Ondřej Čepek – selected publications

 

1.       Tegze,M.; čepek,O. Minimizing the grabs' changes in a single machine scheduling problem. Optimization 20 (1989), pp.219-233, Akademie-Verlag, Berlin.

 

2.       Čepek,O.; Vlach,M.; DeWerra,D. Nonpreemptive open shop with restricted processing times. ZOR - Methods and Models of Operations Research 39 (1994), pp.227-241, Physica-Verlag, Heidelberg.

 

3.       Čepek,O. Structural properties and minimization of Horn Boolean functions. Doctoral Dissertation. Rutgers University, NJ, USA (1995).

 

4.       Boros,E.; Čepek,O. On perfect 0,±1 matrices. Discrete Mathematics 165/166 (1997), pp.81-100, Elsevier Science, Amsterdam.

 

5.       Boros,E.; Čepek,O.; Kogan,A. Horn minimization by iterative decomposition. Annals of Mathematics and Artificial Intelligence 23 (1998), pp.321-343, Baltzer Science Publishers.

 

6.       Čepek,O.; Okada,M.; Vlach,M. A note on the two-machine no-idle flowshop problem. Naval Research Logistics 47 (2000), pp.353-358, John Wiley & Sons, Inc.

 

7.       Čepek,O. Discovering redundant variables in a knowledge base. Proceedings of 3rd Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, pp.132-136, Osaka, October 2000.

 

8.       Randerath,B.; Speckenmeyer,E.; Boros,E.; Hammer,P.L.; Kogan,A. ; Makino,K. ; Simeone,B.; Čepek,O. A satisfiability formulation of problems on level graphs. Kautz, Henry (ed.) et al., LICS 2001 workshop on theory and application of satisfiability testing (SAT 2001). Boston, MA, USA, June 14-15, 2001. Amsterdam: Elsevier, Electron. Notes Discrete Math. 9 (2001).

 

9.       Čepek,O. Generalizations of Horn formulae and their mutual relationships. Proceedings of 4th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, pp. 3-20, Jindřichův Hradec, Sept. 2001.

 

10.    Čepek,O. Some classes of Boolean formulae with polynomial time satisfiability testing. Proceedings of the RIMS conference on mathematical decision making under uncertainty, Kyoto, Japan, November 2001.

 

11.    Čepek,O.; Okada,M.; Vlach,M. Nonpreemtive flowshop scheduling with machine dominance. European Journal of Operational Research 139 (2002), pp. 245-261, Elsevier Science, Amsterdam.

 

12.    Čepek,O.; Sung, S.C. Just in time scheduling with periodic time slots. Proceedings of 5th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, pp. 27-29, Koyasan, Japan, Sept. 2002.

 

13.    Čepek,O.; Sung, S.C. Fast approximation algorithm for the multislot just-in-time scheduling problem. Proc. of 6th Czech-Japan Seminar on Methods for Decision Support In Environment with Uncertainty, pp. 1-6, Valtice, Sept. 2003.

 

14.    Sung, S.C.; Čepek,O.; Hiraishi,K. A polynomial time algorithm for single machine multislot just-in-time scheduling problem. Proc. of 6th Czech-Japan Seminar on Methods for Decision Support In Environment with Uncertainty, pp. 90-95, Valtice, Sept. 2003.

 

15.    Čepek,O. A simple heuristic for knowledge base compression. Central European Journal of Operations Research, Vol.12, No.1 (2004) pp.3-12.

 

16.    Čepek,O.; Sung, S.C. Just-in-Time Scheduling with periodic time slots. Scientiae Mathematicae Japonicae 60, No.2 (2004), pp. 295 - 301, ISSN 1346-0862.

 

17.    Čepek, O.; Kučera P. On the complexity of minimizing the number of literals in Horn formulae. Proceedings of MIS 2004, pp.1-13, Josefův Důl (Czech Republic), January 2004.

 

18.    Čepek,O.; Sung, S.C. A note on the complexity of multislot just-in-time scheduling. Proc. of 7th Czech-Japan Seminar on Methods for Decision Support In Environment with Uncertainty, pp. 96-98, Awaji Island, Japan, Sept. 2004

 

19.    Čepek,O.; Sung, S.C. Multislot just-in-time scheduling on identical parallel machines. Proceedings of Taiwan-Japan Symposium on Fuzzy Systems and Innovational Computing, pp. 137-142, Kitakyushu, Japan, Sept. 2004

 

20.    Vilím, P., Barták, R., Čepek,O. Unary resource constraint with optional activities. in Mark Wallace (ed.): Principles and Practice of Constraint Programming – CP2004, Springer Verlag, LNCS 3258, pp. 62-76, Toronto, Canada, September 2004. („Distinguished Paper Award“ awarded by the CP2004 program committee)

 

21.    Čepek, O.; Restricted resolution for pure Horn functions. Proceedings of MIS 2005, pp.3-10, Josefův Důl, leden 2005.

 

22.    Čáp,P.; Čepek,O.; Vlach,M. Weak and strong machine dominance in a nonpreemtive flowshop. Scientiae Mathematicae Japonicae 61, No.2 (2005), pp.319-333, ISSN 1346-0862.

 

23.    Čepek,O.; Kučera P. Known and new classes of generalized Horn formulae with polynomial recognition and SAT testing. Discrete Applied Mathematics 149 (2005), pp. 14-52, Elsevier Science, Amsterdam.

 

24.    Čepek,O.; Sung, S.C. A quadratic time algorithm to maximize the number of just-in-time jobs on identical parallel machines. Computers and Operations Research 32 (2005), pp.3265-3271, Elsevier Science, Amsterdam.

 

25.    Barták, R., Čepek,O. Incremental Propagation Rules for Precedence Graph with Optional Activities and Time Windows. Proc. of the 2nd multidisciplinary international conference on scheduling: theory and applications – MISTA 2005, Volume II, pp.552-560, New York, USA, July 2005

 

26.    Vilím P., Barták R., and Čepek O. Extension of O(n.log n) Filtering Algorithms for the Unary Resource Constraint to Optional Activities, Constraints, Volume 10, Number 4 (2005), pp.403-425, Springer Verlag.

 

27.    Barták R. and Čepek O. Incremental Maintenance of Double Precedence Graphs: A Constraint-Based Approach. Proceedings of The Sixteenth International Conference on Automated Planning and Scheduling (ICAPS 2006), ed. Derek Long, Stephen F. Smith, Daniel Borrajo, Lee McCluskey, AAAI Press, Menlo Park, USA, 2006, pp. 350-353.

 

28.    Čepek,O., Kronus,D., and Kučera,P. Recognition of Interval Boolean Functions. Proceedings of MIS 2006, pp.14-28, Praha, leden 2006.

 

29.    Barták R. and Čepek O. Incremental Filtering Algorithms for Precedence and Dependency Constraints. Proceedings of the CP 2006 Workshop on Constraint Propagation And Implementation (CPAI 2006), Mark van Dongen , Christophe Lecoutre (Eds.), Ecole des Mines de Nantes, Nantes, 2006, pp.3-18.

 

30.    Barták R., and Čepek O. A Constraint Model for State Transitions in Disjunctive Resources. Proceedings of the 5th International Workshop on Planning and Scheduling for Space, Mark Giuliano (Ed.), STScI, Baltimore, USA, 2006, pp.278-285.

 

31.    Čepek,O., Kronus,D., and Kučera,P. Renamable Interval Boolean Functions. Proceedings of 9th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, pp. 232-241, Kitakyushu, Japan, August 2006.

 

32.    Barták, R., Čepek, O. Nested Temporal Networks with Alternatives. In Papers from the 2007 AAAI Workshop on Spatial and Temporal Reasoning, Technical Report WS-07-12, AAAI Press, 2007, pp. 1-8.

 

33.    Sung, S.C.; Čepek,O.; Hiraishi,K. Algorithm for multislot just-in-time scheduling. Proc. of the 4th Internat. Symp. on Management Ingeneering 2007 (ISME 2007), 10 pages, Kitakyushu, Japan, March 10-12, 2007.

 

34.    Barták, R., Čepek, O. A Constraint Model for State Transitions in Disjunctive Resources. In Recent Advances in Constraints, LNAI 4651, Springer-Verlag, 2007, pp. 48-62.

 

35.    Barták, R., Čepek, O. Temporal Networks with Alternatives: Complexity and Model. Proceedings of the Twentieth International Florida AI Research Society Conference (FLAIRS 2007). AAAI Press, 2007, pp. 641-646.

 

36.    Barták, R., Čepek, O., Surynek, P. Modelling Alternatives in Temporal Networks. Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling (CI-Sched 2007), IEEE Press, 2007, pp. 129-136 (ISBN: 1-4244-0698-6 )

 

37.    Barták, R., Čepek, O., Surynek, P. Discovering Equivalence Classes in Precedence Graphs. In Proceedings of Znalosti 2007. VŠB Ostrava, 2007, pp. 17-28.

 

38.    Čepek, O., Kronus, D., and Kučera, P. Best fit interval extensions of partially defined Boolean functions. Proceedings of 10th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, pp. 8-17, Liblice, September 2007.

 

39.    Sung, S.C.; Čepek,O.; Hiraishi,K. Algorithm for multislot just-in-time scheduling on identical parallel machines. Proc. of Second International Conference on Innovative Computing, Information and Control (ICICIC2007), IEEE Press, 4 pages, Kumamoto, Sept. 5-7, 2007, (ISBN: 9781424431809)

 

40.    Barták, R., Čepek, O. Incremental filtering algorithms for precedence and dependency constraints. International Journal on Artificial Intelligence Tools, Volume 17, Issue 1 (2008), pp. 205-221, World Scientific Publishing Company, (ISSN: 0218-2130).

 

41.    Čepek, O., Kronus, D., and Kučera, P. Recognition of interval Boolean functions. Annals of Mathematics and Artificial Intelligence, Volume 52, Number 1 (2008), pp. 1-24, Springer Verlag.

 

42.    Barták, R., Čepek, O. Nested Precedence Networks with Alternatives: Recognition, Tractability, and Models  In Artificial Intelligence: Methodology, Systems, and Applications, D. Dochev, M. Pistore, and P. Traverso (Eds.): AIMSA 2008, LNAI 5253 Springer-Verlag (2008) pp. 235–246, (ISBN 978-3-540-85775-4).

 

43.    Čepek, O., Kronus, D., and Kučera, P. Renamable interval Boolean functions. International Journal of Innovative Computing, Information, and Control, Volume 4, Number 5 (2008), pp. 1111-1120, (ISSN 1349-4198).

 

44.    Barták, R., Čepek, O., Hejna, M. Temporal Reasoning in Nested Temporal Networks with Alternatives. In F. Fages, F. Rossi, and S. Soliman (Eds.): Recent Advances in Constraints - 12th Annual ERCIM International Workshop on Constraint Solving and Contraint Logic Programming, CSCLP 2007 Rocquencourt, France, June 7-8, 2007 Revised Selected Papers, LNAI 5129, Springer-Verlag, 2008, pp. 17–31. (ISBN 978-3-540-89811-5)

 

45.    Kronus, D. and Čepek, O. Recognition of Positive 2-Interval Boolean Functions. Proceedings of 11th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, pp. 115-122, Sendai, Japan, September 2008.

 

46.    Barták, R., Čepek, O. Nested Temporal Networks with Alternatives: Recognition and Tractability. In Applied Computing 2008 - Proceedings of 23rd Annual ACM Symposium on Applied Computing, Volume 1, pp. 156-157, ACM, 2008 (ISBN 1-59593-753-7).

 

47.    Čepek, O., Kučera, P. Disjoint essential sets of implicates of a CQ Horn function. Proceedings of 12th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, pp. 79-92, Litomysl, September 2009.

 

48.    Boros,E.; Čepek,O.; Kogan,A., Kučera,P. Exclusive and essential sets of implicates of Boolean functions. Discrete Applied Mathematics Volume 158, Issue 2 (2010), pp. 81-96, Elsevier Science, Amsterdam (DOI:10.1016/j.dam.2009.08.012) (ISSN 0166-218X).

 

49.    Čepek,O. Book Review: Computational Complexity – A Modern Approach by S.Arora and B.Barak. Computer Science Review, Vol. 4, Issue 3, August 2010, pp. 185-187, Elsevier Science, Amsterdam (DOI: 10.1016/j.cosrev.2010.03.002) (ISSN: 1574-0137)

 

50.    Boros,E.; Čepek,O.; Kogan,A., Kučera,P. A subclass of Horn CNFs optimally compressible in polynomial time. Annals of Mathematics and Artificial Intelligence Vol.57, Numbers 3-4 (2010), pp. 249-291, Springer Verlag (DOI: 10.1007/s10472-010-9197-7) (ISSN: 1012-2443)

 

51.    Barták, R.; Čepek, O.; Surynek, P. Discovering implied constraints in precedence graphs with alternatives. Annals of Operations Research Volume 180, Number 1 (2010), pp. 233-263, Springer Verlag (DOI: 10.1007/s10479-008-0492-1) (ISSN: 0254-5330)

 

52.    Barták, R.; Čepek, O. Incremental propagation rules for a precedence graph with optional activities and time windows. Transactions of the Institute of Measurement and Control Volume 32, Number 1 (2010), pp. 73-96, SAGE Publications (DOI: 10.1177/0142331208100099)(ISSN: 0142-3312)

 

53.    Čepek,O.; Kučera,P. Various notes on SLUR formulae. Proceedings of 13th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, pp.85-95, Otaru, Japan, November 2010.

 

54.    Čepek, O.; Kronus, D., Kučera, P. Analysing DNA Microarray Data Using Boolean Techniques. Annals of Operations Research. Volume 188, Number 1 (2011), pp. 77-110, Springer Verlag (DOI: 10.1007/s10479-010-0723-0) (ISSN: 0254-5330)

 

55.    Čepek,O.; Kučera,P. Disjoint essential sets of implicates of a CQ Horn function . Annals of Mathematics and Artificial Intelligence Vol.61, Number 3 (2011), pp. 231-244, Springer Verlag (DOI: 10.1007/s10472-011-9263-9) (ISSN: 1012-2443)

 

56.    Boros,E.; Čepek,O.; Gurvich,V. Total tightness implies Nash-solvability for three-person gane forms. Discrete Mathematics. Volume 312, Issue 1 (2012), pp. 1436-1443, Elsevier Science (DOI: 10.1016/j.disc.2011.12.028) (ISSN 0012-365X).

 

57.    Čepek, O.; Kučera, P.; Vlček, V. Properties of SLUR Formulae. Proceedings of SOFSEM 2012: 38th Conference on Current Trends in Theory and Practice of Computer Science, Špindlerův Mlýn, January 2012, pp. 177-189, LNCS 7147, Springer Verlag (DOI: 10.1007/978-3-642-27660-6) (ISSN 0302-9743) (ISBN 978-3-642-27659-0)

 

58.    Čepek, O.; Kučera, P.; Savický, P.  Boolean  functions with a simple certificate for CNF complexity. Discrete Applied Mathematics. Volume 160, Issues 4-5 (2012), pp. 365-382, Elsevier Science (DOI: 10.1016/j.dam.2011.05.013) (ISSN 0166-218X).

 

59.    Čepek, O.; Kučera, P.; Kuřík, S.  Boolean  functions with long prime implicants. Proceedings of International Symposium on Artificial Intelligence and Mathematics (ISAIM 2012), Fort Lauderdale, USA, January 9-11, 2012.

 

60.    Babka, M.; Balyo, T.; Čepek, O.; Gurský, Š.; Kučera, P.; Vlček, V. Complexity issues related to propagation completeness. Artificial Intelligence. Volume 203 (2013), pp. 19-34, Elsevier Science (ISSN 0004-3702) (DOI: 10.1016/j.artint.2013.07.006).

 

61.    Čepek, O.; Kučera, P.; Kuřík, S. Boolean functions with long prime implicants. Information Processing Letters. Volume 113, Issues 19–21 (2013), pp. 698-703, Elsevier Science (ISSN 0020-0190) (DOI: 10.1016/j.ipl.2013.07.001).

 

62.    Boros,E.; Čepek,O.; Kučera, P. A decomposition method for CNF minimality proofs. Theoretical Computer Science. Volume 510 (2013), pp. 111-126, Elsevier Science (DOI: 10.1016/j.tcs.2013.09.016) (ISSN 0304-3975).

 

63.    Čepek,O. and Gurský,Š. On the gap between the complexity of SAT and minimization for certain classes of boolean formulas. In Proceedings of International Symposium on AI and Mathematics (ISAIM), Fort Lauderdale, USA, January 2014.

 

64.    Čepek,O. and Gurský,Š. Tractability conditions for classes of CNFs and their influence on the complexity of CNF minimization. In proceedings of CJS 2014- 17th Czech Japanese Seminar on Data Analysis and Decision Making under Uncertainty, Kitakyushu, Japan, September 2014.

 

65.    Čepek, O.; Gurský,Š.; Kučera, P. On Minimum Representations of Matched Formulas. Journal of Artificial Intelligence Research. Volume 51 (2014), pp. 707-723, AAAI Press (ISSN 1076-9757) (DOI:10.1613/jair.4517)

 

66.    Čepek, O.; Hušek,R. Knowledge compilation and compression using interval representations. In proceedings of CJS 2015- 18th Czech Japanese Seminar on Data Analysis and Decision Making under Uncertainty, Broumov, Czech Republic, September 2015.

 

67.    Čepek, O.; Hušek,R. Knowledge compilation from DNF to switch-list representations. Proceedings of International Symposium on Artificial Intelligence and Mathematics (ISAIM 2016), Fort Lauderdale, USA, January 4-6, 2016.

 

68.    Boros,E.; Čepek,O.; Makino, K. A combinatorial min-max theorem and minimization of pure-Horn functions. Proceedings of International Symposium on Artificial Intelligence and Mathematics (ISAIM 2016), Fort Lauderdale, USA, January 4-6, 2016.

 

69.    Čepek, O.; Hušek,R. Recognition of tractable DNFs representable by a constant number of intervals. Discrete Optimization. Volume 23 (2017), pp.1-19, Elsevier Science (DOI: 10.1016/j.disopt.2016.11.002) (ISSN: 1572-5286)