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Syllabus
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8. Probabilistic algorithms and cryptography



3

String matching
Σ finite alphabet (symbol set)

Σ* set of words over Σ (finite symbol sequences)

word length : u = x1x2 … xm Î Σ* Þ length(u) = m (number of symbols)

word concatenation :

u = x1x2 … xm, v = y1y2 … yn Þ uv = x1x2 … xmy1y2 … yn

(and of course length(uv) = length(u) + length(v))

empty word ε (" u Î Σ* we have uε = εu = u)

prefix : u Î Σ* is a prefix of  v Î Σ* if $ w Î Σ* : uw = v

suffix : u Î Σ* is a suffix of v Î Σ* if $ w Î Σ* : wu = v

if  w ¹ ε than we talk about a proper prefix (suffix)

String matching task:

input: finite alphabet Σ, searched text x = x1x2 … xn Î Σ* and samples 
K = {y1,y2, … ,yk}, where yp = yp,1 … yp,length(p) Î Σ* for  p = 1, … ,k

output: all appearances of the samples in x, i.e. all pairs [i,p] such that  
yp is a suffix of the word x1x2 … xi (1 ≤ i ≤ n and 1 ≤ p ≤ k)
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Naive algorithm
for p := 1 to k do 

for i := 1 to (n – length(p) + 1) do 

begin j := 0;

while (j < length(p)) and (xi+j = yp,1+j) do j := j + 1;

if (j = length(p)) then Report(i,p)

end

Custom made algorithm

c := 0;

for i := 1 to n do 

begin

if (xi = a) then c := c + 1

else begin

if (c ≥ h – 1) then Report(i,1) ; c := 0

end

end
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We shall show, that a custom made algorithm (= finite automaton) can be made for an 
arbitrary sample or a set of samples in a way, that:

• the automaton (search machine) is built in Q(h ·|Σ|)

• the built automaton searches the text in Q(n) 

• total time complexity of the algorithm is Q(n + h ·|Σ|)

Algorithm  Aho-Corasick (1975)

samples

text appearances

compiler

(Algorithms 2 a 3)

search machine

(automaton)

interpreter

(Algorithm 1)



6

Search machine for a finite alphabet Σ and a set K of samples is a quadruple

M = (Q, g, f, out), where   

1. Q = {0,1, … ,q} is a set of states

2. g : Q x Σ → Q È {┴} is a transition function, for which we have " x Î Σ: g(0,x) Î Q    
(symbol  ┴ means „undefined“, the transition from state 0 is defined " x Î Σ) 

3. f : Q → Q is a  return function, for which we have f(0) = 0 (used when g gives ┴)

4. out : Q → P(K) is an output function (returns a subset of samples for the given state)

Algorithm 1 (interpreter of the search machine)

input: x = x1 … xn Î Σ*, K = {y1 … yk}, M = (Q, g, f, out)

state := 0;

for i := 1 to n do

begin

(1)  while (g(state,xi) = ┴) do state := f(state);

(2)  state := g(state,xi);

(3)  for all yp Î out(state) do Report (i,p)

end
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Key properties of the search machine (finite automaton):

1. transition function g

graph of g (for defined pairs without the loop at state 0) is a valued tree, for which 

• state 0 is the root of the tree

• each path from the root is valued by some prefix of some sample from K

• each prefix u of each sample from K values a path from the root to some
(exactly one) state s Þ we say that the prefix (word) u represents state s (in
particular the empty word ε represents state 0)

• the depth of state s represented by word u is defined as d(s) = length(u) and
function g satisfies on each tree edge the equality d(g(s,xi)) = d(s) + 1

2. return function f

for each state s represented by word u we have: state f(s) is represented by the
longest proper suffix of u, which is at the same time a prefix of some sample from K

3. output function out

for each state s represented  by word u and for each sample yp Î K we have: 
yp Î out(s) if and only if y is a suffix of u
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Algorithm 2 (construction of the search machine – 1.phase)
input: K = {y1 … yk} {set of samples}
output: Q = {0, … ,q} {set of states of the search machine}

g : Q x Σ → Q È {┴} {transition function fulfilling Property 1}
o : Q → P(K) {„half finished“ output function out}

procedure Enter(yp,1 … yp,m); {adding word yp to the graph of function g}
begin state := 0; i:= 1;

while (i <= m) and (g(state,yp,i) <> ┴) do
begin state := g(state,yp,i); {moving along an existing branch}

i := i + 1 {shift in yp}
end;

while (i <= m) do
begin Q := Q È {q+1}; q := q+1 {creation of a new state}

for all x Î Σ do g(q,x) := ┴;
g(state,yp,i) := q; {extending a branch}
state := q; {moving into the new state}
i := i + 1 {shift in yp}

end;
o(state) := {yp}

end; {of Enter}
begin Q := {0}; for all x Î Σ do g(0,x) := ┴; {main program}

for p := 1 to k do Enter(yp);
for all x Î Σ do if g(0,x) = ┴  then g(0,x) = 0

end.
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Algorithm 3 (construction of the search machine – 2.phase)
input: Q = {0, … ,q} {set of states of the search machine}

g : Q x Σ → Q È {┴} {transition function fulfilling Property 1}
o : Q → P(K) {„half finished“ output function out}

output: f : Q → Q {return function fulfilling Property 2}
out : Q → P(K) {output function fulfilling Property 3}

create an empty queue of states;
f(0) := 0; out(0) := Æ;
for all x Î Σ do begin {processing the descendants of the root}

s := g(0,x);
if s <> 0 then
begin f(s) := 0; out(s) := o(s);

insert s at the end of the queue
end

end;
while queue not empty do
begin r := first state from the queue (and delete r from the queue);

for all x Î Σ do if g(r,x) <> ┴  then {processing the descendants of node r}
begin s := g(r,x); t := f(r);

while g(t,x) = ┴  then t := f(t);
f(s) := g(t,x); out(s) := o(s) È out(f(s));
insert s at the end of the queue

end
end



10

Algorithm Knuth-Morris-Pratt
• simplified version of Aho-Corasick when searching for a single sample (K = {y})

• shorter and easier to understand description

• (slightly) better asymptotic time complexity (Q(n + h ) instead of  Q(n + h ·|Σ|))

• the graph of the transition function g is not a tree but a chain (path), which allows that
g is not used explicitly at all (this is where the saving in the complexity of preprocessing
comes from because g has h ·|Σ| transitions), function g is used only implicitly

• the return function f is in this case called the prefix function - because for a single
sample y the state number corresponds to the length of the prefix (of y) which is
represented by the given state, function f has a simpler definition:

f(s) is the length of the longest proper suffix of the word represented by state s (this word
is the prefix of y of length s), which is at the same time a prefix of y

• the output function is trivial, it reports y in state h (and nothing in all remaining states) 
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procedure Prefix (replaces Algorithms 2 a 3)

vstup: K = {y} {single sample}

výstup: f : Q → Q {prefix function}

f(1) := 0;

t := 0;

for q := 2 to h do 

begin while (t > 0) and (yt+1 <> yq) do t := f(t);

if (yt+1 = yq) then t := t +1;

f(q) := t

end

Algorithm KMP (replaces Algorithm 1)

input: x = x1 … xn Î Σ*, K = {y}, prefix function f

state := 0;

for i := 1 to n do

begin

(1)  while (state > 0) and (ystate+1 <> xi) do state := f(state);

(2)  if ystate+1 = xi then state := state + 1;

(3)  if (state = h) then begin Report (i);

state := f(state)

end

end
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Network flows
Network: directed graph G = (V,E) with two selected vertices s,t (source and sink) and a 

positive capacity c(u,v) on each edge (u,v) Î E. The capacity is defined also for all 
other pairs of vertices: c(u,v) = 0 if (u,v) Ï E. 

Flow: is a function f : V ´ V → R that satisfies the following three properties:

1. (Skew symmetry) " u,v Î V :  f(u,v) = - f(v,u)

2. (Capacity constraint) " u,v Î V :  f(u,v) ≤ c(u,v)

3. (Flow conservation) " u Î V - {s,t} :  ΣvÎV f(u,v) = 0 (similar to Kirkhoff’s Current Law)

If  f(u,v) > 0 we say that there is a (positive) flow from u to v. If f(u,v) = c(u,v) then we 
say that the edge (u,v) is saturated. The value of flow f is denoted by |f| and it is the 
total net flow from the source, i.e. |f|  = ΣvÎV f(s,v).

Problem: find a maximum flow, i.e. a flow of a maximum possible value.

Cut: in the context of flows a cut is a partition X,Y of V such that s Î X, t Î Y. A capacity 
of cut X,Y is the sum of capacities of all edges crossing the cut from X to Y, i.e. 
c(X,Y) = ΣuÎX,vÎYc(u,v). A minimum cut is a cut with a minimum capacity. A flow over 
cut X,Y is the sum of flows on all edges crossing the cut, i.e. f(X,Y) = ΣuÎX,vÎYf(u,v).

Lemma 1: Let f be a flow and X,Y a cut. Then the flow over cut X,Y is equal to the value 
of the flow f, i.e. f(X,Y) = |f|.
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Due to Lemma 1 and a trivial fact that f(X,Y) ≤ c(X,Y) for every cut X,Y (due to the 
capacity constraint) it must hold that the value of a maximum flow is less or equal to 
the capacity of a minimum cut. We shall show, that in fact an equality always holds.

Residual capacity of flow f is a function r : V ´ V → R defined by 

r(u,v) = c(u,v) - f(u,v)

Residual graph for f: directed graph Rf = (V,E’), where (u,v) Î E’ if and only if r(u,v) > 0
and the value r(u,v) is then called the capacity of edge (u,v) in the residual graph Rf. 

Augmenting path for f: an arbitrary path p from s to t in Rf. A residual capacity r(p) of an 
augmenting path p is equal to the minimum r(u,v) of all edges (u,v) on path p. The 
value of f can be increased by r(p) by increasing the flow by r(p) on all edges of p. 

Remark: when increasing f(u,v) the value f(v,u) must be decreased accordingly to 
preserve skew symmetry.

Theorem (max flow min cut theorem): The following conditions are equivalent

1. flow f is a maximum flow

2. There exists no augmenting path for f

3. |f| = c(X,Y) for some cut X,Y
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The max flow min cut theorem immediately gives a method how to construct a maximum 
flow by gradual augmentation.

Augmenting path method: Start with a zero flow and repeat the following step, until a 
flow with no augmenting path is reached.

Augmenting step: Find an augmenting path p for the current flow f and increase the 
value of the flow by increasing the flow by r(p) along the path p.

Simplest implementation (Ford and Fulkerson): Find some augmenting path for f by 
searching the graph Rf (using an arbitrary search algorithm for directed graphs).

Remarks:

• if we know a maximum flow we can construct a minimum cut in 0(m) time (as in the 
proof of the max flow min cut theorem)

• if we allow the capacities to be irrational numbers, the simple implementation of the 
augmenting path method may not terminate after a finite number of steps, the value of 
the flow always converges but may not converge to the value of the maximum flow

• if all capacities are rational numbers, the problem may be transformed to an equivalent 
problem where all capacities are integers

• if all capacities are integers, then every augmenting step increases the value of the 
flow by at least one, and hence the method terminates after at most |f*| augmenting 
steps – moreover the constructed maximum flow is integral on every edge
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„Ideal version“ of the augmenting path method: 

Lemma 2: There always exists a sequence of at most m augmenting steps producing a 
maximal flow (starting with a zero flow).

Implementation with maximum augmentation (Edmonds and Karp): At each step find an 
augmenting path with the maximum residual capacity (among all augmenting paths).

Lemma 3: Let f be an arbitrary flow and let f* be a maximum flow on G. Then the value 
of a maximum flow on the residual graph Rf is |f*| - |f|.

Theorem: The number of augmenting steps when using the implementation with 
maximum augmentation is 0(m log c) where c is a maximum capacity of an edge.

Remarks:

• this is polynomial (number of augmenting steps) with respect to the size of the data

• the bound is true only for integral capacities (and the method in this case of course 
converges to a maximum flow)

• an augmenting path with the maximum residual capacity can be found in polynomial 
time using a modified Dijkstra’s algorithm (for a so called bottleneck problem), where 
the length of a path is not equal to the sum of edge lengths but to the length of the 
shortest edge (we omit details here as subsequent max flow algorithms we shall cover 
are better) 

• our next goal is an implementation with polynomial time complexity depending            
only on n and m
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Implementation with shortest augmentation (Edmonds and Karp): At each step find a 
shortest augmenting path, i.e. an augmenting path with the least number of edges.

Theorem: The number of augmenting steps when using the implementation with 
shortest augmentation is 0(nm) and hence the augmenting path method runs in 0(nm2).

Definition: Let f be a flow and Rf its residual graph. Level u(x) of vertex x in Rf is the 
length of a shortest path from s to x in Rf. Level graph Uf for flow f is a subgraph of Rf, 
which contains only vertices reachable from s and edges (x,y) for which u(y) = u(x) + 1.

Observation: Graph Uf can be constructed in O(m) time using BFS and if there exists 
an augmenting path then Uf contains all shortest augmenting paths.

Further improvement can be achieved by augmenting the flow on all shortest paths at 
once instead of augmenting the flow along shortest paths one by one.

Definition: Flow g on graph Uf is called a blocking flow if each path from s to t in Uf 
contains a saturated edge.

Algorithm (Dinic): Start with a zero flow and repeat the following (blocking) step as long 
as an augmenting path exist, i.e. as long as t is reachable in the current level graph:

(Blocking) step: Find a blocking flow g on Uf and replace f by f + g defined by 

(f + g) (x,y) = f (x,y) + g(x,y) 

Lemma 4: Dinic’s algorithm stops after at most n – 1 blocking steps.
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How to find a blocking flow: Several methods exist, we shall describe the original one 
proposed by Dinic which is the simplest.

Idea: Find a path from s to t in Uf (using DFS), increase the flow f along this path so 
that some edge on it becomes saturated. Remove all newly saturated edges from Uf
and repeat this procedure as long as t is reachable from s in Uf.

Formal description: Start with a zero flow and go to Initialize. Currently searched vertex 
will be denoted by x and p will be an augmenting path from s to x.

Initialize: Define p = [s] and x = s. Go to Forward.

Forward: If there is no edge leading from x in Uf go to Backward. Otherwise take an 
arbitrary edge (x,y), extend p by vertex y and assign y into x (shift the current vertex).    
If y ≠ t then repeat Forward, if y = t go to Augment.

Backward: If x = s then stop (no augmenting path to t exists). If  x ≠ s then let (y,x) be 
the last edge on p. Shorten p by deleting x and remove edge (y,x) from Uf. Assign y into 
x (shift the current vertex) and go to Forward. 

Augment: Let d = min{c(x,y) – f(x,y) | (x,y) is an edge in p}. Add d to the flow on all 
edges in p, remove all newly saturated edges from Uf and go to Initialize.

Theorem: Dinic’s algorithm finds a blocking flow in the level graph Uf in 0(nm) time and  
a maximum flow in the input graph G in 0(n2m) time.
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The „preflow-push“ method

Definition: Preflow is a function f : V ´ V → R which fulfils the symmetry and capacity 

constraints on each edge and which relaxes the flow conservation condition at each 

vertex u (except of s) by e(u) = ΣvÎV f(u,v) ≥ 0, where e(u) is the excess in u. Vertex u

different from both s and t is called active if it has a positive excess (e(u) > 0).

Definition: Let f be a preflow and Rf a residual graph for f. Then we call a function           

h : V → N a height function with respect to f if

• h(s) = |V|

• h(t) = 0

• " (u,v) Î Rf : h(u) ≤ h(v) + 1

If h(u) = h(v) + 1 holds for edge (u,v) Î Rf we call (u,v) to be feasible.

Initialization (for a generic preflow-push algorithm):

1. Set all h(u), e(u) and f(u,v) to zero.

2. Assign h(s) := |V|.

3. Assign for  each neighbor u of source s

• f(s,u) := c(s,u)  a f(u,s) := - c(s,u) 

• e(u) := c(s,u)
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After initialization: f is a preflow and h is a height function with respect to f.

The algorithm uses two basic actions:

PUSH(u)

• USAGE : if u is active (e(u) > 0) and there exists a feasible edge (u,v) in Rf,             
i.e. an edge satisfying r(u,v) > 0 and h(u) = h(v) + 1.

• ACTION : send d(u,v) = min {e(u), r(u,v)} units of flow from u to v and update f(u,v),
f(v,u), e(u) and e(v) accordingly.

Definition: PUSH(u) is saturating, if edge (u,v) over which the flow is sent becomes 
saturated (which happens if d(u,v) = r(u,v)) and non-saturating in the opposite case 
(i.e. when d(u,v) = e(u) < r(u,v)).

LIFT(u)

• USAGE : if u is active (e(u) > 0) and there exists no feasible edge (u,v) in Rf.

• ACTION : h(u) := 1 + min {h(v) | (u,v) v R}

Algorithm (generic preflow-push algorithm):

• Initialization

• As long as an active vertex exists, select one (let it be u) and perform either PUSH(u)
or LIFT(u).
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Lemma 1: Each vertex u satisfies during the entire run of the algorithm the following:

• h(u) never decreases

• each LIFT(u) increases h(u) by at least one

Lemma 2: Function h is a height function with respect to the current (pre)flow f during 
the entire run of the algorithm. 

Lemma 3: There is no path from s to t in Rf during the entire run of the algorithm.

Theorem (correctness of the algorithm): When the algorithm terminates f represents a 
maximum flow. 

Time complexity: The algorithm performs during its entire run:

• O(|V|2) lifts

• O(|V||E|) saturating pushes

• O(|V|2|E|) non-saturating pushes

which, under an implementation requiring O(|V|) time for each lift and O(1) time for 
each push, gives an overall O(|V|2|E|)  complexity of the algorithm.

Remark: The above time complexity can be reduced to O(|V||E| log(|V|2 / |E|)) by a 
„smart“ selection of active vertices [Goldberg, Tarjan 88], which is still an 
asymptotically fastest known algorithm.
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Maximum matching in bipartite graphs

For a graph G=(V,E) a matching is a subset of edges M ⊆ E such that no two edges
from M share a vertex. The size of a matching is the number of edges in it. 

A graph G = (V,E) is bipartite if V = V1 ∪ V2 and ∀ (u,v) ∈ E we have u ∈ V1 and v ∈ V2.

Finding a maximum size matching in a bipartite graph has many practical applications
when we want to pair two types of objects (e.g. people and available sandwiches). This
problem can be solved by finding a maximum flow in an extended graph:
• Direct all edges from V1 to V2  (assume V1 has size n and V2 at most n)
• Add a source vertex s and an edge from s to every vertex in V1

• Add a sink vertex t and an edge from every vertex in V2 to t
• Set all edge capacities to 1

Since all capacities are integers, also the maximum flow will be integral on every edge.
A maximum size matching corresponds to edges from V1 to V2 with flow 1.

Moreover, even the simplest max-flow algorithm (generic Ford-Fulkerson) works in 
O(nm) time in this special case
• Finding an augmenting path takes O(m)
• Each augmenting path increases the flow by one unit
• The algorithm performs at most n augmentations
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Multiplication of polynomials
Two ways to represent polynomials:

1. Vector of coefficients (in our case a vector of complex numbers)

A(x) = an-1xn-1 + an-2xn-2 + … + a1x1 + a0x0

A(x) is a polynomial with a degree bound n, coefficients a0 … an-1, and A(x) has 
degree k if ak is the highest nonzero coefficient

• Addition of two polynomials: Q(n)

• Computation of a value in a given point: Q(n) (using Horner’s schema)

• Multiplication of two polynomials : Q(n2) (convolution of two coefficient vectors)

2. Function values in given points (set of pairs)

{ (x0,y0), (x1,y1), … , (xn-1,yn-1) }

Any polynomial A(x) with a degree bound n can be uniquely represented in this way 
by any such n-tuple of pairs, where xi‘s are pairwise disjoint and yi = A(xi) for each i.

• Addition of two polynomials: Q(n)

• Computation of a value in a given point: except of the given points impossible to 
compute without a conversion to the representation by a vector of coefficients

• Multiplication of two polynomials : Q(n) BUT we need 2n points
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Conversions between both representations

1. Coefficients → Pairs (evaluation): Q(n2) using Horner’s schema (also for 2n points), 
possible in Q(n log n) if points for the computation of function values are selected in 
a „clever“ way

2. Pairs → Coefficients (interpolation): in general Q(n3) using Gaussian elimination or 
Q(n2) by Lagrange’s formula (will not cover), possible in Q(n log n) when the 
function values for the „cleverly“ selected points are known

Multiplication of polynomials in Q(n log n)

The selected points are 2n-th complex roots of unity (number 1), denoted by 

w2n0, w2n1, … , w2n2n-1

Multiplication for two vectors of coefficients a0 … an-1 and b0 … bn-1 (both of degree 
bound n) then proceeds as follows:

1. Set an =…= a2n-1 = bn … b2n-1 = 0 (new degree bound is 2n-1)

2. Evaluation: compute function values A(x) and B(x) in all 2n roots of number 1

3. Multiplication: C(x) = A(x)B(x) in all 2n roots of number 1

4. Interpolation: compute the vector of coefficients of the polynomial C(x) which is 
given by 2n function values (in all 2n roots of number 1)

Steps 1 and 3 take Q(n), steps 2 and 4 take Q(n log n) if implemented by FFT
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Properties of complex roots of unity

Cancelation lemma: If n≥0, k≥0 and d>0 then wdndk = wnk.

Corollary: For any even integer n>0 we get wnn/2 = w21 = -1.

Halving lemma: If n>0 is even, then the squares of the n complex n-th roots of unity are 
equal to the n/2 complex n/2-th roots of unity (each occurring twice).

Summation lemma: If n≥0 and k>0 such that k is not divisible by n then Σj=0n-1 (wnk) j = 0.

Discrete Fourier Transform (DFT)

We want to represent a polynomial A(x) = an-1xn-1 + an-2xn-2 + … + a1x1 + a0x0 with degree 
bound n given by the coefficient vector by function values in n complex n-th roots of 
unity, i.e. we want to compute the values 

yk = A(wnk) pro k = 0, 1, … , n-1.

Vector y (of function values) is the DFT of vector a (of coefficients), we write y = DFTn(a).

The reverse transform is called the inverse DFT and we write a = DFTn-1(y).

Remark: if n is the degree bound of both input polynomials (which we want to multiply), 
then we in fact work with n’ = 2n, however, to keep the notation simple we shall use n 
(moreover the asymptotic complexity is the same in terms of both n and n’).
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Fast Fourier Transform (FFT)

An algorithm using the „divide and conquer“ strategy for computing DFTn(a), by dividing
A(x) into two polynomials of degree bound n/2 (separating odd and even degrees):

As(x) = a0 + a2x + a4x2 + … + an-2xn/2-1

Al(x) = a1 + a3x + a5x2 + … + an-1xn/2-1

Now clearly A(x) = As(x2) + x Al(x2) (denote this equation by (¤)), so the task to compute 
the function values of A(x) at wn

0, wn
1, … , wn

n-1 is transformed into the tasks to

• compute the function values of polynomials As(x) a Al(x) (with degree bound n/2) at
(wn

0)2, (wn
1)2, … , (wn

n-1)2 (which is only n/2 different points due to the halving lemma), 
i.e. instead of solving the original task solve twice the same task on data of half the size

• combine the results using the equation (¤) which takes Q(n) time

Total time T(n) for FFT of length n fulfils T(n) = 2T(n/2) + Q(n) and so T(n) = Q(n log n).

Lemma Let Vn be the Vandermonde matrix for wn
0, wn

1, … , wn
n-1. Then the entry at 

position (j,k) in the inverse matrix Vn
-1 is equal to wn

-kj / n.

Thus we can compute also the inverse DFT using FFT, because computing the 
coefficients of the polynomial given by function values y0, y1, … , yn-1 is the same as 
computing function values of the polynomial Y(x)/n with coefficients y0/n, y1/n, … , yn-1/n
at points wn

0, wn
-1, … , wn

-(n-1)
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FFT implementations

1. Recursive implementation (direct transcription of the algorithm)

REC-FFT(a);
n := length(a); {n is a power of two}
if n=1 then return a; {bottom of the recursion}
p := e2πi / n; {principal root wn

1 = generator of all other roots}
w := 1; {currently processed root, starting with w = wn

0}
as := (a0, a2, … , an-2);
al := (a1, a3, … , an-1); {preparation of the input data for recursion}
ys := REC-FFT(as);
y l := REC-FFT(al); {recursion}
for k := 0 to (n/2 – 1) do

yk := yk
s + w yk

l; {computing A(w) in the current root w = wn
k}

yk+n/2 := yk
s – w yk

l; {computing A(w) in the opposite root wn
k+n/2}

w := w p; {moving to the next root wn
k+1}

return y

Time complexity: obviously T(n) = 2T(n/2) + Q(n) and so T(n) = Q(n log n), because 
the work outside of the recursion is clearly Q(n).
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2. Iterative implementation (main idea)

originates from the recursive implementation by the following adaptations

• the body of the for cycle is replaced by the „butterfly“ operation

• the tree of recursion is transversed level by level from the bottom

• the initial order of leaves for starting the algorithm is obtained by bit inversion

Time complexity: exactly n/2 butterfly operations is called on each level of the tree, 
so the total work on each level is Q(n), which together with the fact that the 
depth of the tree is exactly log n gives the Q(n log n) time complexity.

3. Parallel implementation (main idea)

• all butterfly operations on the same level of the tree are performed in parallel

• the algorithm can be hardwired by an appropriate chaining of butterfly circuits 
into a network with „width“ n and „depth“ log n

Time complexity: the work on each level no w takes O(1) (using n/2 „processors“), 
and so the total time complexity is Q(log n).
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Sorting networks
Sorting network is a circuit with n inputs with values from some linearly ordered type 
(typically numbers) and n outputs, which output the input values sorted (regardless of 
the order in which these values appeared on the input).

x1 x2 xn

Sorting network

y1 y2 yn

This circuit contains only one type of a gate, namely a comparator, which is a gate with 
two inputs x1 and x2 and two outputs y1 and y2, where y1=min{x1,x2} and y2=max{x1,x2}.

Formal definition of a sorting network:

• K = {K1, K2, … , Ks} is the set of comparators, s is the size of the network

• O = { (k,i) | 1 £ k £ s, 1 £ i £ 2 } is the set of outputs (k is the comparator number, i the 
output number)

• I = { (k,i) | 1 £ k £ s, 1 £ i £ 2 } is the set of inputs 

• C = (K, f) is a sorting network, where f : O → I is a partial injective mapping
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Network acyclicity condition:

We require that the directed graph G = (K,E),  where  (Ku,Kv) Î E if there exist i and j

such that f(u,i) = (v,j), is acyclic.

Dividing comparators into levels:

• Define L1 = { Ki | Ki has indegree zero in G}  (L1 is nonempty due to the acyclicity of G)

• Let L1, L2, … , Lh be defined, where L = L1 È L2 È …È Lh Ë K. Then we define                     

Lh+1 = { Ki | Ki has indegree zero in G \ L}  (Lh+1 is nonempty due to the acyclicity of G)

• The number of levels is denoted by d and called the depth of the network

How the network functions:

• time 0 : network inputs defined (all comparators in L1 have defined inputs)

comparators in  L1 working

• time 1 : all comparators in L2 have defined inputs

comparators in  L2 working

…

• time d-1 : all comparators in Ld have defined inputs

comparators in  Ld working

• time d : network outputs defined
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Observation: time complexity of sorting corresponds to the network depth

Topologically different network representation: 

• each „wire“ from input xi into output yi is drawn as a straight line

• individual comparators are „stretched“ between the corresponding „wires“

• every sorting network can be redrawn in this way

• the number of inputs/outputs (wires) is called the width of the network 

Merge-Sort implemented by a sorting network
We want to sort x1, x2, … , xn (and assume that n is a power of two)

We implement the sorting by a network Sn, which is defined recursively by the picture

x1 x2 xn/2 xn/2+1 xn

Sn

y1 y2 yn/2 yn/2+1 yn

where Mn is a merging network of width n (the recursion stops for n=2)

Sn/2 Sn/2

Mn
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It remains to show how to construct merging network Mn (by a recursive construction):

a2 a4 an/2 b2 b4 bn/2

d1 d2  dn/4 dn/4+1 dn/4+2 dn/2

Mn/2

a1 a3 an/2-1 b1 b3 bn/2-1

c1 c2 cn/4 cn/4+1 cn/4+2 cn/2

Mn/2

y1 y2 y3 y4 yn/2 yn/2+1 yn-1 yn

Odd members of both sorted sequences are the input of the first copy of Mn/2 and even 
members are the input of the second copy of Mn/2. Moreover, outputs of both networks 
are interconnected by one layer of comparators (marked red in the picture).

The input satisfies: a1 £ a2 £ … £ an/2 and  b1 £ b2 £ … £ bn/2
Induction hypothesis: c1 £ c2 £ … £ cn/2 and  d1 £ d2 £ … £ dn/2
We shall prove that: y1 £ y2 £ … £ yn
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c1

c2 c3

d2d1

cn/2-1

dn/2-2 dn/2-1

cn/2

dn/2

Black inequalities (arrows) are valid, green inequalities and blue inequalities will be 
proved. Regardless of how the red comparators order their pairs of values, the resulting 
arrows will generate a linear order, which is the correct ordering of the input values.

Depth and size of a sorting network of width n = 2k

1. Merging network Mn

has depth (number of levels) d(Mn) = log2n

and size (number of comparators) s(Mn) = n/2 log2(n/2) + 1

2. Sorting network Sn

has depth (number of levels) d(Sn) = 1/2 log2n (log2n+1)

and size (number of comparators) s(Sn) = 1/4 n log2n (log2n–1) + (n–1)
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Lower bound for the complexity of sorting by comparator networks
Comparator network = network composed of comparators (arbitrarily placed)

Þ every sorting network is a (specially designed) comparator network

Lemma 1 Every comparator network working on input x1, x2, … , xn outputs some 
permutation P of the input values, i.e. outputs xP(1), xP(2), … , xP(n) .

Proof Trivial, the network cannot do anything else then permute the inputs.

Definition Let C be an arbitrary comparator network of width n. A permutation                   
P : {1, 2, … ,n} → {1, 2, … ,n} is reachable for C, if there exists an input sequence        
x1, x2, … , xn such that C outputs the sequence xP(1), xP(2), … , xP(n) .

Lemma 2 Let C be an arbitrary sorting network of width n. Then all n! permutations are 
reachable for C.

Lemma 3 Let C be an arbitrary comparator network of width n and let p be the number 
of reachable permutations for C. Then

p £ 2s(C) .

Corollary If C is a sorting network of width n then 

n! £ 2 s(C)

and thus C has size s(C) = Ω(n logn) and depth d(C) = Ω(logn).
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Arithmetic networks
• definition is similar to sorting networks, identically defined width (number of inputs or 
“input wires”), size (number of gates), and depth (number of levels) of the network

• time complexity of the computation is again proportional to the depth of the network

• “wires” carry values 0 and 1 (i.e. a single bit of information, unlike the wires in sorting 
networks which carry more bits each, e.g. n-bit numbers)

• gates are logical gates, typically a unary gate NOT and binary gates AND, OR, XOR

• a “wire” from a single gate output may split into several gate inputs, number of outputs 
may differ from the number of inputs, but network acyclicity must be preserved 

Full adder
Full adder is a circuit with three inputs x,y,z and two outputs c,s. Its function can be 
explained as follows: x and y are two bits of the same order in two binary numbers, z is 
the carry-in from the lower order, s the corresponding bit of x+y, and c is the carry-out 
into the higher order. The 8-line table for computing s and c implies s = parity(x,y,z) and  
c = majority(x,y,z).

Adding two n-bit binary numbers
• n is assumed to be a power of two, inputs are a = (an-1, … , a0) and b = (bn-1, … , b0)

• we shall show two circuits: for classical addition and carry-look-ahead addition
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Circuit for classical addition
• addition is realized by a cascade of n full adders, where adder of order i waits for the 
carry-in bit from adder of order i -1 and sends its carry-out bit to adder of order i +1

• the network has size Q(n) and depth also Q(n)

Circuit for carry-look-ahead addition

The speed-up is based on the idea, that in some cases the carry-out bit from order i
may be determined based on ai and bi only (these values are known from the start) and 
there is no need to wait for the carry-in bit  (which may take a very long time to compute)

• in case ai = bi = 0 we get ci+1 = 0 (regardless of the value of ci) → kill carry bit ci+1

• in case ai = bi = 1 we get ci+1 = 1 (regardless of the value of ci) → generate carry bit ci+1

• in case ai ¹ bi we get ci+1 = ci → propagate carry-in bit ci into carry-out bit ci+1

This defines the carry status of each order i Î {0, … ,n}, denoted by variable xi. Its value 
from the set {k,p,g} can be easily computed from ai-1 and bi-1 using the above rules. 

Consider two consecutive full adders as a single circuit with one carry-in bit and one 
carry-out bit: the carry status of the combined circuit can be computed from the (k,p,g)
carry statuses of both participating full adders, and this can be extended to triples …

This defines a binary carry status operator Ä on the set {k,p,g}, which is associative 
(associativity can be proved by brute force by analyzing all 27 cases)
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If we define x0 = y0 = k, then for every order i Î {1, … ,n} we may define a variable 

yi = yi-1 Ä xi = x0 Ä x1 Ä … Ä xi

which may be interpreted as the i-th prefix of the product x0 Ä x1 Ä … Ä xn

Lemma For i = 0, 1, … , n we get

1. if yi = k then ci = 0

2. if yi = g then ci = 1

3. the case yi = p cannot happen

Corollary If all yi are known then the sum can be computed in O(1) using n full adders 
running in parallel (where k = 0 ang g = 1 on the input of the full adders, p cannot occur), 
so the task of adding two binary numbers is reduced to computing all prefixes.

The adder circuit consists of n KPG circuits and one prefix circuit. Each KPG circuit is 
used twice. During the first pass the i-th KPG circuit has ai and bi on the input and 
outputs xi, which it sends into the prefix circuit. During the second pass the i-th KPG 
circuit works as a full adder (in fact only as its part computing the parity function) on the 
input ai, bi and yi (the last input coming from the prefix circuit, where the values k and g
are interpreted as 0 and 1) and outputs the relevant bit of the sum si = parity(ai,bi,yi). 

Thus, all that remains to construct now is the parallel prefix circuit …
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Parallel prefix circuit
The inputs are the carry statuses of all orders, i.e. x0, x1, … , xn and the computed 
outputs are the values of all prefixes y0, y1, … , yn

Let us denote [i, j] = xi Ä xi+1 Ä … Ä xj (and so [i, i] = xi). By associativity we get for any j
such that i < j ≤ k the equality [i, k] = [i, j -1] Ä [j,k].

We want to compute yi = [0, i] for all i Î {0, 1, … ,n} by a parallel prefix circuit consisting 
only of sub-circuits realizing the carry status operator Ä. The circuit is topologically a 
complete binary tree (here we need n to be a power of 2):

• the leaves of the tree contain the inputs x1 to xn and the root contains the input x0

• during the pass from the leaves to the root the value [i, k] = [i, j -1] Ä [j,k] is computed 
in the inner node representing the interval from i to k, based on the values in the left son 
representing the interval from i to j-1 (and thus having the value [i, j -1]) and in the right 
son representing the interval from j to k (and thus having the value [j, k])

• during the pass from the root to the leaves the value [0, i -1] comes from the parent to 
an inner node which represents the interval from i to k - this value is sent unchanged to 
the left son (which represents the interval from i to j -1) and value sent to the right son 
(which represents the interval from j to k) is computed as [0, j -1] = [0, i -1] Ä [i,j -1]

• the outputs y0 to yn-1 are computed in the leafs and the output yn in the root of the tree

• the size of the circuit is Q(n) and its depth is Q(log n)
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Basic geometric algorithms in the plane
Convex hull
Input: n points in the plane given by their coordinates [x1,y1], … ,[xn,yn]
Output: sequence of points which define the convex hull = vertices of the smallest
convex polygon that encircles all the input points

Plane sweeping algorithm
• Sort points by their x-coordinates (from smallest „on the left“ to largest „on the right“)
• Use a sweeping line that goes from left to right (from x1 to xn) in n moves
• After k moves of the line we hold the convex hull of the first k points
• The convex hull is composed of an upper envelope and a lower envelope

Sort points by their x-coordinates (assume general position) and label them b1, … ,bn
Initialize upper and lower envelopes U ← (b1) and L ← (b1)
for k from 2 to n do

while |U| > 2 and xj-1xjbk is a left-turning angle (where U = (x1, … , xj-1,xj)) do
remove the last vertex from U

add bk to the end of U
while |L| > 2 and xj-1xjbk is a right-turning angle (where L = (x1, … , xj-1,xj)) do

remove the last vertex from L
add bk to the end of L

Output the convex hull by traversing U and then L backwards

Time complexity: O(n logn) for sorting and O(n) the rest (each point removed at most 1x)
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Intersections of line segments
Input: n line segments given by pairs of their endpoints (in general position)
Output: all intersections (which pairs of line segments intersect and where)
Can be easily done in O(n2) but we want O((n+p)logn) where p is the # of intersections

Plane sweeping algorithm which uses a calendar of events
• Events in the calendar C are all line segment endpoints and some intersections
• The line sweeps from top to bottom jumping from event to event in the calendar
• We keep a profile P = a sequence of line segments intersected by the sweep line
• C contains only intersections of neighboring line segments in P (n-1 such pairs)

Initialize P as an empty set (it will be ordered by x-coordinates of the intersections)
Insert all line segment endpoints sorted by decreasing y-coordinate into C
While C is not empty do (let x be the first event in C)

if x is a beginning of a line segment s then insert s into P
if x is an end of a line segment s then delete s from P
if x is an intersection of s1 and s2 then output x and switch s1 and s2 in P
recompute planned intersection events around the current updates in P

(removes at most 2 events and adds at most 2 events)

Data structures: balanced BSTs for both C and P (supports all operations in O(logn)) 
For C (has at most 3n events at any time) we need: insert and delete
For P (contains links to line segments) we need: insert, delete, next, previous
Time complexity: O(logn) per event O((n+p)logn) in total
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Classes P and NP, polynomial transformations, NP-completeness
Task: for a given input find an output structure with given properties

Examples:

• for a given input graph find a cycle in it

• for two given input matrices compute their product

Optimization task: for a given input find an optimal (typically minimum or maximum) 
output structure with given properties

Examples:

• for a given input (undirected) graph find the biggest complete subgraph (clique)

• for a given set of jobs find the shortest feasible schedule

Decision problem: for a given input answer YES/NO

Examples: 

• does a given input graph contain a (Hamiltonian) cycle?

• is a given input square matrix regular?

From now on we shall restrict ourselves to decision problems only, which can be done 
(more or less) without loss of generality – in the sense that for (almost) every 
(optimization) task there exists a decision problem which is “equally hard to solve”.
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Definition (vague): Class P is a set of decision problems. A decision problem X is in P if 
there exists a deterministic sequential algorithm, which for any input instance y of X
correctly answers YES/NO (solves y) in a polynomial time (with respect to the size of y). 

• Is a given input directed graph strongly connected?

• Does a given input undirected graph contain a triangle? (clique of size three)

• Is a given input matrix regular?

Nondeterministic algorithm = algorithm, which can choose in each of its steps from 
several options 

Nondeterministic algorithm solves a given decision problem Û there exists a sequence 
of choices leading to a YES answer for every YES input instance of the problem and no 
sequence of choices leads to a YES answer for a NO input instance of the problem.

Definition (vague): Class NP is a set of decision problems. A decision problem X is in NP
if there exists a nondeterministic sequential algorithm, which for any input instance y of 
the problem X solves y in a polynomial time (with respect to the size of y).

A different model of a nondeterministic algorithm: do the choices in advance (and record 
them in memory ) and then run the original nondeterministic algorithm in a deterministic 
manner using the recorded advice (certificate).

Alternative definition (vague again): A decision problem X is in class NP, if there exists a 
(polynomially large) certificate for each YES instance y of the problem X, using which it 
can be deterministically checked in polynomial time, that the answer to y is YES. 
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Examples of decision problems from the class NP:

• CLIQUE (complete subgraph) input: An undirected graph G and a number k. 

Question: Does there exist in G a complete subgraph on at least k vertices?

• HC (Hamiltonian cycle) input: An undirected graph G. 

Question : Does there exist a Hamiltonian cycle in G?

• TSP (traveling salesman) input: A weighted complete undirected graph G, a number k. 

Question : Does there exist a Hamiltonian cycle in G of total weight at most k?

• SS (subset sum) input: Natural numbers a1, a2, …. , an, b.

Question : Does there exists a subset of a1, a2, …. , an which sums up to b?

• SPM (scheduling on parallel machines) input: # of jobs, their lengths, # of machines, k.

Question : Does there exists a feasible schedule of length at most k?

• SAT (CNF satisfiability) input: A CNF F on variables x1, x2, …. , xn.

Question : Does there exists a satisfying assignment for F?

We shall show, that  HC → TSP, SS→ SPM, and SAT → 3-SAT → CLlQUE → SAT, 

where A → B means, that if there exists a (deterministic) polynomial algorithm solving B, 

then there also exists a (deterministic) polynomial algorithm solving A, or in other words 

solving B is at least as “hard” (up to a polynomial) as solving A.
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Transformations (reductions) among decision problems
Let A,B be two decision problems. We say that A is polynomially reducible to B, if there 
exists a mapping f from the set of input instances of problem A into the set of input 
instances of problem B with the following properties: 

1. Let X be an input instance of problem A and Y an input instance of problem B such 
that Y = f(X). Then X is a YES instance of A if and only if Y is a YES instance of B. 

2. Let X be an input instance of problem A. Then f(X) is an input instance of problem B
which can be (deterministicly, sequentially) constructed from X in a polynomial time. 

Remark: Property 2. implies, that size of f(X) is polynomial with respect to size of X. 

NP-completeness
Definition: Problem B is NP-hard if and only if every problem A from NP is polynomially 
reducible to B. 

Definition: Problem B je NP-complete if 1) belongs to NP and 2) is NP-hard.

Corollary 1: If A is NP-hard and polynomially reducible to B, then B is also NP-hard.

Corollary 2: If there exists a polynomial time algorithm for some NP-hard problem, then 
there exist polynomial time algorithms for all problems in the class NP.

Theorem (Cook-Levin 1971): There exists an NP-complete problem (proved for SAT).
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Pseudopolynomial algorithms
Algorithm for SS: assume a1 ≥ … ≥ an holds, and A is an array of length b.

for j := 1 to b do {A[j] := 0; a0 := b+1};
for i := 1 to n do

A[ai] := 1;
for j := b downto ai-1 do if (A[j] = 1) and (j+ai ≤ b) then A[j+ai] := 1;

SP := (A[b] = 1).

Fact: After i-th pass through the main loop the array A contains ones exactly at those 
indices, which correspond to sums of all nonempty subsets of the set {a1, … ,ai}, which 
are less or equal to b.

Time complexity: O(nb), which is 

• exponential time complexity w.r.t. binary (but also ternary, decadic, …) coding of input 
data, but

• polynomial time complexity w.r.t. unary coding of input data.

Algorithms with these properties are called pseudopolynomial. Formal definition follows 
on the next slide.
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Consider a decision problem Q and its instance X. Let us define:

code(X) = the lenght of the coding (number of bits) of X in binary (or „higher“) coding

max(X) = biggest number in X (the number NOT the length of its binary coding)

Definition: An algorithm solving Q is called pseudopolynomial, if its time complexity when
run on input X is upper bounded by a polynomial in variables code(X) and max(X).

Remark: Every polynomial algorithm is of course also pseudopolynomial. 

Observation: If Q is such that for each instance X of Q we have max(X) £ p(code(X)) for
some (fixed) polynomial p, then there is no difference between pseudopolynomial and 
polynomial algorithms for Q. Decision problems where this does NOT happen are called
number problems.

Definition: Decision problem Q is called a number problem, if there exists no polynomial
p such that for every instance X of Q the inequality max(X) £ p(code(X)) holds.

Theorem: Let Q be an NP-hard problem, which is not a number problem. Then Q cannot
be solved by a pseudopolynomial algorithm unless P = NP. 

Question: Is every number problem solvable by some pseudopolynomial algorithm?

Answer: NO (and typical examples of such problems are called strongly NP-hard)
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Strongly NP-complete problems
Let Q be a decision problem and p a polynomal. We denote the set of instances of Q for
which max(X) £ p(code(X)) holds (i.e. a subproblem of Q) by Qp, that is

Qp = {XÎQ | max(X) £ p(code(X))}

Theorem: Let A be a pseudopolynomial algorithm solving Q. Then A is a polynomial
algorithm solving Qp for every polynomal p.

Definition: Decision problem Q is called strongly NP-complete, if QÎ NP and there exists
a polynomial p such that the subproblem Qp is NP-complete.

Theorem: Let Q be a strongly NP-complete problem. Then Q cannot be solved by a  
pseudopolynomial algorithm unless P = NP. 

Examples of number problems which are strongly NP-complete:

Travelling salesman problem (TSP) : 

• this is a number problem (edge weights may be arbitrarily large)

• strongly NP-complete (it stays NP-complete if the weights are bounded by a constant)

3-partition  (3-P) – an example of a „pure“ number problem:

Input: a1, … , a3m, b Î N, for which "j : ¼ b < aj < ½ b and Σj=1
3m aj = mb holds.

Question: $ S1, … ,Sm a disjunct partition of the set {1, … ,3m} such that
"i : Σj Î Si aj = b?
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Approximation algorithms
Approximation algorithms are typically used to solve “large” instances of NP-hard 
optimization problems, for which finding an optimal solution is “hopeless”, i.e. too time 
consuming (“small” instances can be solved optimally in exponential time by  “brute 
force”).  An approximation algorithm has the following three properties:

1. Returns a suboptimal solution.

2. Gives an estimate of the quality of the obtained solution compared to the optimum 

3. Runs in a polynomial time with respect to the size of the input.

Error estimation

Notation: OPT = optimal solution 

APP = solution given by the approximation algorithm

f(Z) = value of solution Z (always assumed to be nonnegative)

Definition: Approximation algorithm A solves an optimization problem X with a ratio error
r(n), if for every instance of size n of problem X we have 

max { f(APROX) / f(OPT) , f(OPT) / f(APROX) } £ r(n).

Definition: Approximation algorithm A solves an optimization problem X with a relative  
error e(n), if for every instance of size n of problem X we have 

|f(APROX) - f(OPT)| / f(OPT) £ e(n).
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Example of a maximization problem (optimization version of CLIQUE):

For a given undirected graph find a biggest (in number of verices) clique in the graph.

The approximation algorithm should provide a guarantee of the type

f(APROX) ³ ¾ f(OPT),

where f(X) is in this case the number of vertices (i.e. the clique size) in solution X.

Example of a minimization problem (optimization version of SPM):

For given jobs with given lengths and a given number of machines find a shortest
feasible schedule.

The approximation algorithm should provide a guarantee of the type

f(APROX) ≤ 2 f(OPT),

where f(X) is in this case the length of the schedule in solution X.

Examples of approximation algorithms

Scheduling on parallel machines (optimization) problem:

Input: Lengths of jobs x1, x2, … , xn , number of machines m.

Task: Find the shortest feasible schedule of the given jobs on the given number of 
machines.
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Naive approximation algorithm QUEUE: takes jobs one by one according to their 
numbers and places each job on a machine which is free at the earliest time.

Notation: OPT = optimal schedule, Q = schedule produced by algortithm QUEUE, 
f(OPT) = o, f(Q) = q

Theorem: q ≤ ((2m - 1) / m) o and this bound is tight (cannot be improved).

Corollary: QUEUE has a ratio error r(n) ≤ 2 (and it is tight for constant bounds).

Proof: 

1.Tightness: For each m we shall construct an instance for which equality holds in the 
statement of the Theorem. Such instance is defined as follows:

x1 = x2 = … = xm-1 = m-1 (m-1 jobs of length m-1)

xm = xm+1 = … = x2m-2 = 1 (m-1 jobs of length 1)

x2m-1 = m (1 job of length m)

2.Correctness: Let j be a job which terminates last in schedule Q at time q and let t be 
the time when j starts in Q.  Then no machine has any idle time before time t and 
moreover it is easy to see that  m q ≤ (2m - 1) o .
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Less naive approximation algorithm SORTED QUEUE: works just like QUEUE, except 
that it starts by sorting jobs non-increasingly according to their lengths.

Notation: OPT = optimal schedule, SQ = schedule produced by SORTED QUEUE, 
f(OPT) = o, f(SQ) = u

Theorem: u ≤ ((4m - 1) / 3m)o and this bound is tight (cannot be improved).

Corollary: SORTED QUEUE has a ratio error r(n) ≤ 4/3 (again tight for constant bounds).

Tightness: For each m we shall construct an instance for which equality holds in the 
statement of the Theorem. Such instance is defined as follows:

x1 = x2 = 2m-1 (2 jobs of length 2m-1)

x3 = x4 = 2m-2 (2 jobs of length 2m-2)

x2m-3 = x2m-2 = m+1 (2 jobs of length m+1)

x2m-1 = x2m = x2m+1 = m (3 jobs of length m)

Lemma: If all job lengths satisfy the inequality xi ³ 1/3 o then u = o.

Correctness: Let j be a job which terminates last in schedule SQ at time u. If xj > 1/3 o
then we use the above Lemma, in the other case we basically repeat the proof for 
algorithm QUEUE. 
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Vertex cover (optimization) problem:

Input: Undirected graph G = (V,E).

Task: Find a vertex cover of a minimum size, i.e. V’ Í V such that for every (u,v) Î E
there is u Î V’ or v Î V’ (or both), and moreover V’ has a minimum possible cardinality.

Algorithm A: repeatedly select a vertex of the highest degree put it in the vertex cover 
and delete it form the graph together with all edges which it covers until no edge is left.

Does A have a constant ratio error?

Algorithm B: repeatedly select an arbitrary edge (u,v) put both u and v in the vertex 
cover and delete both u and v form the graph together with all edges which they cover 
until no edge is left.

Does B have a constant ratio error?

Traveling salesman problem:

Input: Complete weighted undirected graph G = (V,E) 

with weights given by c : E® Z+ È {0}

Task: Find in G a Hamiltonian cycle of minimal total weight.
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1. TSP with the triangular inequality

Is it even NP-hard??

Algorithm C:

a) Find a minimum spanning tree of the graph.

b) Select an arbitrary vertex and run a DFS on the tree numbering the vertices in 

the preorder manner

c) select the Hamiltonian cycle given by the permutation of vertices computed in b) 

Theorem:  Algorithm C has a ratio error r(n) ≤ 2.

2. TSP without the triangular inequality

Theorem: Let R ³ 1 be an arbitrary constant. Then there exists no polynomial time 

approximation algorithm with ratio error R which solves general TSP, unless P = NP.

Corollary: There exist NP-hard optimization problems for which no polynomial time 

constant ratio error approximation algorithms can exists (unless P = NP).
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Probabilistic (randomized) algorithms
Probabilistic algorithm makes (contrary to a deterministic one) random steps, e.g. uses 
values generated by a random number generator for some steps – thus two subsequent 
runs of the same probabilistic algorithm on the same data differ (with high probability).

There are many types of probabilistic algorithms, we shall mention only two of them, 
namely Las Vegas algorithms and Monte Carlo algorithms.

Las Vegas algorithms
The result is always correct, randomness influences only the run time, i.e. determines 
the path which the algorithm uses to arrive to the correct result.

Example: randomized QuickSort – the pivot is selected randomly from the current 
subsequence on every level of recursion, which brings the following advantages

• gives good average running time (i.e. O(n log n)) even in case that the input data are 
not random permutations – no input is a priori bad (of course there exist bad inputs for 
every deterministic rule for choosing the pivot)

• can be run in parallel in several copies on the same data, the result is obtained from 
the copy that finishes the computation first (this would make no sense for a deterministic 
version of QuickSort )
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Monte Carlo algorithms
Randomness influences both running time and the correctness of the result: algorithm 
can make an error but the error can be only one-sided (we assume a YES/NO answer) 
and has a bounded probability 

Example: Rabin-Miller algorithm for primality testing

Task: for a given number n (quickly) decide whether n is a prime number

A little bit of theory (Little) Fermat’s theorem (without a proof): 

Let p be a prime number. Then " k Î {1,2, … ,p-1} we get kp-1 º 1 (mod p).

Idea: If n is NOT a prime, we may try to (randomly) find a “witness” k, violating the rule 
kn-1 º 1 (mod n), which “witnesses” that n is a composite number (is not a prime)

Problem: For some composite numbers there are too few witnesses, and thus the 
probability that a witness will be selected at random is too small.

Definition: Let T be a set of pairs of natural numbers, where (k,n) Î T if 0 < k < n and at 
least one of the following two conditions is satisfied:

1. the congruence kn-1 º 1 (mod n) is not valid,

2. exists i such that m = (n-1) / 2i is a natural number and 1 < LCD(km-1-1, n) < n holds

Theorem: Number n is composite if and only if there exists number k such that (k,n) Î T.
Moreover, if n is composite then (k,n) Î T holds for at least (n-1)/2 numbers k.
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Rabin-Miller(n);
for i:=1 to number-of-trials do

ki := randomly selected number from the interval [1,n-1];
if (ki,n) Î T then Report (n is composite);

Abort;
Report (n is prime)

If Rabin-Miller(n) decides, that n is composite, then it is a correct result for sure (a 
witness has been found), if Rabin-Miller(n) decides, that n is prime, then it may be an 
error, but only in case that all selected ki were „non-witnesses“ for a composite n, which 
may happen with a probability of at most

P(error) ≤ (1/2)number-of-trials

if the individual ki are selected independently.

Properties of the algorithm:

• by increasing the number of trials (the number of tested ki) an arbitrarily small 
(preselected) probability of error can be achieved

• the individual trials (tests for different ki) may be performed in parallel

Time complexity:

each trial takes only polynomial time with respect to the length of the encoding of n, the 
hard part is showing that testing (ki,n) Î T takes time polynomial in log n, which is not 
trivial at all (deeper knowledge of number theory is necessary)
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Public key cryptography
• every participant X has his/her public key PX and secret (private) key SX

• SX is known only to X, public key PX can be given by X to all parties communicating 
with X, or it can be even published in a publicly available list of keys (e.g. on the web)

• both keys specify functions which may be applied to any message: if D is a set of 
finite bit strings (set of all possible messages), then both functions must be injective 
functions mapping D on D (i.e. both specify permutations of the set D)

• the function specified by the secret key SX is denoted SX(), the function specified by 
the public key PX is denoted PX(), and we assume that both functions are efficiently 
enumerable if we know the corresponding key

• functions SX() and PX() must form a mutually inverse pair of functions: for every 
message (finite bit string) M we must have SX(PX(M)) = M and  PX(SX(M)) = M.

• the security of encryption is based on the fact that nobody except of X is capable of 
computing SX(M) for any message M in a „reasonable“ time, which means that

1. participant X must hold secret key SX absolutely safe from any leakage

2. function SX() must not be efficiently computable based on the knowledge of 
PX (and the ability to efficiently enumerate function PX() ), what is the main 
difficulty when designing any public key cryptography method or system
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Let us assume that we have 2 participants: A (Alice) a B (Bob) with keys SA, PA, SB, PB

Sending an encrypted message and its decrypting
Bob wants to send an encrypted message M to Alice:

• Bob gets Alice’s public key PA (directly from Alice or from a public list of keys)

• Bob computes the encrypted text C = PA(M) and sends it to Alice

• Alice applies her secret key SA on C, i.e. computes SA(C) = SA(PA(M)) = M

• If C is read by someone else than Alice, he/she has no chance to obtain M, because 
he/she cannot efficiently compute SA(C).

Sending an authenticated and signed (non-encrypted) message
Alice wants to answer to Bob in a way, that Bob can be sure that the answer Q comes 
from Alice and that the text of the answer was not modified by someone else:

• Alice computes her digital signature q for message Q using her private key, i.e. 
computes q = SA(Q) and sends the pair (Q,q) to Bob – message Q is transmitted openly

• Bob computes PA(q) = PA(SA(Q)) = Q and compares the result with message Q

• If both messages match, Bob can be sure that the message comes form Alice and it 
was not modified along the way

• If both messages differ, than either the signature q is forged (was not created using 
function SA()) or the signature is correct but the open message Q was modified
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Sending an authenticated and signed encrypted message
Alice wants to send message M to Bob, so that Bob is sure that M comes from Alice and 

that the text of M was not modified. Moreover, Alice wants that only Bob can read M.

• Alice computes her digital signature for M, i.e. computes m = SA(M)

• Alice encrypts the pair (M,m) using Bob’s public key, i.e. computes encrypted text        

C = PB(M,m) and sends C to Bob

• Bob decrypts C using his secret key, i.e. computes SB(C) = SB(PB(M,m)) = (M,m)

• Bob verifies validity of Alice’s signature and authenticity of M using Alice’s public key, 

i.e. computes PA(m) and compares it with M – if they differ Bob knows, that either C was 

modified during transmission (deliberately or by an error) or C does not come from Alice.

Hybrid encryption

If message M which Bob wants to send to Alice is too long, and thus the computation of  

C = PA(M) and subsequently of M = SA(C) would be too time consuming, it is possible to 

combine public key cryptography with some symmetric cipher K, which works quickly:

• Bob computes C = K(M), which is again a long bit string, additionally computes PA(K),

which is a short string (compared to M and PA(M) ) and sends (C,PA(K)) to Alice

• Alice decrypts PA(K) using her secret key SA and thus obtains K, using which it 

decrypts C and obtains M
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Hybrid authentication and signing
If M is too long, it is also very time consuming to compute digital signature m = SA(M).
We may circumvent this difficulty by using a (publicly known) hash function h satisfying:

1. Even if M is very long h(M) can be computed quickly, typically h(M) is a very short 
(e.g. 128 bit) fingerprint of message M.

2. It is computationally difficult (impossible within a reasonable time) to find for M a 
different message Q such that h(M) = h(Q) holds

If Alice wants to sign a long message sent to Bob, she may proceed as follows:

• Alice computes the fingerprint h(M) of message M, turns it into the digital signature     
m = SA(h(M)), and sends the pair (M,m) to Bob

• Bob also computes the fingerprint h(M) of  M, which he then compares with the 
decrypted Alice’s signature PA(m) = PA(SA(h(M))). If M was modified along the way, the 
strings will not match, as it is impossible to modify M without changing its fingerprint 
(thanks to property 2). Nobody but Alice can compute m, so M is sure to come from her.

Certification authorities
If Bob obtains Alice’s public key from a public list (or Alice sends it to Bob via internet), 
how can be Bob sure that the key is not forged? If the key is forged and the subsequent 
messages are modified or forged by the same person who forged the public key, it is 
then impossible to detect that something is wrong, because that person also has the 
corresponding secret key, and so all strings match as expected. Solution:
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• There exist certification authority Z, whose public key PZ is installed on each 
participant’s HW (including Bob’s) – e.g. comes on the CD with the cryptographic SW 

• Alice then has a certificate C (issued by authority Z) of the form „Alice’s key is PB“ 
signed by authority Z, i.e. a pair (C, SZ(C)) – Alice may have this from the cryptographic 
SW installation, or she may obtain this pair by some other secure method

• Alice attaches this pair (C, SZ(C)) to every signed message, and so Bob (and 
everybody else) can verify using public key PZ, that C was indeed issued by authority Z, 
and that therefore PB is really Alice’s public key

RSA (Rivest, Shamir, Adelman) cipher
to explain RSA we need a number of concepts and results form number theory

Definition: The greatest common divisor of two natural numbers a,b is the largest natural 
number which divides both a and b. We shall denote it by GCD(a,b). 

Theorem: Let a,b be natural numbers. Then GCD(a,b) is the smallest positive element in 
the set L = {ax + by | x,y Î Z}.

Corollary: Let a,b be natural numbers. If d is a natural number which divides both a and 
b, then d divides also GCD(a,b). 

Theorem: Let a,b be natural numbers, where b>0. Then GCD(a,b) = GCD(b, a mod b).
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EUCLID(a,b)

if b=0 then Return(a)

else Return(EUCLID(b, a mod b))

Lemma: Let a > b ³ 0 such that EUCLID(a,b) performs k ³ 1 recursive calls.             
Then a ≥ F(k+2) and b ≥ F(k+1), where F(i) is the i-th Fibonacci number.

Corollary (Lamé’s theorem): Let a > b ≥ 0 and F(k) ≤ b < F(k+1). Then EUCLID(a,b)
performs at most k - 1 recursive calls. 

Theorem (w/o proof – see AVL trees): F(k) = Q(φk), where φ = (1+√5)/2 („golden ratio“).

Corollary: Let a > b ≥ 0. Then EUCLID(a,b) performs O(log b) recursive calls. 

Observation: If a,b are two binary numbers with at most t-bits, then EUCLID(a,b)
performs O(t) recursive calls and in each of them O(1) arithmetic operations on (at most) 
t-bit numbers, i.e. O(t3) bit operations, if we assume that each arithmetic operation on (at 
most) t-bit numbers requires O(t2) bit operations (which can be shown easily). Thus 
EUCLID is a polynomial time algorithm with respect to the size of its input.

Euclid’s algorithm can be easily extended so that it also computes the coefficients x,y, 
for which GCD(a,b) = ax + by.
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EXTENDED-EUCLID(a,b)

if b=0 then Return(a,1,0)

else (d’,x’,y’) := EXTENDED-EUCLID(b, a mod b);

(d,x,y) := (d’,y’,x’ - ëa/bû y’);

Return(d,x,y)

Theorem (w/o proof): Let n > 1 and a < n be two relative prime natural numbers. Then 

the equation ax º 1 (mod n) has exactly one solution 0 < x < n (and if a,n are not relative 

primes it has no solution).

Definition: The solution x of the equation ax º 1 (mod n) is denoted by (a-1 mod n) and it 

is called the multiplicative inverse of a modulo n (it exists only if a,n are relative primes).

Observation: (a-1 mod n) can be easily obtained using the extended Euclid’s algorithm.

Theorem (a special corollary of the “Chinese remainder theorem”– w/o proof):              

Let a,b be relative prime natural numbers. Then for every pair of natural numbers x,y we 

have: x º y (mod ab) if and only if x º y (mod a) and x º y (mod b).

Theorem (Fermat’s little):

Let p be a prime number. Then " k Î {1,2, … ,p-1} we get kp-1 º 1 (mod p).
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Now we have all we need to define and explain RSA:

1. Pick two large primes p and q at random (e.g. consisting of 200 binary digits each).

2. Compute n = pq (in this case n consists of approx. 400 binary digits).

3. Select a small odd number e, which is relative prime to (p-1)(q-1).

4. Compute the multiplicative inverse d of e modulo (p-1)(q-1).

5. Publish (e,n) as the public RSA key and save (d,n) as the secret RSA key.

Theorem (RSA correctness): Functions P(M) = Me mod n and S(M) = Md mod n define a 
pair of inverse functions on the set of all messages, i.e. on the set of all numbers in      
Zn = {0,1, … ,n-1}.

Why is RSA safe?

Nobody is (currently) able to compute d based on the knowledge of (e,n) without 
knowing the factors n = pq and thus also the number (p-1)(q-1). Factorization of large 
natural numbers is currently a computationally intractable problem.  
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How fast is RSA?

The speed of computing P(M) and S(M) depends on how fast a remainder modulo n can 
be computed when taking powers of an integer, i.e. how fast we can compute ab mod n.

POWER (a,b,n) {where the binary digits in b are <bk, …,b0> }

c := 1; d := a mod n;

for i := k-1 downto 0 do

c := 2×c;

d := (d×d) mod n;

if bi = 1 then c := c + 1;

d := (d×a) mod n;

Return(d)

Time complexity: If a,b,n are binary numbers with at most t-bits, then POWER (a,b,n)
performs O(t) arithmetic operations on (at most) t-bit numbers, i.e. O(t3) bit operations, if 
we assume that each arithmetic operation on (at most) t-bit numbers requires O(t2) bit 
operations (which can be shown easily).


