Ondřej Čepek – selected publications
1.
Tegze,M.; čepek,O.
Minimizing the grabs' changes in a single
machine scheduling problem. Optimization
20 (1989), pp.219-233,
2.
Čepek,O.; Vlach,M.; DeWerra,D. Nonpreemptive open shop with restricted processing times. ZOR - Methods and Models of Operations
Research 39 (1994), pp.227-241, Physica-Verlag,
3.
Čepek,O. Structural
properties and minimization of Horn Boolean functions. Doctoral
Dissertation.
4.
Boros,E.; Čepek,O. On
perfect 0,±1 matrices. Discrete Mathematics 165/166 (1997),
pp.81-100, Elsevier Science,
5.
Boros,E.; Čepek,O.; Kogan,A. Horn minimization by iterative decomposition. Annals of Mathematics and Artificial Intelligence 23 (1998),
pp.321-343, Baltzer Science Publishers.
6.
Čepek,O.; Okada,M.; Vlach,M. A note on the two-machine no-idle flowshop problem. Naval Research Logistics 47 (2000),
pp.353-358, John Wiley & Sons, Inc.
7.
Čepek,O. Discovering
redundant variables in a knowledge base. Proceedings of 3rd Czech-Japan
Seminar on Data Analysis and Decision Making under Uncertainty, pp.132-136,
8.
Randerath,B.; Speckenmeyer,E.; Boros,E.; Hammer,P.L.;
Kogan,A. ; Makino,K. ; Simeone,B.; Čepek,O. A satisfiability
formulation of problems on level graphs. Kautz,
Henry (ed.) et al., LICS 2001 workshop on theory and application of
satisfiability testing (SAT 2001).
9.
Čepek,O. Generalizations
of Horn formulae and their mutual relationships. Proceedings of 4th
Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, pp.
3-20, Jindřichův Hradec, Sept. 2001.
10.
Čepek,O. Some classes
of Boolean formulae with polynomial time satisfiability testing. Proceedings
of the RIMS conference on mathematical decision making under uncertainty,
11.
Čepek,O.; Okada,M.; Vlach,M. Nonpreemtive flowshop scheduling with machine dominance. European Journal of Operational Research
139 (2002), pp. 245-261, Elsevier Science,
12.
Čepek,O.; Sung, S.C. Just
in time scheduling with periodic time slots. Proceedings of 5th Czech-Japan
Seminar on Data Analysis and Decision Making under Uncertainty, pp. 27-29,
Koyasan, Japan, Sept. 2002.
13.
Čepek,O.; Sung, S.C. Fast
approximation algorithm for the multislot just-in-time scheduling problem.
Proc. of 6th Czech-Japan Seminar on Methods for Decision Support In Environment
with Uncertainty, pp. 1-6, Valtice, Sept. 2003.
14.
Sung, S.C.; Čepek,O.; Hiraishi,K. A polynomial time algorithm for single machine multislot just-in-time
scheduling problem. Proc. of 6th Czech-Japan Seminar on Methods for
Decision Support In Environment with Uncertainty, pp. 90-95, Valtice, Sept.
2003.
15.
Čepek,O. A simple
heuristic for knowledge base compression. Central European Journal of Operations Research, Vol.12, No.1
(2004) pp.3-12.
16.
Čepek,O.; Sung, S.C. Just-in-Time
Scheduling with periodic time slots. Scientiae
Mathematicae Japonicae 60, No.2 (2004), pp. 295 -
301, ISSN 1346-0862.
17.
Čepek, O.; Kučera P. On the complexity of
minimizing the number of literals in Horn formulae. Proceedings of MIS 2004, pp.1-13, Josefův Důl
(
18.
Čepek,O.; Sung, S.C. A
note on the complexity of multislot just-in-time scheduling. Proc. of 7th
Czech-Japan Seminar on Methods for Decision Support In Environment with
Uncertainty, pp. 96-98,
19.
Čepek,O.; Sung, S.C. Multislot
just-in-time scheduling on identical parallel machines. Proceedings of
Taiwan-Japan Symposium on Fuzzy Systems and Innovational Computing, pp.
137-142,
20.
Vilím, P., Barták, R., Čepek,O. Unary resource constraint with optional activities. in Mark Wallace
(ed.): Principles and Practice of Constraint Programming – CP2004, Springer
Verlag, LNCS 3258, pp. 62-76, Toronto, Canada, September 2004. („Distinguished
Paper Award“ awarded by the CP2004 program committee)
21.
Čepek, O.; Restricted resolution for pure Horn
functions.
Proceedings of MIS 2005, pp.3-10, Josefův Důl, leden 2005.
22.
Čáp,P.; Čepek,O.; Vlach,M. Weak and strong machine dominance in a nonpreemtive flowshop. Scientiae Mathematicae Japonicae 61,
No.2 (2005), pp.319-333, ISSN 1346-0862.
23.
Čepek,O.; Kučera P. Known and new classes of
generalized Horn formulae with polynomial recognition and SAT testing. Discrete
Applied Mathematics 149 (2005), pp. 14-52, Elsevier
Science,
24.
Čepek,O.; Sung, S.C. A
quadratic time algorithm to maximize the number of just-in-time jobs on identical
parallel machines. Computers and
Operations Research 32 (2005),
pp.3265-3271, Elsevier Science,
25.
Barták, R., Čepek,O. Incremental
Propagation Rules for Precedence Graph with Optional Activities and Time
Windows. Proc. of the 2nd multidisciplinary international conference on
scheduling: theory and applications – MISTA 2005, Volume II, pp.552-560,
26.
Vilím
P., Barták R., and Čepek O. Extension of
O(n.log n) Filtering Algorithms for the Unary Resource Constraint to Optional
Activities, Constraints, Volume
10, Number 4 (2005), pp.403-425, Springer Verlag.
27.
Barták
R. and Čepek O. Incremental Maintenance of Double Precedence Graphs: A
Constraint-Based Approach. Proceedings of The Sixteenth
International Conference on Automated Planning and Scheduling (ICAPS 2006), ed.
Derek Long, Stephen F. Smith, Daniel Borrajo, Lee McCluskey, AAAI Press, Menlo
Park, USA, 2006, pp. 350-353.
28.
Čepek,O.,
Kronus,D., and Kučera,P. Recognition of
Interval Boolean Functions. Proceedings of MIS 2006, pp.14-28, Praha, leden
2006.
29.
Barták
R. and Čepek O. Incremental Filtering Algorithms for Precedence and
Dependency Constraints. Proceedings of the CP 2006 Workshop on
Constraint Propagation And Implementation (CPAI 2006), Mark van Dongen ,
Christophe Lecoutre (Eds.), Ecole des Mines de Nantes, Nantes, 2006, pp.3-18.
30.
Barták
R., and Čepek O. A Constraint Model for State Transitions in Disjunctive
Resources. Proceedings of the 5th International Workshop on
Planning and Scheduling for Space, Mark Giuliano (Ed.), STScI, Baltimore, USA,
2006, pp.278-285.
31.
Čepek,O.,
Kronus,D., and Kučera,P. Renamable
Interval Boolean Functions. Proceedings of
9th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty,
pp. 232-241, Kitakyushu, Japan, August 2006.
32. Barták, R., Čepek, O. Nested Temporal Networks with Alternatives.
In Papers from the 2007 AAAI Workshop on Spatial and Temporal Reasoning,
Technical Report WS-07-12, AAAI Press, 2007, pp. 1-8.
33.
Sung, S.C.; Čepek,O.; Hiraishi,K. Algorithm for multislot just-in-time scheduling. Proc. of the 4th
Internat. Symp. on Management Ingeneering 2007 (ISME 2007), 10 pages,
34. Barták, R., Čepek, O. A Constraint Model for State Transitions in
Disjunctive Resources. In Recent Advances in Constraints, LNAI 4651,
Springer-Verlag, 2007, pp. 48-62.
35. Barták, R., Čepek, O. Temporal Networks with Alternatives:
Complexity and Model. Proceedings of the Twentieth International
36. Barták, R., Čepek, O., Surynek, P. Modelling Alternatives in Temporal Networks.
Proceedings of the 2007 IEEE Symposium on Computational Intelligence in
Scheduling (CI-Sched 2007), IEEE Press, 2007, pp. 129-136 (ISBN: 1-4244-0698-6
)
37. Barták, R., Čepek, O., Surynek, P. Discovering Equivalence Classes in
Precedence Graphs. In Proceedings of Znalosti 2007. VŠB
38. Čepek, O., Kronus, D., and Kučera,
P. Best fit interval extensions of
partially defined Boolean functions. Proceedings of 10th Czech-Japan
Seminar on Data Analysis and Decision Making under Uncertainty, pp. 8-17,
Liblice, September 2007.
39.
Sung, S.C.; Čepek,O.; Hiraishi,K. Algorithm for multislot just-in-time scheduling on identical parallel
machines. Proc. of Second
International Conference on Innovative Computing, Information and Control (ICICIC2007), IEEE Press, 4 pages, Kumamoto, Sept. 5-7, 2007, (ISBN: 9781424431809)
40. Barták, R., Čepek, O. Incremental filtering algorithms for
precedence and dependency constraints. International
Journal on Artificial Intelligence Tools, Volume 17, Issue 1 (2008), pp.
205-221, World Scientific Publishing Company, (ISSN: 0218-2130).
41. Čepek, O., Kronus, D., and Kučera,
P. Recognition of interval Boolean
functions. Annals of
Mathematics and Artificial Intelligence, Volume 52,
Number 1 (2008), pp. 1-24, Springer Verlag.
42. Barták, R., Čepek, O. Nested
Precedence Networks with Alternatives: Recognition, Tractability, and Models
In Artificial
Intelligence: Methodology, Systems, and Applications, D. Dochev, M. Pistore, and P.
Traverso (Eds.): AIMSA 2008, LNAI 5253 Springer-Verlag (2008) pp. 235–246, (ISBN
978-3-540-85775-4).
43. Čepek, O., Kronus, D., and Kučera,
P. Renamable interval Boolean functions.
International Journal of Innovative
Computing, Information, and Control, Volume 4, Number 5 (2008), pp.
1111-1120, (ISSN 1349-4198).
44. Barták, R., Čepek, O., Hejna, M. Temporal
Reasoning in Nested Temporal Networks with Alternatives. In
F. Fages, F. Rossi, and S. Soliman (Eds.): Recent Advances in Constraints -
12th Annual ERCIM International Workshop on Constraint Solving and Contraint
Logic Programming, CSCLP 2007 Rocquencourt, France, June 7-8, 2007 Revised Selected
Papers, LNAI 5129, Springer-Verlag, 2008, pp. 17–31. (ISBN 978-3-540-89811-5)
45. Kronus, D. and Čepek, O. Recognition of Positive 2-Interval Boolean
Functions. Proceedings of 11th Czech-Japan Seminar on Data Analysis and
Decision Making under Uncertainty, pp. 115-122, Sendai, Japan, September 2008.
46. Barták, R., Čepek, O. Nested Temporal Networks with Alternatives: Recognition and Tractability. In Applied Computing 2008 - Proceedings of 23rd
Annual ACM Symposium on Applied Computing, Volume 1, pp. 156-157, ACM, 2008
(ISBN 1-59593-753-7).
47. Čepek, O., Kučera,
P. Disjoint essential sets of implicates
of a CQ Horn function. Proceedings of 12th Czech-Japan Seminar on Data
Analysis and Decision Making under Uncertainty, pp. 79-92, Litomysl,
September 2009.
48. Boros,E.; Čepek,O.;
Kogan,A., Kučera,P. Exclusive and essential sets of implicates of Boolean
functions. Discrete
Applied Mathematics Volume 158, Issue 2 (2010), pp.
81-96, Elsevier Science,
49.
Čepek,O. Book Review:
Computational Complexity – A Modern Approach by S.Arora and B.Barak. Computer
Science Review, Vol. 4, Issue 3, August 2010, pp. 185-187, Elsevier Science,
50.
Boros,E.; Čepek,O.; Kogan,A., Kučera,P. A subclass of Horn CNFs
optimally compressible in polynomial time. Annals
of Mathematics and Artificial Intelligence Vol.57, Numbers 3-4 (2010),
pp. 249-291, Springer
Verlag (DOI: 10.1007/s10472-010-9197-7) (ISSN: 1012-2443)
51.
Barták, R.; Čepek, O.; Surynek, P. Discovering implied constraints in precedence graphs with alternatives.
Annals of Operations Research Volume
180, Number 1 (2010), pp. 233-263, Springer Verlag (DOI:
10.1007/s10479-008-0492-1) (ISSN: 0254-5330)
52.
Barták, R.; Čepek, O. Incremental
propagation rules for a precedence graph with optional activities and time
windows. Transactions of the
53.
Čepek,O.; Kučera,P. Various notes on SLUR formulae.
Proceedings of 13th Czech-Japan Seminar on Data Analysis and Decision Making
under Uncertainty, pp.85-95, Otaru, Japan, November
2010.
54.
Čepek, O.; Kronus, D., Kučera, P. Analysing DNA Microarray Data Using Boolean
Techniques. Annals of
Operations Research. Volume 188, Number 1 (2011), pp. 77-110, Springer Verlag (DOI: 10.1007/s10479-010-0723-0) (ISSN: 0254-5330)
55. Čepek,O.; Kučera,P.
Disjoint essential sets of implicates of
a CQ Horn function . Annals of
Mathematics and Artificial Intelligence Vol.61, Number 3 (2011), pp. 231-244, Springer Verlag (DOI:
10.1007/s10472-011-9263-9) (ISSN: 1012-2443)
56. Boros,E.; Čepek,O.;
Gurvich,V. Total tightness implies
Nash-solvability for three-person gane forms. Discrete Mathematics. Volume 312, Issue 1
(2012), pp. 1436-1443, Elsevier Science (DOI: 10.1016/j.disc.2011.12.028) (ISSN 0012-365X).
57. Čepek, O.; Kučera, P.; Vlček, V. Properties of SLUR Formulae. Proceedings of SOFSEM 2012: 38th Conference on Current Trends in Theory
and Practice of Computer Science, Špindlerův Mlýn, January 2012, pp. 177-189, LNCS 7147, Springer Verlag (DOI: 10.1007/978-3-642-27660-6) (ISSN 0302-9743)
(ISBN 978-3-642-27659-0)
58.
Čepek, O.; Kučera, P.; Savický, P. Boolean
functions with a simple certificate for CNF complexity. Discrete
Applied Mathematics. Volume 160, Issues 4-5 (2012), pp. 365-382, Elsevier Science (DOI:
10.1016/j.dam.2011.05.013) (ISSN 0166-218X).
59.
Čepek, O.; Kučera, P.; Kuřík, S. Boolean
functions with long prime implicants. Proceedings
of International Symposium on Artificial Intelligence and Mathematics (ISAIM
2012), Fort Lauderdale, USA, January 9-11, 2012.
60. Babka, M.; Balyo, T.; Čepek, O.; Gurský, Š.; Kučera, P.; Vlček, V. Complexity issues related to propagation completeness. Artificial Intelligence. Volume 203 (2013), pp. 19-34, Elsevier Science (ISSN 0004-3702) (DOI: 10.1016/j.artint.2013.07.006).
61. Čepek, O.; Kučera, P.; Kuřík, S. Boolean functions with long prime implicants. Information Processing Letters. Volume 113, Issues 19–21 (2013), pp. 698-703, Elsevier Science (ISSN 0020-0190) (DOI: 10.1016/j.ipl.2013.07.001).
62. Boros,E.; Čepek,O.;
Kučera, P. A decomposition method for CNF minimality proofs. Theoretical Computer Science. Volume 510 (2013), pp. 111-126, Elsevier Science
(DOI: 10.1016/j.tcs.2013.09.016) (ISSN 0304-3975).
63. Čepek,O. and Gurský,Š.
On the gap between the complexity of SAT
and minimization for certain classes of boolean formulas. In Proceedings of
International Symposium on AI and Mathematics (ISAIM), Fort Lauderdale, USA,
January 2014.
64. Čepek,O. and
Gurský,Š. Tractability conditions for
classes of CNFs and their influence on the complexity of CNF minimization. In
proceedings of CJS 2014- 17th Czech Japanese Seminar on Data Analysis and Decision
Making under Uncertainty, Kitakyushu, Japan, September 2014.
65. Čepek,
O.; Gurský,Š.;
Kučera, P. On Minimum
Representations of Matched Formulas. Journal of Artificial Intelligence Research. Volume 51 (2014), pp. 707-723, AAAI Press (ISSN 1076-9757) (DOI:10.1613/jair.4517)
66. Čepek,
O.; Hušek,R. Knowledge compilation and compression using interval
representations. In proceedings of CJS 2015- 18th Czech Japanese Seminar on
Data Analysis and Decision Making under Uncertainty, Broumov, Czech Republic,
September 2015.
67. Čepek,
O.; Hušek,R. Knowledge compilation from DNF to
switch-list representations. Proceedings of International Symposium on Artificial
Intelligence and Mathematics (ISAIM 2016), Fort Lauderdale, USA, January 4-6, 2016.
68. Boros,E.; Čepek,O.;
Makino, K. A combinatorial min-max theorem and
minimization of pure-Horn functions. Proceedings of International
Symposium on Artificial Intelligence and Mathematics (ISAIM 2016), Fort
Lauderdale, USA, January 4-6, 2016.
69. Čepek,
O.; Hušek,R. Recognition
of tractable DNFs representable by a constant number of intervals. Discrete
Optimization. Volume 23 (2017), pp.1-19, Elsevier Science (DOI: 10.1016/j.disopt.2016.11.002) (ISSN: 1572-5286)