Algorithms and data structures II

TIN061

Ondřej Čepek
Syllabus

1. String matching
2. Network flows
3. Arithmetic algorithms
4. Parallel arithmetic algorithms
5. Problem reducibility and time complexity classes
6. Approximation algorithms
7. Probabilistic algorithms and cryptography
8. Basic geometric algorithms in the plane
String matching

\(\Sigma \) finite alphabet (symbol set)

\(\Sigma^* \) set of words over \(\Sigma \) (finite symbol sequences)

word length: \(u = x_1 x_2 \ldots x_m \in \Sigma^* \implies \text{length}(u) = m \) (number of symbols)

word concatenation:

\(u = x_1 x_2 \ldots x_m, v = y_1 y_2 \ldots y_n \implies uv = x_1 x_2 \ldots x_m y_1 y_2 \ldots y_n \)

(and of course \(\text{length}(uv) = \text{length}(u) + \text{length}(v) \))

empty word \(\varepsilon \) (\(\forall u \in \Sigma^* \) we have \(u \varepsilon = \varepsilon u = u \))

prefix : \(u \in \Sigma^* \) is a prefix of \(v \in \Sigma^* \) if \(\exists w \in \Sigma^* : uw = v \)

suffix : \(u \in \Sigma^* \) is a suffix of \(v \in \Sigma^* \) if \(\exists w \in \Sigma^* : wu = v \)

if \(w \neq \varepsilon \) than we talk about a proper prefix (suffix)

String matching task:

input: finite alphabet \(\Sigma \), searched text \(x = x_1 x_2 \ldots x_n \in \Sigma^* \) and samples \(K = \{ y_1, y_2, \ldots, y_k \} \), where \(y_p = y_{p,1} \ldots y_{p,\text{length}(p)} \in \Sigma^* \) for \(p = 1, \ldots, k \)

output: all appearances of the samples in \(x \), i.e. all pairs \([i,p] \) such that \(y_p \) is a suffix of the word \(x_1 x_2 \ldots x_i \) (\(1 \leq i \leq n \) and \(1 \leq p \leq k \))
Naive algorithm

for p := 1 to k do
 for i := 1 to (n – length(p) + 1) do
 begin
 j := 0;
 while (j < length(p)) and (x_{i+j} = y_{p,1+j}) do j := j + 1;
 if (j = length(p)) then Report(i,p)
 end

Custom made algorithm

c := 0;
for i := 1 to n do
 begin
 if (x_i = a) then c := c + 1
 else begin
 if (c ≥ h – 1) then Report(i,1) ; c := 0
 end
 end
We shall show, that a custom made algorithm (= finite automaton) can be made for an arbitrary sample or a set of samples in a way, that:

- the automaton (search machine) is built in $\Theta(h \cdot |\Sigma|)$
- the built automaton searches the text in $\Theta(n)$
- total time complexity of the algorithm is $\Theta(n + h \cdot |\Sigma|)$

Algorithm Aho-Corasick (1975)

1. **samples**
2. **text**
3. **compiler** (Algorithms 2 a 3)
4. **search machine** (automaton)
5. **interpreter** (Algorithm 1)
6. **appearances**
Search machine for a finite alphabet \(\Sigma \) and a set \(K \) of samples is a quadruple

\[M = (Q, g, f, \text{out}) \], where

1. \(Q = \{0,1, \ldots ,q\} \) is a set of states
2. \(g : Q \times \Sigma \rightarrow Q \cup \{\bot\} \) is a transition function, for which we have \(\forall x \in \Sigma : g(0,x) \in Q \) (symbol \(\bot \) means "undefined", the transition from state 0 is defined \(\forall x \in \Sigma \))
3. \(f : Q \rightarrow Q \) is a return function, for which we have \(f(0) = 0 \) (used when \(g \) gives \(\bot \))
4. \(\text{out} : Q \rightarrow P(K) \) is an output function (returns a subset of samples for the given state)

Algorithm 1 (interpreter of the search machine)

\textbf{input:} \(x = x_1 \ldots x_n \in \Sigma^* \), \(K = \{y_1 \ldots y_k\} \), \(M = (Q, g, f, \text{out}) \)

\textbf{state := 0;}

\textbf{for} \(i := 1 \) \textbf{to} \(n \) \textbf{do}

\begin{align*}
(1) & \text{ while } (g(\text{state},x_i) = \bot) \text{ do } \text{state := } f(\text{state}); \\
(2) & \text{ state := } g(\text{state},x_i); \\
(3) & \text{ for all } y_p \in \text{out(\text{state})} \text{ do Report } (i,p)
\end{align*}

\textbf{end}
Key properties of the search machine (finite automaton):

1. **transition function** g

 Graph of g (for defined pairs without the loop at state 0) is a valued tree, for which
 - state 0 is the root of the tree
 - each path from the root is valued by some prefix of some sample from K
 - each prefix u of each sample from K values a path from the root to some (exactly one) state $s \Rightarrow$ we say that the prefix (word) u represents state s (in particular the empty word ϵ represents state 0)
 - the depth of state s represented by word u is defined as $d(s) = \text{length}(u)$ and function g satisfies on each tree edge the equality $d(g(s,x_i)) = d(s) + 1$

2. **return function** f

 For each state s represented by word u we have: state $f(s)$ is represented by the longest proper suffix of u, which is at the same time a prefix of some sample from K

3. **output function** out

 For each state s represented by word u and for each sample $y_p \in K$ we have:
 $$y_p \in \text{out}(s) \text{ if and only if } y \text{ is a suffix of } u$$
Algorithm 2 (construction of the search machine – 1.phase)

\textbf{input:} \quad K = \{y_1 \ldots y_k\} \quad \{set of samples\}

\textbf{output:} \quad Q = \{0, \ldots ,q\} \quad \{set of states of the search machine\}

\(g : Q \times \Sigma \rightarrow Q \cup \{\bot\} \quad \{\text{transition function fulfilling Property 1}\} \)

\(o : Q \rightarrow P(K) \quad \{\text{“half finished“ output function out}\} \)

\textbf{procedure} Enter(y_{p,1} \ldots y_{p,m}); \quad \{\text{adding word } y_p \text{ to the graph of function } g\} \)

begin
 state := 0; i:= 1;

 while (i <= m) and (g(state,y_{p,i}) <> \bot) do
 begin
 state := g(state,y_{p,i}); \quad \{\text{moving along an existing branch}\}
 i := i + 1 \quad \{\text{shift in } y_p\}
 end;

 while (i <= m) do
 begin
 Q := Q \cup \{q+1\}; q := q+1 \quad \{\text{creation of a new state}\}
 for all \(x \in \Sigma \) do g(q,x) := \bot;
 g(state,y_{p,i}) := q; \quad \{\text{extending a branch}\}
 state := q; \quad \{\text{moving into the new state}\}
 i := i + 1 \quad \{\text{shift in } y_p\}
 end;

 o(state) := \{y_p\}
end; \quad \{\text{of Enter}\}

begin
 Q := \{0\}; for all \(x \in \Sigma \) do g(0,x) := \bot; \quad \{\text{main program}\}
 for p := 1 to k do Enter(y_p);
 for all \(x \in \Sigma \) do if g(0,x) = \bot \quad \text{then } g(0,x) = 0
end.
Algorithm 3 (construction of the search machine – 2.phase)

input:
\[
Q = \{0, \ldots ,q\} \quad \text{(set of states of the search machine)}
\]
\[
g : Q \times \Sigma \rightarrow Q \cup \{\perp\} \quad \text{(transition function fulfilling Property 1)}
\]
\[
o : Q \rightarrow P(K) \quad \text{("half finished" output function out)}
\]

output:
\[
f : Q \rightarrow Q \quad \text{(return function fulfilling Property 2)}
\]
\[
\text{out} : Q \rightarrow P(K) \quad \text{(output function fulfilling Property 3)}
\]

create an empty queue of states;
\[
f(0) := 0; \text{out}(0) := \emptyset;
\]

for all \(x \in \Sigma\) do begin
\[
s := g(0,x); \quad \text{(processing the descendants of the root)}
\]
\[
\text{if } s \neq 0 \text{ then begin}
\quad f(s) := 0; \text{out}(s) := o(s);
\quad \text{insert } s \text{ at the end of the queue}
\quad \text{end}
\]
end;

while queue not empty do begin
\[
r := \text{first state from the queue (and delete } r \text{ from the queue)};
\]
\[
\text{for all } x \in \Sigma \text{ do if } g(r,x) \neq \perp \text{ then begin}
\quad s := g(r,x); \quad t := f(r);
\quad \text{while } g(t,x) = \perp \text{ then } t := f(t);
\quad f(s) := g(t,x); \quad \text{out}(s) := o(s) \cup \text{out}(f(s));
\quad \text{insert } s \text{ at the end of the queue}
\quad \text{end}
\]
end
Algorithm Knuth-Morris-Pratt

• simplified version of Aho-Corasick when searching for a single sample ($K = \{y\}$)
• shorter and easier to understand description
• (slightly) better asymptotic time complexity ($\Theta(n + h)$ instead of $\Theta(n + h \cdot |\Sigma|)$)
• the graph of the transition function g is not a tree but a chain (path), which allows that g is not used explicitly at all (this is where the saving in the complexity of preprocessing comes from because g has $h \cdot |\Sigma|$ transitions), function g is used only implicitly
• the return function f is in this case called the prefix function - because for a single sample y the state number corresponds to the length of the prefix (of y) which is represented by the given state, function f has a simpler definition:
 $f(s)$ is the length of the longest proper suffix of the word represented by state s (this word is the prefix of y of length s), which is at the same time a prefix of y
• the output function is trivial, it reports y in state h (and nothing in all remaining states)
procedure Prefix (replaces Algorithms 2 a 3)

vstup: \(K = \{y\} \) \{single sample\}

výstup: \(f : Q \rightarrow Q \) \{prefix function\}

\[
f(1) := 0;
\]
\[
t := 0;
\]

for \(q := 2 \) to \(h \) do

begin

while \(t > 0 \) and \((y_{t+1} <> y_q) \) do \(t := f(t) \);

if \((y_{t+1} = y_q) \) then \(t := t + 1 \);

\(f(q) := t \)

end

Algorithm KMP (replaces Algorithm 1)

input: \(x = x_1 \ldots x_n \in \Sigma^*, K = \{y\}, \) prefix function \(f \)

state := 0;

for \(i := 1 \) to \(n \) do

begin

(1) while \((state > 0) \) and \((y_{state+1} <> x_i) \) do state := \(f(state) \);

(2) if \(y_{state+1} = x_i \) then state := state + 1;

(3) if \((state = h) \) then begin Report \((i) \);

\(\text{state := } f(state) \)

end

end
Network flows

Network: directed graph \(G = (V,E) \) with two selected vertices \(s,t \) (source and sink) and a positive capacity \(c(u,v) \) on each edge \((u,v) \in E \). The capacity is defined also for all other pairs of vertices: \(c(u,v) = 0 \) if \((u,v) \notin E \).

Flow: is a function \(f : V \times V \rightarrow \mathbb{R} \) that satisfies the following three properties:

1. (Skew symmetry) \(\forall u,v \in V : f(u,v) = -f(v,u) \)
2. (Capacity constraint) \(\forall u,v \in V : f(u,v) \leq c(u,v) \)
3. (Flow conservation) \(\forall u \in V - \{s,t\} : \Sigma_{v \in V} f(u,v) = 0 \) (similar to Kirkhoff’s Current Law)

If \(f(u,v) > 0 \) we say that there is a (positive) flow from \(u \) to \(v \). If \(f(u,v) = c(u,v) \) then we say that the edge \((u,v) \) is saturated. The value of flow \(f \) is denoted by \(|f| \) and it is the total net flow from the source, i.e. \(|f| = \Sigma_{v \in V} f(s,v) \).

Problem: find a maximum flow, i.e. a flow of a maximum possible value.

Cut: in the context of flows a cut is a partition \(X,Y \) of \(V \) such that \(s \in X, t \in Y \). A capacity of cut \(X,Y \) is the sum of capacities of all edges crossing the cut from \(X \) to \(Y \), i.e. \(c(X,Y) = \Sigma_{u \in X,v \in Y} c(u,v) \). A minimum cut is a cut with a minimum capacity. A flow over cut \(X,Y \) is the sum of flows on all edges crossing the cut, i.e. \(f(X,Y) = \Sigma_{u \in X,v \in Y} f(u,v) \).

Lemma 1: Let \(f \) be a flow and \(X,Y \) a cut. Then the flow over cut \(X,Y \) is equal to the value of the flow \(f \), i.e. \(f(X,Y) = |f| \).
Due to Lemma 1 and a trivial fact that \(f(X,Y) \leq c(X,Y) \) for every cut \(X,Y \) (due to the capacity constraint) it must hold that the value of a maximum flow is less or equal to the capacity of a minimum cut. We shall show, that in fact an equality always holds.

Residual capacity of flow \(f \) is a function \(r : V \times V \rightarrow \mathbb{R} \) defined by

\[
r(u,v) = c(u,v) - f(u,v)
\]

Residual graph for \(f \): directed graph \(R_f = (V,E') \), where \((u,v) \in E'\) if and only if \(r(u,v) > 0 \) and the value \(r(u,v) \) is then called the capacity of edge \((u,v)\) in the residual graph \(R_f \).

Augmenting path for \(f \): an arbitrary path \(p \) from \(s \) to \(t \) in \(R_f \). A residual capacity \(r(p) \) of an augmenting path \(p \) is equal to the minimum \(r(u,v) \) of all edges \((u,v)\) on path \(p \). The value of \(f \) can be increased by \(r(p) \) by increasing the flow by \(r(p) \) on all edges of \(p \).

Remark: when increasing \(f(u,v) \) the value \(f(v,u) \) must be decreased accordingly to preserve skew symmetry.

Theorem (max flow min cut theorem): The following conditions are equivalent

1. flow \(f \) is a maximum flow
2. There exists no augmenting path for \(f \)
3. \(|f| = c(X,Y) \) for some cut \(X,Y \)
The max flow min cut theorem immediately gives a method how to construct a maximum flow by gradual augmentation.

Augmenting path method: Start with a zero flow and repeat the following step, until a flow with no augmenting path is reached.

Augmenting step: Find an augmenting path p for the current flow f and increase the value of the flow by increasing the flow by $r(p)$ along the path p.

Simplest implementation (Ford and Fulkerson): Find some augmenting path for f by searching the graph R_f (using an arbitrary search algorithm for directed graphs).

Remarks:

• if we know a maximum flow we can construct a minimum cut in $O(m)$ time (as in the proof of the max flow min cut theorem)

• if we allow the capacities to be irrational numbers, the simple implementation of the augmenting path method may not terminate after a finite number of steps, the value of the flow always converges but may not converge to the value of the maximum flow

• if all capacities are rational numbers, the problem may be transformed to an equivalent problem where all capacities are integers

• if all capacities are integers, then every augmenting step increases the value of the flow by at least one, and hence the method terminates after at most $|f^*|$ augmenting steps – moreover the constructed maximum flow is integral on every edge
Ideal version of the augmenting path method:

Lemma 2: There always exists a sequence of at most m augmenting steps producing a maximal flow (starting with a zero flow).

Implementation with maximum augmentation (Edmonds and Karp): At each step find an augmenting path with the maximum residual capacity (among all augmenting paths).

Lemma 3: Let f be an arbitrary flow and let f^* be a maximum flow on G. Then the value of a maximum flow on the residual graph R_f is $|f^*| - |f|$.

Theorem: The number of augmenting steps when using the implementation with maximum augmentation is $O(m \log c)$ where c is a maximum capacity of an edge.

Remarks:
- this is polynomial (number of augmenting steps) with respect to the size of the data
- the bound is true only for integral capacities (and the method in this case of course converges to a maximum flow)
- an augmenting path with the maximum residual capacity can be found in polynomial time using a modified Dijkstra’s algorithm (for a so called bottleneck problem), where the length of a path is not equal to the sum of edge lengths but to the length of the shortest edge (we omit details here as subsequent max flow algorithms we shall cover are better)
- our next goal is an implementation with polynomial time complexity depending only on n and m
Implementation with shortest augmentation (Edmonds and Karp): At each step find a shortest augmenting path, i.e. an augmenting path with the least number of edges.

Theorem: The number of augmenting steps when using the implementation with shortest augmentation is $O(nm)$ and hence the augmenting path method runs in $O(nm^2)$.

Definition: Let f be a flow and R_f its residual graph. Level $u(x)$ of vertex x in R_f is the length of a shortest path from s to x in R_f. Level graph U_f for flow f is a subgraph of R_f, which contains only vertices reachable from s and edges (x,y) for which $u(y) = u(x) + 1$.

Observation: Graph U_f can be constructed in $O(m)$ time using BFS and if there exists an augmenting path then U_f contains all shortest augmenting paths.

Further improvement can be achieved by augmenting the flow on all shortest paths at once instead of augmenting the flow along shortest paths one by one.

Definition: Flow g on graph U_f is called a blocking flow if each path from s to t in U_f contains a saturated edge.

Algorithm (Dinic): Start with a zero flow and repeat the following (blocking) step as long as an augmenting path exist, i.e. as long as t is reachable in the current level graph:

(Blocking) step: Find a blocking flow g on U_f and replace f by $f + g$ defined by

$$(f + g)(x,y) = f(x,y) + g(x,y)$$

Lemma 4: Dinic’s algorithm stops after at most $n − 1$ blocking steps.
How to find a blocking flow: Several methods exist, we shall describe the original one proposed by Dinic which is the simplest.

Idea: Find a path from \(s \) to \(t \) in \(U_f \) (using DFS), increase the flow \(f \) along this path so that some edge on it becomes saturated. Remove all newly saturated edges from \(U_f \) and repeat this procedure as long as \(t \) is reachable from \(s \) in \(U_f \).

Formal description: Start with a zero flow and go to Initialize. Currently searched vertex will be denoted by \(x \) and \(p \) will be an augmenting path from \(s \) to \(x \).

Initialize: Define \(p = [s] \) and \(x = s \). Go to Forward.

Forward: If there is no edge leading from \(x \) in \(U_f \) go to Backward. Otherwise take an arbitrary edge \((x,y)\), extend \(p \) by vertex \(y \) and assign \(y \) into \(x \) (shift the current vertex). If \(y \neq t \) then repeat Forward, if \(y = t \) go to Augment.

Backward: If \(x = s \) then stop (no augmenting path to \(t \) exists). If \(x \neq s \) then let \((y,x)\) be the last edge on \(p \). Shorten \(p \) by deleting \(x \) and remove edge \((y,x)\) from \(U_f \). Assign \(y \) into \(x \) (shift the current vertex) and go to Forward.

Augment: Let \(d = \min\{c(x,y) – f(x,y) \mid (x,y) \text{ is an edge in } p\} \). Add \(d \) to the flow on all edges in \(p \), remove all newly saturated edges from \(U_f \) and go to Initialize.

Theorem: Dinic’s algorithm finds a blocking flow in the level graph \(U_f \) in \(O(nm) \) time and a maximum flow in the input graph \(G \) in \(O(n^2m) \) time.
The „preflow-push“ method

Definition: Preflow is a function \(f : V \times V \to \mathbb{R} \) which fulfills the symmetry and capacity constraints on each edge and which relaxes the flow conservation condition at each vertex \(u \) (except of \(s \)) by \(e(u) = \sum_{v \in V} f(u,v) \geq 0 \), where \(e(u) \) is the excess in \(u \). Vertex \(u \) different from both \(s \) and \(t \) is called active if it has a positive excess \((e(u) > 0) \).

Definition: Let \(f \) be a preflow and \(R_f \) a residual graph for \(f \). Then we call a function \(h : V \to \mathbb{N} \) a height function with respect to \(f \) if

- \(h(s) = |V| \)
- \(h(t) = 0 \)
- \(\forall (u,v) \in R_f : h(u) \leq h(v) + 1 \)

If \(h(u) = h(v) + 1 \) holds for edge \((u,v) \in R_f \) we call \((u,v) \) to be feasible.

Initialization (for a generic preflow-push algorithm):

1. Set all \(h(u) \), \(e(u) \) and \(f(u,v) \) to zero.
2. Assign \(h(s) := |V| \).
3. Assign for each neighbor \(u \) of source \(s \)
 - \(f(s,u) := c(s,u) \) a \(f(u,s) := -c(s,u) \)
 - \(e(u) := c(s,u) \)
After initialization: f is a preflow and h is a height function with respect to f.

The algorithm uses two basic actions:

PUSH(u)

- **USAGE:** if u is active ($e(u) > 0$) and there exists a feasible edge (u,v) in R_f, i.e. an edge satisfying $r(u,v) > 0$ and $h(u) = h(v) + 1$.
- **ACTION:** send $d(u,v) = \min\{e(u), r(u,v)\}$ units of flow from u to v and update $f(u,v)$, $f(v,u)$, $e(u)$ and $e(v)$ accordingly.

Definition: **PUSH**(u) is **saturating**, if edge (u,v) over which the flow is sent becomes saturated (which happens if $d(u,v) = r(u,v)$) and **non-saturating** in the opposite case (i.e. when $d(u,v) = e(u) < r(u,v)$).

LIFT(u)

- **USAGE:** if u is active ($e(u) > 0$) and there exists no feasible edge (u,v) in R_f.
- **ACTION:** $h(u) := 1 + \min\{h(v) \mid (u,v) \in R\}$

Algorithm (generic preflow-push algorithm):

- Initialization
- As long as an active vertex exists, select one (let it be u) and perform either **PUSH**(u) or **LIFT**(u).
Lemma 1: Each vertex u satisfies during the entire run of the algorithm the following:

- $h(u)$ never decreases
- each $\text{LIFT}(u)$ increases $h(u)$ by at least one

Lemma 2: Function h is a height function with respect to the current (pre)flow f during the entire run of the algorithm.

Lemma 3: There is no path from s to t in R_f during the entire run of the algorithm.

Theorem (correctness of the algorithm): When the algorithm terminates f represents a maximum flow.

Time complexity: The algorithm performs during its entire run:

- $O(|V|^2)$ lifts
- $O(|V||E|)$ saturating pushes
- $O(|V|^2|E|)$ non-saturating pushes

which, under an implementation requiring $O(|V|)$ time for each lift and $O(1)$ time for each push, gives an overall $O(|V|^2|E|)$ complexity of the algorithm.

Remark: The above time complexity can be reduced to $O(|V||E| \log(|V|^2 / |E|))$ by a „smart“ selection of active vertices [Goldberg, Tarjan 88], which is still an asymptotically fastest known algorithm.
Multiplication of polynomials

Two ways to represent polynomials:

1. Vector of coefficients (in our case a vector of complex numbers)

\[A(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_1x^1 + a_0x^0 \]

\(A(x) \) is a polynomial with a degree bound \(n \), coefficients \(a_0 \ldots a_{n-1} \), and \(A(x) \) has degree \(k \) if \(a_k \) is the highest nonzero coefficient

- Addition of two polynomials: \(\Theta(n) \)
- Computation of a value in a given point: \(\Theta(n) \) (using Horner’s schema)
- Multiplication of two polynomials: \(\Theta(n^2) \) (convolution of two coefficient vectors)

2. Function values in given points (set of pairs)

\[\{ (x_0,y_0), (x_1,y_1), \ldots, (x_{n-1},y_{n-1}) \} \]

Any polynomial \(A(x) \) with a degree bound \(n \) can be uniquely represented in this way by any such \(n \)-tuple of pairs, where \(x_i \)’s are pairwise disjoint and \(y_i = A(x_i) \) for each \(i \).

- Addition of two polynomials: \(\Theta(n) \)
- Computation of a value in a given point: except of the given points impossible to compute without a conversion to the representation by a vector of coefficients
- Multiplication of two polynomials: \(\Theta(n) \) BUT we need \(2n \) points
Conversions between both representations

1. Coefficients → Pairs (evaluation): $\Theta(n^2)$ using Horner’s schema (also for $2n$ points), possible in $\Theta(n \log n)$ if points for the computation of function values are selected in a „clever“ way

2. Pairs → Coefficients (interpolation): in general $\Theta(n^3)$ using Gaussian elimination or $\Theta(n^2)$ by Lagrange’s formula (will not cover), possible in $\Theta(n \log n)$ when the function values for the „cleverly“ selected points are known

Multiplication of polynomials in $\Theta(n \log n)$

The selected points are $2n$-th complex roots of unity (number 1), denoted by

$w_{2n}^0, w_{2n}^1, \ldots, w_{2n}^{2n-1}$

Multiplication for two vectors of coefficients $a_0 \ldots a_{n-1}$ and $b_0 \ldots b_{n-1}$ (both of degree bound n) then proceeds as follows:

1. Set $a_n = \ldots = a_{2n-1} = b_n \ldots b_{2n-1} = 0$ (new degree bound is $2n-1$)

2. Evaluation: compute function values $A(x)$ and $B(x)$ in all $2n$ roots of number 1

3. Multiplication: $C(x) = A(x)B(x)$ in all $2n$ roots of number 1

4. Interpolation: compute the vector of coefficients of the polynomial $C(x)$ which is given by $2n$ function values (in all $2n$ roots of number 1)

Steps 1 and 3 take $\Theta(n)$, steps 2 and 4 take $\Theta(n \log n)$ if implemented by FFT
Properties of complex roots of unity

Cancelation lemma: If \(n \geq 0, \ k \geq 0 \) and \(d > 0 \) then \(w_{dn^d} = w_n^k \).

Corollary: For any even integer \(n > 0 \) we get \(w_n^{n/2} = w_2^1 = -1 \).

Halving lemma: If \(n > 0 \) is even, then the squares of the \(n \) complex \(n \)-th roots of unity are equal to the \(n/2 \) complex \(n/2 \)-th roots of unity (each occurring twice).

Summation lemma: If \(n \geq 0 \) and \(k > 0 \) such that \(k \) is not divisible by \(n \) then \(\sum_{j=0}^{n-1} (w_n^k)^j = 0 \).

Discrete Fourier Transform (DFT)

We want to represent a polynomial \(A(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_1x + a_0x^0 \) with degree bound \(n \) given by the coefficient vector by function values in \(n \) complex \(n \)-th roots of unity, i.e. we want to compute the values

\[
y_k = A(w_n^k) \quad \text{for } k = 0, 1, \ldots, n-1.
\]

Vector \(y \) (of function values) is the DFT of vector \(a \) (of coefficients), we write \(y = \text{DFT}_n(a) \).

The reverse transform is called the inverse DFT and we write \(a = \text{DFT}_{n^{-1}}(y) \).

Remark: if \(n \) is the degree bound of both input polynomials (which we want to multiply), then we in fact work with \(n' = 2n \), however, to keep the notation simple we shall use \(n \) (moreover the asymptotic complexity is the same in terms of both \(n \) and \(n' \)).
Fast Fourier Transform (FFT)

An algorithm using the „divide and conquer“ strategy for computing $\text{DFT}_n(a)$, by dividing $A(x)$ into two polynomials of degree bound $n/2$ (separating odd and even degrees):

\[
A^s(x) = a_0 + a_2x + a_4x^2 + \ldots + a_{n-2}x^{n/2-1}
\]
\[
A^l(x) = a_1 + a_3x + a_5x^2 + \ldots + a_{n-1}x^{n/2-1}
\]

Now clearly $A(x) = A^s(x^2) + x A^l(x^2)$ (denote this equation by (a)), so the task to compute the function values of $A(x)$ at $w_n^0, w_n^1, \ldots, w_n^{n-1}$ is transformed into the tasks to

• compute the function values of polynomials $A^s(x)$ a $A^l(x)$ (with degree bound $n/2$) at $(w_n^0)^2, (w_n^1)^2, \ldots, (w_n^{n-1})^2$ (which is only $n/2$ different points due to the halving lemma), i.e. instead of solving the original task solve twice the same task on data of half the size
• combine the results using the equation (a) which takes $\Theta(n)$ time

Total time $T(n)$ for FFT of length n fulfills $T(n) = 2T(n/2) + \Theta(n)$ and so $T(n) = \Theta(n \log n)$.

Lemma Let V_n be the Vandermonde matrix for $w_n^0, w_n^1, \ldots, w_n^{n-1}$. Then the entry at position (j,k) in the inverse matrix V_n^{-1} is equal to w_n^{-kj} / n.

Thus we can compute also the inverse DFT using FFT, because computing the coefficients of the polynomial given by function values $y_0, y_1, \ldots, y_{n-1}$ is the same as computing function values of the polynomial $Y(x)/n$ with coefficients $y_0/n, y_1/n, \ldots, y_{n-1}/n$ at points $w_n^0, w_n^{-1}, \ldots, w_n^{-(n-1)}$.
FFT implementations

1. **Recursive implementation** (direct transcription of the algorithm)

```plaintext
REC-FFT(a);

n := length(a);  
{n is a power of two}
if n=1 then return a;  
{bottom of the recursion}
p := e^{2\pi i / n};  
{principal root \( w_n^1 \) = generator of all other roots}
w := 1;  
{currently processed root, starting with \( w = w_n^0 \)}
a^s := (a_0, a_2, \ldots, a_{n-2});  
{preparation of the input data for recursion}
a^l := (a_1, a_3, \ldots, a_{n-1});
y^s := REC-FFT(a^s);  
{recursion}
y^l := REC-FFT(a^l);
for k := 0 to (n/2 − 1) do
    y_k := y_k^s + w y_k^l;  
    {computing \( A(w) \) in the current root \( w = w_n^k \)}
y_{k+n/2} := y_k^s − w y_k^l;  
    {computing \( A(w) \) in the opposite root \( w_n^{k+n/2} \)}
w := w p;  
{moving to the next root \( w_n^{k+1} \)}
return y
```

Time complexity: obviously \(T(n) = 2T(n/2) + \Theta(n) \) and so \(T(n) = \Theta(n \log n) \), because the work outside of the recursion is clearly \(\Theta(n) \).
2. **Iterative implementation** (main idea)

originates from the recursive implementation by the following adaptations

- the body of the for cycle is replaced by the „butterfly“ operation
- the tree of recursion is transversed level by level from the bottom
- the initial order of leaves for starting the algorithm is obtained by bit inversion

Time complexity: exactly \(n/2 \) butterfly operations is called on each level of the tree, so the total work on each level is \(\Theta(n) \), which together with the fact that the depth of the tree is exactly \(\log n \) gives the \(\Theta(n \log n) \) time complexity.

3. **Parallel implementation** (main idea)

- all butterfly operations on the same level of the tree are performed in parallel
- the algorithm can be hardwired by an appropriate chaining of butterfly circuits into a network with „width“ \(n \) and „depth“ \(\log n \)

Time complexity: the work on each level now takes \(O(1) \) (using \(n/2 \) „processors“), and so the total time complexity is \(\Theta(\log n) \).
Sorting networks

Sorting network is a circuit with \(n \) inputs with values from some linearly ordered type (typically numbers) and \(n \) outputs, which output the input values sorted (regardless of the order in which these values appeared on the input).

This circuit contains only one type of a gate, namely a comparator, which is a gate with two inputs \(x_1 \) and \(x_2 \) and two outputs \(y_1 \) and \(y_2 \), where \(y_1 = \min\{x_1, x_2\} \) and \(y_2 = \max\{x_1, x_2\} \).

Formal definition of a sorting network:

- \(K = \{K_1, K_2, \ldots, K_s\} \) is the set of comparators, \(s \) is the size of the network
- \(O = \{(k, i) \mid 1 \leq k \leq s, 1 \leq i \leq 2\} \) is the set of outputs (\(k \) is the comparator number, \(i \) the output number)
- \(I = \{(k, i) \mid 1 \leq k \leq s, 1 \leq i \leq 2\} \) is the set of inputs
- \(C = (K, f) \) is a sorting network, where \(f : O \rightarrow I \) is a partial injective mapping
Network acyclicity condition:

We require that the directed graph $G = (K,E)$, where $(K_u,K_v) \in E$ if there exist i and j such that $f(u,i) = (v,j)$, is acyclic.

Dividing comparators into levels:

• Define $L_1 = \{ K_i | K_i \text{ has indegree zero in } G \}$ (L_1 is nonempty due to the acyclicity of G)

• Let L_1, L_2, \ldots, L_h be defined, where $L = L_1 \cup L_2 \cup \ldots \cup L_h \not\subseteq K$. Then we define $L_{h+1} = \{ K_i | K_i \text{ has indegree zero in } G \setminus L \}$ (L_{h+1} is nonempty due to the acyclicity of G)

• The number of levels is denoted by d and called the depth of the network

How the network functions:

• time 0 : network inputs defined (all comparators in L_1 have defined inputs)

 comparators in L_1 working

• time 1 : all comparators in L_2 have defined inputs

 comparators in L_2 working

 ...

• time $d-1$: all comparators in L_d have defined inputs

 comparators in L_d working

• time d : network outputs defined
Observation: time complexity of sorting corresponds to the network depth

Topologically different network representation:
- each "wire" from input x_i into output y_i is drawn as a straight line
- individual comparators are "stretched" between the corresponding "wires"
- every sorting network can be redrawn in this way
- the number of inputs/outputs (wires) is called the width of the network

Merge-Sort implemented by a sorting network

We want to sort x_1, x_2, \ldots, x_n (and assume that n is a power of two)

We implement the sorting by a network S_n, which is defined recursively by the picture

where M_n is a merging network of width n (the recursion stops for $n=2$)
It remains to show how to construct merging network M_n (by a recursive construction):

Odd members of both sorted sequences are the input of the first copy of $M_{n/2}$ and even members are the input of the second copy of $M_{n/2}$. Moreover, outputs of both networks are interconnected by one layer of comparators (marked red in the picture).

The input satisfies: \[a_1 \leq a_2 \leq \ldots \leq a_{n/2} \quad \text{and} \quad b_1 \leq b_2 \leq \ldots \leq b_{n/2} \]

Induction hypothesis: \[c_1 \leq c_2 \leq \ldots \leq c_{n/2} \quad \text{and} \quad d_1 \leq d_2 \leq \ldots \leq d_{n/2} \]

We shall prove that: \[y_1 \leq y_2 \leq \ldots \leq y_n \]
Black inequalities (arrows) are valid, green inequalities and blue inequalities will be proved. Regardless of how the red comparators order their pairs of values, the resulting arrows will generate a linear order, which is the correct ordering of the input values.

Depth and size of a sorting network of width \(n = 2^k \)

1. Merging network \(M_n \)
 - has depth (number of levels) \(d(M_n) = \log_2 n \)
 - and size (number of comparators) \(s(M_n) = \frac{n}{2} \log_2 (n/2) + 1 \)

2. Sorting network \(S_n \)
 - has depth (number of levels) \(d(S_n) = \frac{1}{2} \log_2 n \cdot (\log_2 n + 1) \)
 - and size (number of comparators) \(s(S_n) = \frac{1}{4} n \log_2 n \cdot (\log_2 n - 1) + (n-1) \)
Lower bound for the complexity of sorting by comparator networks

Comparator network = network composed of comparators (arbitrarily placed)

⇒ every sorting network is a (specially designed) comparator network

Lemma 1 Every comparator network working on input \(x_1, x_2, \ldots, x_n\) outputs some permutation \(\Pi\) of the input values, i.e. outputs \(x_{\Pi(1)}, x_{\Pi(2)}, \ldots, x_{\Pi(n)}\).

Proof Trivial, the network cannot do anything else then permute the inputs.

Definition Let \(C\) be an arbitrary comparator network of width \(n\). A permutation \(\Pi : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}\) is reachable for \(C\), if there exists an input sequence \(x_1, x_2, \ldots, x_n\) such that \(C\) outputs the sequence \(x_{\Pi(1)}, x_{\Pi(2)}, \ldots, x_{\Pi(n)}\).

Lemma 2 Let \(C\) be an arbitrary sorting network of width \(n\). Then all \(n!\) permutations are reachable for \(C\).

Lemma 3 Let \(C\) be an arbitrary comparator network of width \(n\) and let \(p\) be the number of reachable permutations for \(C\). Then

\[
p \leq 2^{s(C)}.
\]

Corollary If \(C\) is a sorting network of width \(n\) then

\[
n! \leq 2^{s(C)}
\]

and thus \(C\) has size \(s(C) = \Omega(n \log n)\) and depth \(d(C) = \Omega(\log n)\).
Arithmetic networks

- definition is similar to sorting networks, identically defined width (number of inputs or “input wires”), size (number of gates), and depth (number of levels) of the network
- time complexity of the computation is again proportional to the depth of the network
- “wires” carry values 0 and 1 (i.e. a single bit of information, unlike the wires in sorting networks which carry more bits each, e.g. n-bit numbers)
- gates are logical gates, typically a unary gate NOT and binary gates AND, OR, XOR
- a “wire” from a single gate output may split into several gate inputs, number of outputs may differ from the number of inputs, but network acyclicity must be preserved

Full adder

Full adder is a circuit with three inputs \(x, y, z \) and two outputs \(c, s \). Its function can be explained as follows: \(x \) and \(y \) are two bits of the same order in two binary numbers, \(z \) is the carry-in from the lower order, \(s \) the corresponding bit of \(x+y \), and \(c \) is the carry-out into the higher order. The 8-line table for computing \(s \) and \(c \) implies \(s = \text{parity}(x, y, z) \) and \(c = \text{majority}(x, y, z) \).

Adding two n-bit binary numbers

- \(n \) is assumed to be a power of two, inputs are \(a = (a_{n-1}, \ldots , a_0) \) and \(b = (b_{n-1}, \ldots , b_0) \)
- we shall show two circuits: for classical addition and carry-look-ahead addition
Circuit for classical addition

- Addition is realized by a cascade of n full adders, where adder of order i waits for the carry-in bit from adder of order $i-1$ and sends its carry-out bit to adder of order $i+1$.
- The network has size $\Theta(n)$ and depth also $\Theta(n)$.

Circuit for carry-look-ahead addition

The speed-up is based on the idea, that in some cases the carry-out bit from order i may be determined based on a_i and b_i only (these values are known from the start) and there is no need to wait for the carry-in bit (which may take a very long time to compute).

- In case $a_i = b_i = 0$ we get $c_{i+1} = 0$ (regardless of the value of c_i) → kill carry bit c_{i+1}.
- In case $a_i = b_i = 1$ we get $c_{i+1} = 1$ (regardless of the value of c_i) → generate carry bit c_{i+1}.
- In case $a_i \neq b_i$ we get $c_{i+1} = c_i$ → propagate carry-in bit c_i into carry-out bit c_{i+1}.

This defines the carry status of each order $i \in \{0, \ldots , n\}$, denoted by variable x_i. Its value from the set $\{k, p, g\}$ can be easily computed from a_{i-1} and b_{i-1} using the above rules.

Consider two consecutive full adders as a single circuit with one carry-in bit and one carry-out bit: the carry status of the combined circuit can be computed from the (k,p,g) carry statuses of both participating full adders, and this can be extended to triples …

This defines a binary carry status operator \otimes on the set $\{k,p,g\}$, which is associative (associativity can be proved by brute force by analyzing all 27 cases).
If we define $x_0 = y_0 = k$, then for every order $i \in \{1, \ldots, n\}$ we may define a variable

$$y_i = y_{i-1} \otimes x_i = x_0 \otimes x_1 \otimes \ldots \otimes x_i$$

which may be interpreted as the i-th prefix of the product $x_0 \otimes x_1 \otimes \ldots \otimes x_n$

Lemma For $i = 0, 1, \ldots, n$ we get

1. if $y_i = k$ then $c_i = 0$
2. if $y_i = g$ then $c_i = 1$
3. the case $y_i = p$ cannot happen

Corollary If all y_i are known then the sum can be computed in $O(1)$ using n full adders running in parallel (where $k = 0$ ang $g = 1$ on the input of the full adders, p cannot occur), so the task of adding two binary numbers is reduced to computing all prefixes.

The **adder circuit** consists of n KPG circuits and one prefix circuit. Each KPG circuit is used twice. During the first pass the i-th KPG circuit has a_i and b_i on the input and outputs x_i, which it sends into the prefix circuit. During the second pass the i-th KPG circuit works as a full adder (in fact only as its part computing the parity function) on the input a_i, b_i and y_i (the last input coming from the prefix circuit, where the values k and g are interpreted as 0 and 1) and outputs the relevant bit of the sum $s_i = \text{parity}(a_i, b_i, y_i)$.

Thus, all that remains to construct now is the parallel prefix circuit …
Parallel prefix circuit

The inputs are the carry statuses of all orders, i.e. x_0, x_1, \ldots, x_n and the computed outputs are the values of all prefixes y_0, y_1, \ldots, y_n

Let us denote $[i, j] = x_i \otimes x_{i+1} \otimes \ldots \otimes x_j$ (and so $[i, i] = x_i$). By associativity we get for any j such that $i < j \leq k$ the equality $[i, k] = [i, j-1] \otimes [j,k]$.

We want to compute $y_i = [0, i]$ for all $i \in \{0, 1, \ldots, n\}$ by a parallel prefix circuit consisting only of sub-circuits realizing the carry status operator \otimes. The circuit is topologically a complete binary tree (here we need n to be a power of 2):

- the leaves of the tree contain the inputs x_1 to x_n and the root contains the input x_0
- during the pass from the leaves to the root the value $[i, k] = [i, j-1] \otimes [j,k]$ is computed in the inner node representing the interval from i to k, based on the values in the left son representing the interval from i to $j-1$ (and thus having the value $[i, j-1]$) and in the right son representing the interval from j to k (and thus having the value $[j, k]$)
- during the pass from the root to the leaves the value $[0, i-1]$ comes from the parent to an inner node which represents the interval from i to k - this value is sent unchanged to the left son (which represents the interval from i to $j-1$) and value sent to the right son (which represents the interval from j to k) is computed as $[0, j-1] = [0, i-1] \otimes [i,j-1]$
- the outputs y_0 to y_{n-1} are computed in the leafs and the output y_n in the root of the tree
- the size of the circuit is $\Theta(n)$ and its depth is $\Theta(\log n)$
Classes P and NP, polynomial transformations, NP-completeness

Task: for a given input find an output structure with given properties

Examples:
- for a given input graph find a cycle in it
- for two given input matrices compute their product

Optimization task: for a given input find an optimal (typically minimum or maximum) output structure with given properties

Examples:
- for a given input (undirected) graph find the biggest complete subgraph (clique)
- for a given set of jobs find the shortest feasible schedule

Decision problem: for a given input answer YES/NO

Examples:
- does a given input graph contain a (Hamiltonian) cycle?
- is a given input square matrix regular?

From now on we shall restrict ourselves to decision problems only, which can be done (more or less) without loss of generality – in the sense that for (almost) every (optimization) task there exists a decision problem which is “equally hard to solve”.
Definition (vague): Class P is a set of decision problems. A decision problem X is in P if there exists a deterministic sequential algorithm, which for any input instance y of X correctly answers YES/NO (solves y) in a polynomial time (with respect to the size of y).

- Is a given input directed graph strongly connected?
- Does a given input undirected graph contain a triangle? (clique of size three)
- Is a given input matrix regular?

Nondeterministic algorithm = algorithm, which can choose in each of its steps from several options

Nondeterministic algorithm solves a given decision problem \iff there exists a sequence of choices leading to a YES answer for every YES input instance of the problem and no sequence of choices leads to a YES answer for a NO input instance of the problem.

Definition (vague): Class NP is a set of decision problems. A decision problem X is in NP if there exists a nondeterministic sequential algorithm, which for any input instance y of the problem X solves y in a polynomial time (with respect to the size of y).

A different model of a nondeterministic algorithm: do the choices in advance (and record them in memory) and then run the original nondeterministic algorithm in a deterministic manner using the recorded advice (certificate).

Alternative definition (vague again): A decision problem X is in class NP, if there exists a (polynomially large) certificate for each YES instance y of the problem X, using which it can be deterministically checked in polynomial time, that the answer to y is YES.
Examples of decision problems from the class NP:

- **CLIQUE** (complete subgraph) input: An undirected graph G and a number k.

 Question: Does there exist in G a complete subgraph on at least k vertices?

- **HC** (Hamiltonian cycle) input: An undirected graph G.

 Question: Does there exist a Hamiltonian cycle in G?

- **TSP** (traveling salesman) input: A weighted complete undirected graph G, a number k.

 Question: Does there exist a Hamiltonian cycle in G of total weight at most k?

- **SS** (subset sum) input: Natural numbers $a_1, a_2, ..., a_n, b$.

 Question: Does there exists a subset of $a_1, a_2, ..., a_n$ which sums up to b?

- **SPM** (scheduling on parallel machines) input: A number of jobs, their lengths, a number of machines and number k.

 Question: Does there exists a feasible schedule of length at most k?

We shall show, that $HC \rightarrow TSP$, $SS \rightarrow SPM$, and $SAT \rightarrow CLIQUE$, where $A \rightarrow B$ means, that if there exists a (deterministic) polynomial algorithm solving B, then there also exists a (deterministic) polynomial algorithm solving A, or in other words solving B is at least as “hard” (up to a polynomial) as solving A.
Transformations (reductions) among decision problems

Let A, B be two decision problems. We say that A is **polynomially reducible** to B, if there exists a mapping f from the set of input instances of problem A into the set of input instances of problem B with the following properties:

1. Let X be an input instance of problem A and Y an input instance of problem B such that $Y = f(X)$. Then X is a YES instance of A if and only if Y is a YES instance of B.
2. Let X be an input instance of problem A. Then $f(X)$ is an input instance of problem B which can be (deterministically, sequentially) constructed from X in a polynomial time.

Remark: Property 2. implies, that size of $f(X)$ is polynomial with respect to size of X.

NP-completeness

Definition: Problem B is **NP-hard** if and only if every problem A from NP is polynomially reducible to B.

Definition: Problem B is **NP-complete** if 1) belongs to NP and 2) is NP-hard.

Corollary 1: If A is NP-hard and polynomially reducible to B, then B is also NP-hard.

Corollary 2: If there exists a polynomial time algorithm for some NP-hard problem, then there exist polynomial time algorithms for all problems in the class NP.

Theorem (Cook-Levin 1971): There exists an NP-complete problem (proved for SAT).
Approximation algorithms

Approximation algorithms are typically used to solve “large” instances of NP-hard optimization problems, for which finding an optimal solution is “hopeless”, i.e. too time consuming (“small” instances can be solved optimally in exponential time by “brute force”). An approximation algorithm has the following three properties:

1. Returns a suboptimal solution.
2. Gives an estimate of the quality of the obtained solution compared to the optimum
3. Runs in a polynomial time with respect to the size of the input.

Error estimation

Notation:
- $\text{OPT} = \text{optimal solution}$
- $\text{APP} = \text{solution given by the approximation algorithm}$
- $f(Z) = \text{value of solution } Z$ (always assumed to be nonnegative)

Definition: Approximation algorithm A solves an optimization problem X with a ratio error $r(n)$, if for every instance of size n of problem X we have

$$\max \{ \frac{f(\text{APPROX})}{f(\text{OPT})}, \frac{f(\text{OPT})}{f(\text{APPROX})} \} \leq r(n).$$

Definition: Approximation algorithm A solves an optimization problem X with a relative error $e(n)$, if for every instance of size n of problem X we have

$$\left| \frac{f(\text{APPROX}) - f(\text{OPT})}{f(\text{OPT})} \right| \leq e(n).$$
Example of a maximization problem (optimization version of CLIQUE):
For a given undirected graph find a biggest (in number of vertices) clique in the graph.
The approximation algorithm should provide a guarantee of the type

\[f(\text{APROX}) \geq \frac{3}{4} f(\text{OPT}), \]

where \(f(X) \) is in this case the number of vertices (i.e. the clique size) in solution \(X \).

Example of a minimization problem (optimization version of SPM):
For given jobs with given lengths and a given number of machines find a shortest feasible schedule.
The approximation algorithm should provide a guarantee of the type

\[f(\text{APROX}) \leq 2 f(\text{OPT}), \]

where \(f(X) \) is in this case the length of the schedule in solution \(X \).

Examples of approximation algorithms

Scheduling on parallel machines (optimization) problem:

Input: Lengths of jobs \(x_1, x_2, \ldots, x_n \), number of machines \(m \).

Task: Find the shortest feasible schedule of the given jobs on the given number of machines.
Naive approximation algorithm **QUEUE**: takes jobs one by one according to their numbers and places each job on a machine which is free at the earliest time.

Notation: \(\text{OPT} = \) optimal schedule, \(Q = \) schedule produced by algorithm **QUEUE**,
\(f(\text{OPT}) = o, f(Q) = q \)

Theorem: \(q \leq \left(\frac{2m - 1}{m}\right) o \) and this bound is tight (cannot be improved).

Corollary: **QUEUE** has a ratio error \(r(n) \leq 2 \) (and it is tight for constant bounds).

Proof:
1. **Tightness**: For each \(m \) we shall construct an instance for which equality holds in the statement of the Theorem. Such instance is defined as follows:

\[
\begin{align*}
x_1 &= x_2 = \ldots = x_{m-1} = m-1 \quad (m-1 \text{ jobs of length } m-1) \\
x_m &= x_{m+1} = \ldots = x_{2m-2} = 1 \quad (m-1 \text{ jobs of length } 1) \\
x_{2m-1} &= m \quad (1 \text{ job of length } m)
\end{align*}
\]

2. **Correctness**: Let \(j \) be a job which terminates last in schedule \(Q \) at time \(q \) and let \(t \) be the time when \(j \) starts in \(Q \). Then no machine has any idle time before time \(t \) and moreover it is easy to see that \(m q \leq (2m - 1) o \).
Less naive approximation algorithm **SORTED QUEUE**: works just like **QUEUE**, except that it starts by sorting jobs non-increasingly according to their lengths.

Notation: \(\text{OPT} = \text{optimal schedule}, \text{SQ} = \text{schedule produced by SORTED QUEUE}, \ f(\text{OPT}) = o, f(\text{SQ}) = u \)

Theorem: \(u \leq ((4m - 1) / 3m) o \) and this bound is tight (cannot be improved).

Corollary: **SORTED QUEUE** has a ratio error \(r(n) \leq 4/3 \) (again tight for constant bounds).

Tightness: For each \(m \) we shall construct an instance for which equality holds in the statement of the Theorem. Such instance is defined as follows:

\[
\begin{align*}
x_1 &= x_2 = 2m-1 & \text{(2 jobs of length } 2m-1) \\
x_3 &= x_4 = 2m-2 & \text{(2 jobs of length } 2m-2) \\
x_{2m-3} &= x_{2m-2} = m+1 & \text{(2 jobs of length } m+1) \\
x_{2m-1} &= x_{2m} = x_{2m+1} = m & \text{(3 jobs of length } m) \\
\end{align*}
\]

Lemma: If all job lengths satisfy the inequality \(x_i \geq 1/3 \ o \) then \(u = o \).

Correctness: Let \(j \) be a job which terminates last in schedule \(\text{SQ} \) at time \(u \). If \(x_j > 1/3 \ o \) then we use the above Lemma, in the other case we basically repeat the proof for algorithm **QUEUE**.
Vertex cover (optimization) problem:

Input: Undirected graph $G = (V, E)$.

Task: Find a vertex cover of a minimum size, i.e. $V' \subseteq V$ such that for every $(u,v) \in E$ there is $u \in V'$ or $v \in V'$ (or both), and moreover V' has a minimum possible cardinality.

Algorithm A: repeatedly select a vertex of the highest degree put it in the vertex cover and delete it from the graph together with all edges which it covers until no edge is left.

Does A have a constant ratio error?

Algorithm B: repeatedly select an arbitrary edge (u,v) put both u and v in the vertex cover and delete both u and v form the graph together with all edges which they cover until no edge is left.

Does B have a constant ratio error?

Traveling salesman problem:

Input: Complete weighted undirected graph $G = (V, E)$ with weights given by $c : E \to \mathbb{Z}^+ \cup \{0\}$

Task: Find in G a Hamiltonian cycle of minimal total weight.
1. TSP with the triangular inequality

Is it even NP-hard??

Algorithm C:

a) Find a minimum spanning tree of the graph.

b) Select an arbitrary vertex and run a DFS on the tree numbering the vertices in the preorder manner.

c) Select the Hamiltonian cycle given by the permutation of vertices computed in b)

Theorem: Algorithm C has a ratio error $r(n) \leq 2$.

2. TSP without the triangular inequality

Theorem: Let $R \geq 1$ be an arbitrary constant. Then there exists no polynomial time approximation algorithm with ratio error R which solves general TSP, unless $P = NP$.

Corollary: There exist NP-hard optimization problems for which no polynomial time constant ratio error approximation algorithms can exist (unless $P = NP$).
Probabilistic (randomized) algorithms

Probabilistic algorithm makes (contrary to a deterministic one) random steps, e.g. uses values generated by a random number generator for some steps – thus two subsequent runs of the same probabilistic algorithm on the same data differ (with high probability).

There are many types of probabilistic algorithms, we shall mention only two of them, namely Las Vegas algorithms and Monte Carlo algorithms.

Las Vegas algorithms

The result is always correct, randomness influences only the run time, i.e. determines the path which the algorithm uses to arrive to the correct result.

Example: randomized QuickSort – the pivot is selected randomly from the current subsequence on every level of recursion, which brings the following advantages

• gives good average running time (i.e. $O(n \log n)$) even in case that the input data are not random permutations – no input is a priori bad (of course there exist bad inputs for every deterministic rule for choosing the pivot)

• can be run in parallel in several copies on the same data, the result is obtained from the copy that finishes the computation first (this would make no sense for a deterministic version of QuickSort)
Monte Carlo algorithms

Randomness influences both running time and the correctness of the result: algorithm can make an error but the error can be only one-sided (we assume a YES/NO answer) and has a bounded probability

Example: Rabin-Miller algorithm for primality testing

Task: for a given number \(n \) (quickly) decide whether \(n \) is a prime number

A little bit of theory (Little) Fermat’s theorem (without a proof):
Let \(p \) be a prime number. Then \(\forall k \in \{1,2, \ldots ,p-1\} \) we get \(k^{p-1} \equiv 1 \pmod{p} \).

Idea: If \(n \) is NOT a prime, we may try to (randomly) find a “witness” \(k \), violating the rule \(k^{n-1} \equiv 1 \pmod{n} \), which “witnesses” that \(n \) is a composite number (is not a prime)

Problem: For some composite numbers there are too few witnesses, and thus the probability that a witness will be selected at random is too small.

Definition: Let \(T \) be a set of pairs of natural numbers, where \((k,n) \in T \) if \(0 < k < n \) and at least one of the following two conditions is satisfied:
1. the congruence \(k^{n-1} \equiv 1 \pmod{n} \) is not valid,
2. exists \(i \) such that \(m = (n-1) / 2^i \) is a natural number and \(1 < \text{LCM}(k^{m^{-1}}-1, n) < n \) holds

Theorem: Number \(n \) is composite if and only if there exists number \(k \) such that \((k,n) \in T \). Moreover, if \(n \) is composite then \((k,n) \in T \) holds for at least \((n-1)/2 \) numbers \(k \).
Rabin-Miller(n);
for i:=1 to number-of-trials do
 \(k_i := \) randomly selected number from the interval \([1, n-1]\);
 if \((k_i, n) \in T\) then Report \((n \text{ is composite})\);
 Abort;
Report \((n \text{ is prime})\)

If Rabin-Miller(n) decides, that \(n\) is composite, then it is a correct result for sure (a witness has been found), if Rabin-Miller(n) decides, that \(n\) is prime, then it may be an error, but only in case that all selected \(k_i\) were „non-witnesses“ for a composite \(n\), which may happen with a probability of at most

\[
P(\text{error}) \leq (1/2)^{\text{number-of-trials}}
\]

if the individual \(k_i\) are selected independently.

Properties of the algorithm:
• by increasing the number of trials (the number of tested \(k_i\)) an arbitrarily small (preselected) probability of error can be achieved
• the individual trials (tests for different \(k_i\)) may be performed in parallel

Time complexity:
each trial takes only polynomial time with respect to the length of the encoding of \(n\), the hard part is showing that testing \((k_i, n) \in T\) takes time polynomial in \(\log n\), which is not trivial at all (deeper knowledge of number theory is necessary)
Public key cryptography

- every participant X has his/her public key PX and secret (private) key SX
- SX is known only to X, public key PX can be given by X to all parties communicating with X, or it can be even published in a publicly available list of keys (e.g. on the web)
- both keys specify functions which may be applied to any message: if D is a set of finite bit strings (set of all possible messages), then both functions must be injective functions mapping D on D (i.e. both specify permutations of the set D)
- the function specified by the secret key SX is denoted $SX()$, the function specified by the public key PX is denoted $PX()$, and we assume that both functions are efficiently enumerable if we know the corresponding key
- functions $SX()$ and $PX()$ must form a mutually inverse pair of functions: for every message (finite bit string) M we must have $SX(PX(M)) = M$ and $PX(SX(M)) = M$.
- the security of encryption is based on the fact that nobody except of X is capable of computing $SX(M)$ for any message M in a „reasonable“ time, which means that

1. participant X must hold secret key SX absolutely safe from any leakage
2. function $SX()$ must not be efficiently computable based on the knowledge of PX (and the ability to efficiently enumerate function $PX()$), what is the main difficulty when designing any public key cryptography method or system
Let us assume that we have 2 participants: A (Alice) and B (Bob) with keys SA, PA, SB, PB.

Sending an encrypted message and its decrypting

Bob wants to send an encrypted message M to Alice:

- Bob gets Alice’s public key PA (directly from Alice or from a public list of keys)
- Bob computes the encrypted text $C = PA(M)$ and sends it to Alice
- Alice applies her secret key SA on C, i.e. computes $SA(C) = SA(PA(M)) = M$
- If C is read by someone else than Alice, he/she has no chance to obtain M, because he/she cannot efficiently compute $SA(C)$.

Sending an authenticated and signed (non-encrypted) message

Alice wants to answer to Bob in a way, that Bob can be sure that the answer Q comes from Alice and that the text of the answer was not modified by someone else:

- Alice computes her digital signature q for message Q using her private key, i.e. computes $q = SA(Q)$ and sends the pair (Q, q) to Bob – message Q is transmitted openly
- Bob computes $PA(q) = PA(SA(Q)) = Q$ and compares the result with message Q
- If both messages match, Bob can be sure that the message comes from Alice and it was not modified along the way
- If both messages differ, than either the signature q is forged (was not created using function $SA()$) or the signature is correct but the open message Q was modified
Sending an authenticated and signed encrypted message

Alice wants to send message M to Bob, so that Bob is sure that M comes from Alice and that the text of M was not modified. Moreover, Alice wants that only Bob can read M.

- Alice computes her digital signature for M, i.e. computes $m = SA(M)$
- Alice encrypts the pair (M,m) using Bob’s public key, i.e. computes encrypted text $C = PB(M,m)$ and sends C to Bob
- Bob decrypts C using his secret key, i.e. computes $SB(C) = SB(PB(M,m)) = (M,m)$
- Bob verifies validity of Alice’s signature and authenticity of M using Alice’s public key, i.e. computes $PA(m)$ and compares it with M – if they differ Bob knows, that either C was modified during transmission (deliberately or by an error) or C does not come from Alice.

Hybrid encryption

If message M which Bob wants to send to Alice is too long, and thus the computation of $C = PA(M)$ and subsequently of $M = SA(C)$ would be too time consuming, it is possible to combine public key cryptography with some symmetric cipher K, which works quickly:

- Bob computes $C = K(M)$, which is again a long bit string, additionally computes $PA(K)$, which is a short string (compared to M and $PA(M)$) and sends $(C,PA(K))$ to Alice
- Alice decrypts $PA(K)$ using her secret key SA and thus obtains K, using which it decrypts C and obtains $M
Hybrid authentication and signing

If \(M \) is too long, it is also very time consuming to compute digital signature \(m = SA(M) \). We may circumvent this difficulty by using a (publicly known) hash function \(h \) satisfying:

1. Even if \(M \) is very long \(h(M) \) can be computed quickly, typically \(h(M) \) is a very short (e.g. 128 bit) fingerprint of message \(M \).

2. It is computationally difficult (impossible within a reasonable time) to find for \(M \) a different message \(Q \) such that \(h(M) = h(Q) \) holds.

If Alice wants to sign a long message sent to Bob, she may proceed as follows:

- Alice computes the fingerprint \(h(M) \) of message \(M \), turns it into the digital signature \(m = SA(h(M)) \), and sends the pair \((M,m) \) to Bob.

- Bob also computes the fingerprint \(h(M) \) of \(M \), which he then compares with the decrypted Alice’s signature \(PA(m) = PA(SA(h(M))) \). If \(M \) was modified along the way, the strings will not match, as it is impossible to modify \(M \) without changing its fingerprint (thanks to property 2). Nobody but Alice can compute \(m \), so \(M \) is sure to come from her.

Certification authorities

If Bob obtains Alice’s public key from a public list (or Alice sends it to Bob via internet), how can be Bob sure that the key is not forged? If the key is forged and the subsequent messages are modified or forged by the same person who forged the public key, it is then impossible to detect that something is wrong, because that person also has the corresponding secret key, and so all strings match as expected. Solution:
• There exist certification authority Z, whose public key P_Z is installed on each participant’s HW (including Bob’s) – e.g. comes on the CD with the cryptographic SW

• Alice then has a certificate C (issued by authority Z) of the form „Alice’s key is P_B“ signed by authority Z, i.e. a pair $(C, SZ(C))$ – Alice may have this from the cryptographic SW installation, or she may obtain this pair by some other secure method

• Alice attaches this pair $(C, SZ(C))$ to every signed message, and so Bob (and everybody else) can verify using public key P_Z, that C was indeed issued by authority Z, and that therefore P_B is really Alice’s public key

RSA (Rivest, Shamir, Adelman) cipher

to explain RSA we need a number of concepts and results form number theory

Definition: The greatest common divisor of two natural numbers a,b is the largest natural number which divides both a and b. We shall denote it by $GCD(a,b)$.

Theorem: Let a,b be natural numbers. Then $GCD(a,b)$ is the smallest positive element in the set $L = \{ax + by \mid x,y \in \mathbb{Z}\}$.

Corollary: Let a,b be natural numbers. If d is a natural number which divides both a and b, then d divides also $GCD(a,b)$.

Theorem: Let a,b be natural numbers, where $b>0$. Then $GCD(a,b) = GCD(b, a \mod b)$.
EUCLID(a, b)
if b = 0 then Return(a)
else Return(EUCLID(b, a mod b))

Lemma: Let $a > b \geq 0$ such that $EUCLID(a, b)$ performs $k \geq 1$ recursive calls. Then $a \geq F(k+2)$ and $b \geq F(k+1)$, where $F(i)$ is the i-th Fibonacci number.

Corollary (Lamé’s theorem): Let $a > b \geq 0$ and $F(k) \leq b < F(k+1)$. Then $EUCLID(a, b)$ performs at most $k - 1$ recursive calls.

Theorem (w/o proof – see AVL trees): $F(k) = \Theta(\phi^k)$, where $\phi = (1+\sqrt{5})/2$ („golden ratio“).

Corollary: Let $a > b \geq 0$. Then $EUCLID(a, b)$ performs $O(\log b)$ recursive calls.

Observation: If a, b are two binary numbers with at most t-bits, then $EUCLID(a, b)$ performs $O(t)$ recursive calls and in each of them $O(1)$ arithmetic operations on (at most) t-bit numbers, i.e. $O(t^3)$ bit operations, if we assume that each arithmetic operation on (at most) t-bit numbers requires $O(t^2)$ bit operations (which can be shown easily). Thus $EUCLID$ is a polynomial time algorithm with respect to the size of its input.

Euclid’s algorithm can be easily extended so that it also computes the coefficients x, y, for which $GCD(a, b) = ax + by$.
EXTENDED-EUCLID(a,b)
if b=0 then Return(a,1,0)
else (d’,x’,y’) := EXTENDED-EUCLID(b, a mod b);
(d,x,y) := (d’,y’,x’ - ⌊a/b⌋ y’);
Return(d,x,y)

Theorem (w/o proof): Let n > 1 and a < n be two relative prime natural numbers. Then the equation ax ≡ 1 (mod n) has exactly one solution 0 < x < n (and if a,n are not relative primes it has no solution).

Definition: The solution x of the equation ax ≡ 1 (mod n) is denoted by (a⁻¹ mod n) and it is called the **multiplicative inverse** of a modulo n (it exists only if a,n are relative primes).

Observation: (a⁻¹ mod n) can be easily obtained using the extended Euclid’s algorithm.

Theorem (a special corollary of the “Chinese remainder theorem”– w/o proof): Let a,b be relative prime natural numbers. Then for every pair of natural numbers x,y we have: x ≡ y (mod ab) if and only if x ≡ y (mod a) and x ≡ y (mod b).

Theorem (Fermat’s little):
Let p be a prime number. Then ∀ k ∈ {1,2, … ,p-1} we get k^{p-1} ≡ 1 (mod p).
Now we have all we need to define and explain RSA:

1. Pick two large primes p and q at random (e.g. consisting of 200 binary digits each).
2. Compute $n = pq$ (in this case n consists of approx. 400 binary digits).
3. Select a small odd number e, which is relative prime to $(p-1)(q-1)$.
4. Compute the multiplicative inverse d of e modulo $(p-1)(q-1)$.
5. Publish (e,n) as the public RSA key and save (d,n) as the secret RSA key.

Theorem (RSA correctness): Functions $P(M) = M^e \mod n$ and $S(M) = M^d \mod n$ define a pair of inverse functions on the set of all messages, i.e. on the set of all numbers in $\mathbb{Z}_n = \{0,1, \ldots, n-1\}$.

Why is RSA safe?

Nobody is (currently) able to compute d based on the knowledge of (e,n) without knowing the factors $n = pq$ and thus also the number $(p-1)(q-1)$. Factorization of large natural numbers is currently a computationally intractable problem.
How fast is RSA?

The speed of computing $P(M)$ and $S(M)$ depends on how fast a remainder modulo n can be computed when taking powers of an integer, i.e. how fast we can compute $a^b \mod n$.

POWER (a,b,n) {where the binary digits in b are $<b_k, \ldots, b_0>$ }

\[
c := 1; \quad d := a \mod n;
\]

for $i := k-1$ downto 0 do

\[
c := 2 \cdot c;
\]

\[
d := (d \cdot d) \mod n;
\]

if $b_i = 1$ then $c := c + 1$;

\[
d := (d \cdot a) \mod n;
\]

Return(d)

Time complexity: If a,b,n are binary numbers with at most t-bits, then $POWER$ (a,b,n) performs $O(t)$ arithmetic operations on (at most) t-bit numbers, i.e. $O(t^3)$ bit operations, if we assume that each arithmetic operation on (at most) t-bit numbers requires $O(t^2)$ bit operations (which can be shown easily).