the left
words of different length on the input: fill with spaces from the right

TIN060 Ondřej Čepek

54

Hashing
Hash tables are suitable for representing dynamic sets, which need only Insert, Delete
and Search operations

Direct address table = Array (trivial case of hash table)

• table size = number of all possible keys regardless of the number of used keys

• assumptions: distinct items always have distinct keys (= address in the table)

and the set of all possible keys is sufficiently small

• the array stores: either directly the data (it sufficiently small) including the given key,

or a pointer to the data including the given key (or NIL)

• Insert, Delete, and Search all have time complexity Q(1)

Hash table

• useful in case that the universe of all possible keys is too large, either in absolute terms
(insatisfiable memory requirements), or relatively with respect to the number of stored
items (inefficient representation, most cells in the array is not used).

• the address in the hash table is now computed from the key using a hash function

h : U ® {0,1, … , m-1} where typically |U| >> m

TIN060 Ondřej Čepek

55

Problem: two (or more) keys are hashed into the same value (table address) = collision
Observation: collisions are impossible to avoid if |U| > m

Methods for resolving collisions: item chaining

open addressing

Collision resolution by item chaining

• items hashed into the same slot (address) of the hash table are stored in a linked list

• each slot of the hash table contains either a pointer to the head of the list or NIL

• Insert(x) = compute h(key(x)) and insert x at the head of the corresponding list - Q(1)

• Delete(x) = Q(1) if the linked lists are doubly linked and the deleted item x is pointed to
by an outside pointer, otherwise the complexity is the same as for Search(x)

Analysis of Search(x) complexity with item chaining

Assumptions: 1) hash function value is computed in Q(1)
2) simple uniform hashing = a key is hashed with the same probability
into each of m slots in the table, independently of any other key

Notation: Load factor a = n/m
where m is the size of the table and n is the number of stored items

TIN060 Ondřej Čepek

56

Theorem 1 In a hash table in which collisions are resolved by chaining, an unsuccessful
search takes time Q(1 + a) on average under the assumption of simple uniform hashing.

Theorem 2 In a hash table in which collisions are resolved by chaining, a successful
search takes time Q(1 + a) on average under the assumption of simple uniform hashing.

Corollary If n = O(m) then a = O(1) and thus Search(x) takes Q(1) on average.

Hash functions

Three most common construction methods: the division method

the multiplication method

universal hashing

Remark 1: hash function should distribute the keys from the universe of keys into m slots
in the table as evenly as possible

Remark 2: keys are assumed to be integers (so that common arithmetic operations can
be applied to them), if the keys are not integers (e.g. strings of characters), then they
have to be first converted to numerical by some adequate procedure.

The division method: h(k) = k mod m (remainder after the division by m)
Bad choices of m: m = 2p, 10p, 2p -1 (e.g. k mod 2p gives the last p bits in the binary
representation of k, which may be not very random)
Good choices of m: primes not too close to exact powers of 2

TIN060 Ondřej Čepek

57

The multiplication method:
h(k) = ëm·(k·A mod 1)û

where 0<A<1 is a suitably chosen number (Knuth recommends A ≈ (√5 – 1)/2 =
0.618033…) and if m is selected as a power of 2, h(k) can be computed quite easily

Universal hashing:
Problem: for each deterministic hash function h one can choose n keys in such a way,
that h maps all of them into the same slot in the hash table (if |U| > n2 and thus |U|/n > n)

Þrandomization

Idea: choose a hash function randomly and independently of the keys to be hashed
(e.g. of the n keys, that will be used), from some suitably chosen set of functions

Advantage: Þ no particular input (concrete n keys) is a priori bad for such hashing
Þ hashing the same input repeatedly calls different hash functions

Definition: Let H be a finite set of hash functions from a universe U of keys into the set
{0, … ,m-1}. Set H is called universal, if for every two distinct keys x,y Î U the number of
functions h Î H satisfying h(x) = h(y) is equal to |H| / m.

Observation: For a randomly chosen function h Î H the probability of a collision of two
randomly chosen keys x ¹ y equals 1 / m, which is the same probability as if the values
h(x) and h(y) are drawn randomly and independently from the set {0, … ,m-1}.

TIN060 Ondřej Čepek

58

Theorem: Let h be randomly drawn from a universal set of hash functions and let it be

used for hashing n keys into a table of size m, where n ≤ m. Then the expected number

of collisions affecting a randomly chosen but fixed key x is less than 1.

Remark: The assumption n ≤ m implies, that the average list length (of keys hashed into

the same slot) is less than 1.

Does a universal set of hash functions exist? And if it does, how to construct it?

Construction: (one out of many possibilities): select a prime number m and divide each

key x into (r+1) parts (the value of r depends on the key lenght). Denote

x = <x0, x1, … , xr>

and select r in such a way that the maximum value of each xi is strictly less than m. Let

a = <a0, a1, … , ar>

be a sequence of (r+1) numbers randomly and independently drawn from {0, … ,m-1}.

Let

We get: |H| = mr+1 (the number of distinct vectors a)

Theorem: H is a universal set of hash functions.

!
a

a

r

0i
iia }{ h H m m o d)xa((x)h == å

=

a

TIN060 Ondřej Čepek

59

Collision resolution by open addressing
• all items are stored directly in the hash table, thus the load factor must be at most one,
i.e. a = n/m ≤ 1

• instead of following the pointers in the list of items hashed into the same slot (the list is
typically stored outside of the table) the slot addresses are computed sequentially

• using the same memory size the hash table can be bigger than when resolving the
collisions by item chaining (the space used for pointers is saved)

• the computed slot address depends on the hashed key and the probe number:

h : U x {0,1, … ,m -1} ® {0,1, … , m-1}

• given key x, the slots in the hash table are probed in the following order:

(h(x,0), h(x,1), … , h(x,m -1))

and this order must constitute a permutation of {0,1, … , m-1}, i.e. the probe sequence
for every key x subsequently probes all slots in the hash table

• open addressing supports Search and Insert operations well, but the implementation of
the Delete operation is complicated (if Delete has to be implemented, then it is better to
resolve collisions by item chaining)

TIN060 Ondřej Čepek

60

Hash-Search(T,k) {searching for key k in hash table T}
i := 0;
repeat j := h(k,i);

if T[j] = k then return j; {and terminate}
i := i+1

until (T[j]=NIL) or (i=m);
return NIL

Hash-Insert(T,k) {inserting key k into hash table T}
i := 0;
repeat j := h(k,i);

if T[j] = NIL then T[j] := k;
return j; {and terminate}

else i:=i+1
until (i=m);
error table overflow

When implementing hash function h it is desirable to get as close as possible to uniform
hashing: the probe sequence of a randomly chosen key is with an equal probability any
of the m! permutations of {0,1, … , m-1}

TIN060 Ondřej Čepek

61

Most common methods for probe sequence construction are linear probing

quadratic probing

double hashing

(none of them achieves uniform hashing, but they are gradually closer to this goal).

Linear probing

uses „ordinary“ hash function h’ : U ® {0,1, … , m-1} using which it defines

h(x,i) = (h’(x) + i) mod m

Disadvantages:

• only m distinct probe sequences, each of them determined by its first slot h’(x)

• creates long primary clusters of occupied slots, which increases search time

Quadratic probing
Hash function h(x,i) = (h’(x) + ci + di2) mod m where c¹0 a d ¹0 (and h’ is as above).

Parameters c,d must be chosen carefully so that the probe sequence is a permutation of
{0,1, … , m-1}. There are again only m distinct sequences, but no primary clusters are
created, only secondary clusters of keys with the same starting slot h’(x) .

TIN060 Ondřej Čepek

62

Double hashing
Hash function h(x,i) = (h1(x) + i h2(x)) mod m where h1 and h2 are auxiliary hash
functions U ® {0,1, … , m-1}. Properties

• function h2 must be chosen in such a way that h2(x) and m are relative primes
(otherwise the probe sequence will not form a permutation)

• the number of distinct probe sequences is m2

• this method is the best of the three methods and is the closest to uniform hashing

• examples of (common) choices:

1. m = 2p (power of two) and h2(x) gives an odd number (for every x), or

2. m is a prime and 0 ≤ h2(x) < m

Analysis of hashing by open addressing
Theorem: The expected number of probes during an unsuccessful search in an open
addressing hash table with a load factor a = n/m < 1 is at most 1/(1- a) (under the
uniform hashing assumption).

Theorem : The expected number of probes during a successful search in an open
addressing hash table with a load factor a = n/m < 1 is at most 1/a ln(1/(1- a)) + 1/a
(under the uniform hashing assumption and if every key is searched for with the same
probability).

TIN060 Ondřej Čepek

63

Euclid’s Algorithm
Algorithm for computing the greatest common divisor of two natural numbers

Definition: The greatest common divisor of two natural numbers a,b is the largest natural
number which divides both a and b. We shall denote it by GCD(a,b).

Theorem: Let a,b be natural numbers. Then GCD(a,b) is the least positive element in the
set L = {ax + by | x,y Î Z}.

Corollary: Let a,b be natural numbers. If d is a natural number which divides both a and
b, then d divides also GCD(a,b).

Theorem: Let a,b be natural numbers, where b>0. Then GCD(a,b) = GCD(b, a mod b).

EUCLID(a,b)

if b=0 then Return(a)

else Return(EUCLID(b, a mod b))

Lemma: Let a > b ³ 0 such that EUCLID(a,b) performs k ³ 1 recursive calls.
Then a ≥ F(k+2) and b ≥ F(k+1), where F(i) is the i-th Fibonacci number.

TIN060 Ondřej Čepek

64

Corollary (Lamé’s theorem): Let a > b ≥ 0 and F(k) ≤ b < F(k+1). Then EUCLID(a,b)
performs at most k - 1 recursive calls.

Theorem (w/o proof – see AVL trees): F(k) = Q(φk), where φ = (1+√5)/2 („golden ratio“).

Corollary: Let a > b ≥ 0. Then EUCLID(a,b) performs O(log b) recursive calls.

Observation: If a,b are two binary numbers with at most t-bits, then EUCLID(a,b)
performs O(t) recursive calls and in each of them O(1) arithmetic operations on (at most)
t-bit numbers, i.e. O(t3) bit operations, if we assume that each arithmetic operations on
(at most) t-bit numbers requires O(t2) bit operations (which can be shown easily). Thus
EUCLID is a polynomial time algorithm with respect to the size of its input.

