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Abstract

In the future of Smart Grids, many different devices have to be integrated into one overall
system. These devices are of various types, they are related to various forms of energy, they
have to exchange these different forms of energy, and together they have to work towards
common objectives. To handle such a system, a general model is required, which allows the
integration of all these different devices, energy forms and objectives and which is able to
incorporate also future developments for which the concrete setting can not be foreseen yet.

In this paper, we present such a flexible model which handles different types of devices
and which supports arbitrary ways of energy flows between devices. Instead of considering
complex operations of devices we introduce simple basic devices which can be easily combined
to obtain advanced functionality. The flexibility of the resulting model is demonstrated by
considering some advanced devices but also by giving a reduction between Binary Linear
Programming and the proposed model where variables and constrains are in a one-to-one
correspondence to devices and energy flows.

1 Introduction

Modern society is substantially depending on energy. Humans are consuming energy during lots
of their activities: Lighting is used to see our work or entertainment, heating or cooling is used to
keep us in a comfort environment and other energy is used for communication or transportation.
The energy needed for these activities has various forms, e.g. electricity, gas and hot water and
in the past this energy was produced mainly in large plants far away from the consumption
whereby the production was to a large extend based on fossil fuels. Recent developments and
environmental needs have led to a fundamental change of the system. Nowadays more and more
energy is generated based on renewable sources and the generation is partly done by small units
near the consumption; e.g. PV-panels on roofs of family houses.

The mentioned changes of the energy system lead to new challenges as now a larger part of the
energy generation is based on non-controllable sources (e.g. wind and sun). To compensate for this
reduced flexibility on the production side, new occurring flexibilities on the consumer side need to
be taken into account. This process is called demand side management (DSM) and several DSM
approaches have been proposed in the literature (see e.g. [20, 4, 14, 21, 9]). Next to these changes
in flexibility, in the future also the number of relevant devices for generating, consuming, storing
and converting of energy will increase a lot. To deal with these new developments, the concept
of Smart Grids is seen as an essential building block to support efficient control of producing,
transporting and consuming energy in the future (for definitions and further information on Smart
Grids, see e.g. [1, 2]). The main goal of Smart Grids is to allow a screening and control of the
energy flow and the involved consuming and producing devices in order to realize a matching of
supply and demand and to stabilize the grid. This implies that many different devices have to be
integrated, whereby these devices may be quite different from nature, are related to various forms
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of energy, exchange these different forms of energy with each other and with the grid, and have
to operate taking into account operational restrictions and objectives. To set up such a system,
an overall model for Smart Grids is needed. This model has to support the integration of all sorts
of different devices, energy forms and objectives whereby at the time the model is developed not
even all concrete devices, energy forms and objectives are known. This asks for a general and
flexible model.

In this paper we develop such a general and flexible mathematical model which describes
flows of different forms of energy between various types of devices. The model has two major
elements: devices and flows of energy. On the device side it is clear that the difference in the
functionality of the devices may ask for different mathematical models. However, it is not a good
choice to introduce for each new individual device a detailed model. For this, we have chosen to
introduce more general classes of devices that can produce, transport, consume or convert different
types of energy and may even be able to do several of these aspects simultaneously. The second
important element within Smart Grids is that energy is exchanged between devices; e.g. one
device can produce energy, which is then transported by another devices and finally is consumed
by yet another device. These energy exchanges can create very complex relations between devices.
Therefore, a flexible model is necessary to capture the complexity of interconnections of different
devices.

At this point, it should be noticed that for the applicability of a general model it is important
not to consider all technical details, but to focus on the main aspects which are needed for an
efficient control in Smart Grids. Furthermore, the model should allow to focus only on that part
of the grid, which is e.g. relevant for the considered particular case. For example, determining
every single cable in a building is unnecessary as long as transportation losses can be estimated,
or the energy sources used by a heat pump may be important for some studies and irrelevant for
others. Therefore, we need a model which allows to abstract from engineering details but can be
flexibly adopted for different cases.

Many of the papers found in the literature do not consider such flexibility in modelling. Some
papers concentrate only on a single type of device (e.g. a heat pump in [7], a combined heat
and power generator in [5], a single flexible smart device in [16], or an appliance with fixed total
electricity demand [22]). Other papers have flexibility in types of devices but they are restricted
to a single form of energy which is distributed in a treelike structure (see e.g. [15, 20]). Another
example of a restricted approach is given in [18] where load shifting is studied by shifting given
consumption profiles to reach a desired total profile, but where e.g. storage devices are not
considered. Furthermore, a lot of papers study very specific subjects; e.g., using energy from
photovoltaic panels for charging electrical vehicles [26].

In literature, different concepts for Smart Grids and technical demonstration are studied (see
e.g. [13] for a survey). Furthermore, many software programs were implemented to monitor and
measure production, transmission and consumption resources, to calculate the impact of different
Smart Grid investments and to test communication standards (see e.g. [24]). The algorithms
supporting Smart Grid, in general rely on a central controller (see e.g. [15, 20]) or are completely
distributed and independent (e.g. frequency and voltage response systems [23]). In contrary
to these more technically oriented approaches, we are looking for a mathematical description of
devices and energy flows. Although this paper mainly concern about house devices, our model can
easily be extended for the industrial sector where demand side management is also an important
topic (see e.g. [17]).

The underlying basic idea of the model presented in this paper was already introduced by
Molderink [19]. Here, we extend that basic concept to a general model. Hereby we limit ourselves
by modelling most properties of devices using linear constraints. This allows us to use Mixed
Integer Linear Programming solvers to find optimal or close to optimal solutions. The main
purpose of the paper is to discuss how devices and energy flows between them can be modelled
in a quite general form and how these models can be used in various study cases and be the base
for algorithms to control Smart Grids. As starting point for our modelling approach we use some
simple elementary types of devices and show how they can be extended and combined to model
all sort of advanced devices. Furthermore, we show that although the basic devices are quite



simple and intuitive, they are quite powerful. More precisely, we show that our model is at least
as expressive as Binary Linear Programming.

The concept presented in this paper may have various applications. First, the presented model
can form the base of software programs designed to simulate or control the behaviour of smart
devices in future Smart Grids. We see also based on our cooperations with industrial partners the
rich that commercial companies might prefer chose a different approach and implement a huge
device library with plenty of parameters and constrains to model all sorts of existing appliances.
Creating such a device library is time consuming and also not easy to be maintained. Furthermore,
these is a high risk that such specific implementation hidden the integration of new such of devices
which may occurs in the future. Instead, it is more convenient to implement only a small but
flexible set of devices with basic properties and then provide the user the opportunity to model
more complex scenarios as combinations of basic devices as presented in Section 4. A second
application is more of education nature. The presented approach can be used to explain non-
OR specialists and students the power of a good mathematical modelling, especially that of Mix
Integer Linear Programming (MILP), in the context of Smart Grids.

It may be the case that in some study cases, there are more specialized algorithms that find
optimal solution in a more efficient way than by using generic MILP solvers based on the presented
model. However, developing such ad-hoc algorithms usually take a lot of time, so generic software
can be used to obtain preliminary results on small-scale cases to observe whether considered
approaches lead to promising results. Furthermore, it may take quite an effort to adapt such
ad-hoc approaches if an extension of the current version has to be carried out in the future.

The paper is organized as follows. Section 2 presents the model of devices and energy streams.
Section 3 shows how an arbitrary instance of Binary Linear Programming can be reduced to the
device model. Section 4 shows that some specific properties and devices can be obtained as a
combination of basic devices. Finally in Section 5, we give a short overview of one of our previous
studies [12] where the model of this paper was used. Important symbols of the model are listed
in Appendix.

2 The model

The presented model of energy systems consists of various types of devices which exchange arbi-
trary types of energy between them. Examples of possible devices are fridges, heat pumps, PV,
TV, gas pipes, etc. Devices can consume, produce, store or transport energy or convert energy
into different types of energy. Every type of energy can be produced and consumed by many
devices. In that way, flows of energy between devices form complex relations between devices. As
in general energy does not disappear, we require that these flows of energy fulfil the conservation
law, so we need to take this into account when connecting devices. On the other hand, the model
should not be too detailed and describe all technical details, e.g. it may not be necessary to take
every single electrical cable in a building into account. To realize this, we use pools which provide
us an abstraction from technical implementations of interconnections of devices. Every pool is
connected to a set of devices, it maintains energy flow of only one type of energy and it ensures
that the total amount of energy coming into the pool equals the total amount of energy going out
of the pool at every time. The devices themselves are not required to fulfill the conservation law
if they consume or produce energy and the way of production and consumption is not relevant for
the model, e.g. a TV consumes electricity and produces heat but heat may not be interesting in
studies of electrical demands.

Figure 1 presents a fictive model a biogas station and two houses interconnected via a trans-
portation network. Meaning of all devices of the proposed model is presented in the remainder of
this section. Figure 1 also gives images of basic devices used in other figures in this paper.
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Figure 1: Example of a model consisting of a biogas station, two houses and a transportation
network.

2.1 Notations

In order to obtain a simple but powerful model, we do not allow any direct connection of neither
two devices nor two pools. Therefore, a model can be represented as a bipartite graph whose
one partite is formed by a set D of devices and the other one is formed by a set P of pools. A
device and a pool are connected by an edge whenever the device produces energy into the pool or
consumes energy from the pool. Let D, C D be the set of devices which are connected to a pool
p € P and let P; C P be the set of pools which are connected to a device d € D.

In the strict mathematical formulation we do not need to take care of the types of used energy
nor the physical units in which the energy is measured. However, we always assume that one pool
can be used for only one type of energy and all flows to the pool are measured in the same physical
unit.

In general, time in the real world is continuous, and therefore many physical observations are
described by differential equations. However, if we would choose such an analytical model for
the control of Smart Grids, we would end up in a model which would be too hard to be solved
analytically. Hence, we simplify the model by considering a discretization of time leading to a
partition of the planning horizon into a set 7 = {1,...,T} of T consecutive time intervals.

Note that in this paper the index ¢ always stands for time interval, p for a pool and d for a



device, although it might be that only a particular type of device is discussed.

2.2 Pools

The total amount of energy produced into a pool has to be equal the total amount of energy
consumed from the pool in every time interval. To incorporate this conservation law into the
model, we denote by eq,,, the amount of produced (consumed) energy by a device d € D into
(from) a pool p € P in time interval ¢ € 7. For convenience, we consider that ey, > 0 if a device
d produces energy into a pool p and eq,, ¢ < 0 if a device d consumes energy from a pool p. The
conservation law is incorporated into the model by a constraint . D, Cdpt = 0 for every pool
p € P and time interval t € T.

2.3 Overview of devices

While all pools have the same physical and mathematical behaviour, we introduce various types
of devices with different behaviour. In this section, we explain the basic ideas of the proposed
model using the following types of devices.

e Non-controllable device: represents a fixed production or consumption pattern of energy
which we can neither control nor schedule.

e Converter: converts one or more types of energy into one or more other types of energy.
e Pipe: transports energy between different places (pools).
e Buffer: stores energy over time.

o Time shiftable device: has a fix consumption profile during its working process and has
to start its processing in a time interval chosen from a given prespecified subset of time
intervals, e.g. a washing machine and a dish washer.

Since different types of devices may have different operation modes or states and different
restrictions, every type of device has its own parameters, variables and constraints. These data
allow to compute for every device d the energy flows ey, based on its internal states for every
time interval ¢ € T and every pool p € Py.

2.4 Non-controllable device

We first describe the simplest type of device which is called a non-controllable device. 1t is used to
model all energy production and demand which we cannot control nor change (e.g. PV, wind mill,
TV, PC, ...). Of course, if such devices enable some kind of control in particular case studies, the
model of a non-controllable device is not appropriate.

The production of a non-controllable device d is determined by parameters Fy , ; which give the
amount of produced energy into a pool p in time interval ¢ (it is negative if energy is consumed).
The energy flow of a non-controllable device is simply expressed by the equation eq s = Fip,:-

We may restrict ourselves to the case that every non-controllable device is connected to exactly
one pool because it is always possible to split a non-controllable device connected to several pools
into several single-connected non-controllable devices.

2.5 Converter

We restrict ourself to a simple model for a converter which has only two operational states — it is
either on or off during a time interval. In practice, most converters are usually connected to two
or three pools (e.g. a Combined Heat and Power unit is connected to gas, electricity and heat).
In order to obtain a general model, we consider that a converter can be connected to an arbitrary



number of pools. When the converter is running it consumes (or produces) a fix amount of energy
from (to) every pool that the converter is connected to whereby this amount may differ per pool.

To incorporate the operational states into our model, we use a decision variable x4 € {0,1}
indicating whether a converter d is turned on in time interval ¢ € 7 or not. The production (or
consumption) of energy by the converter d is determined by a parameter L, which is the amount
of produced energy into the pool p when the converter is turned on (L, is negative if energy is
consumed). If start up and shutdown profiles exists, where the production or consumption differs
from these values, we have to add extra elements to the model.

The energy flow between a converter and a pool is computed by the flow formula eq,: =
Lgpza s for every time interval ¢t € 7 and pool p € P; connected to the converter d. This formula
guaranties that the device produces no energy (eqp: = 0) when it is turned off (x4; = 0) in time
interval t. On the other hand, when the converted is running (r4; = 1), then it is producing
edp,t = La,p energy into pool p.

Minimal running time

If that the converter d has to run at least R&J time intervals whenever it starts up, we need to
guarantee in our model that all variables g ¢42,. .. s T, RY Are equal 1 whenever z4; = 0 and
Zg4,1+1 = 1. We can achieve this by adding a constraint

Ry

(RY — 1) (za41 — zas) < Zxd,tJri
i=2

for every time interval .
Similarly, if a converter has minimal off time of length RdD , then we have to add a constraint

RY
(Ry —1)(1+ Tdip1 — Tde) > Zxd,t-ﬂ‘

=2

to our model.

These constraints might have to be adapted slightly for the beginning and the end of the
planning horizon. The exact formulas depend on whether we allow the converter to be running
before and after the planning horizon, however the resulting constrains are similar to the onces
given; for more details, see e.g. [6].

Start up and shutdown profiles

Some types of converters do not produce immediately the full amount of energy into a pool when
they start but they need some time to reach full production (e.g. microCHP devices). This start
up time may be longer than the length of one time interval, so a start up profile needs to be
considered.

Let us consider that the converter d has a start up profile ng 15 PdUp pU of length ng.
Py 2Py .
If the converter starts at time interval ¢, than it produces ng’i energy into pool p in the time
interval t +1¢ — 1 for i = 1,...,]55]17.

To incorporate such profiles into our model, we create new variables ug; € {0,1} such that
uqs = 1 whenever x4 =1 and z44—1 =0, i.e. x4, = 1 if the device is started in the time interval
t . We obtain this property by adding constraints

® Ugi > Tdtr — Tdi—1,
o ug: < x4+ and

o ugr <1 —xgs1.



The amount of produced energy now is given by

Py,
U
€dp,t = LapTar+ Py i—Lap) vudi—it1
P
i=1

0,1
create new variables vy, € {0,1} such that vy, = 1 whenever z4; = 0 and 24,1 = 1. We obtain
this property by constraints

Similarly, we can consider a shutdown profile PP ...,Pde pp of length pr. Again, we
Pl g p ’

® Vgt > Tdi—1 — Td,
® vy <441 and
e vy < 1- Td,t-
The amount of produced energy considering both start up and shutdown profiles is now given by

pU DD
Pd,p Pd,p

U D
edpt = LapTas+ Z (Pilpi — Lap) tae—it1 + Z Py iVd t—it1-

=1 i=1

Note, that we assume that a converter with a start up profile has a minimal running time

RY > max {I:’g piDE Pd} and a converter with a shutdown profile has a minimal off time R} >

max {[:’fp; pE Pd} which in general is the case in practice.

2.6 Pipes

The main purpose of the device called pipe is to model transportation of energy between different
places (pools in our model). In the simplest case, a pipe d is connected to two pools p; and py and
x4, specifics the amount of energy transported from the pool p; into the pool ps in time interval
t, whereby x4, is a decision variable of the model. We assume that the transportation time is
negligible (or much shorter than the length of one time interval) which is true for electrical cables,
but e.g. for transcontinental gas pipelines a more complex model may be needed. In this simple
setting, the energy flows are eq ), + = —7q+ and eqp,+ = 2q¢. Note that the control variable
x4, may be considered as continuous for pipes while it is binary for converts. We use the same
symbol for control variables of a pipe and a converter to emphasise the relation between them.
This relation is also discussed later in this section.

Capacity

Note, that the amount of transported energy xq; can be negative which means that the energy
is flowing the reverse direction. For some pipes this may be an undesired behaviour in reality.
Furthermore, pipes usually have limited capacity. Hence, we introduce a lower bound B, and
an upper bound B; which express the capacity of a pipe d. The pipe d now has to fulfil the
constraints B < xg,; < B; for every time interval ¢t € T.

A typical example of the usage of a lower bound is occurring when a pipe which can transport
energy only in one direction is modelled. In this case, we set B; = 0. The lower bound or upper
bound of the capacity of a buffer usually do not vary over time. If we need to model a pipe with
fluctuating bounds on the capacity, we can use parameters B, and B;t instead of B, and B;
to express a lower bound and an upper bound of the capacity in the time interval ¢.



Transportation factor

In the most simple formulation, a pipe is connected to two pools p; and ps. However, these two
pools need to be distinguished to specify the direction of the flow of energy. Since it is better not
to rely on distinguishing pools connected to the same pipe, we introduce transportation factors
(which are later also used for other purposes).

For every connection between a pipe d and a pool p we introduce a transportation factor Ty,
which is a linear factor between the amount of transported energy by the pipe 24; and the energy
flow eqp . Formally, the energy flow formula becomes ey, = Ty pxq4+. For example, a simple
pipe d from a pool p; to pool ps has transportation factors T, ,, = —1 and Ty, = 1. Note that
by using transportation factors, the variable x4, no longer needs to represent the actual amount
of transported energy.

Using the transportation factors, we now can also consider pipes that are not connected to
exactly two pools. A pipe where the flow is split in two different flows with a constant fraction
between these two flows is a practical example of three-sided pipe.

One-side pipes

Pipes connected to only one pool can e.g. be used to model a source for energy which is produced
(or consumed) outside our model (grid). For example, we may have the possibility to buy (or
sell) energy on a market and we prefer to model the market as one point where energy enters the
modelled system instead of incorporating a full model of the market.

The one-sided pipes have some relation with non-controllable devices. A non-controllable de-
vice d with production parameter Fy , ; can directly be modelled using a one-side pipe d connected
to the pool p with capacity bounds B, = B:{t = Fyp+ and the transportation factor Ty , = 1.
But as non-controllable devices occur qﬁite oftén, they are introduced as separate type for easier
understanding within case studies. This modelling of a non-controllable device using a pipe is an
example of how a device can be used to model other devices. More such examples are given in
Section 4.

To get some feeling for the power of one-sided pipes, consider a production (market) with some
flexibility on the amount of produced energy. This can be modelled by a one-side pipe d which is
connected to a pool p with transportation factor Ty, = 1 and the flexibility is modelled using the
bounds B; and B;.

Multiple-side pipes

A natural way to model transportation losses is to connect a pipe to three pools: the first one for
the source of energy, the second for the destination and the third for the losses. This motivates
the introduction of multiple-side pipes.

Formally, a pipe connected to three or more pools has a well-defined behaviour: For every
connection to a pool p a parameter Ty, represents a transportation factor. The variable x4
represents an operational state of the pipe d in time interval ¢ and the energy flows are given by
ed,pt = Ty prq+ for each p € Py.

This formulation looks very similar to the basic definition of a converter. The main difference
is that the variable x4, is binary for converters but it can have arbitrary value for pipes. However,
if we have a converter which allows a continuous control on production and consumption, such
a converter may be (mathematically) modelled using a pipe. Note, that this approach has one
disadvantage in the requirement that the ratio between the produced energy into the different
pools has to be independent on the operational state x4, (the ratio follows from the transportation
factors Ty ). This requirement essentially says that efficiency of the converter is constant which
may not be true for all such devices in reality. However, the current model of a converter can
easily be extended to a converter which has a discrete set of operational states.



Losses

Transportation losses are common in reality. A simple model of such transportation losses is
based on the assumption that losses are linear in the amount of transported energy. If a pipe d
models the transport of energy from a pool p; to a pool ps without transportation losses, we use
transportation factors Ty ,, = —1 and Ty,, = 1. However, if we simply decrease the parameter
T4,p,, we model the fact that 1 — Ty p, of the amount of transported energy is lost. Furthermore,
we may connect the pipe to a pool p of losses and set T;;; = 1 — T 5,. In this way we may get
information of the efficiency of an energy system.

Note that a pipe with a transportation factor Ty, different from 1 and —1 for some pool
p € Py may have an undesired behaviour if the amount of transported energy x4 is negative. For
instance, a pipe with losses now increases the amount of transported energy if energy flows in the
reverse direction. In such cases we should set the lower bound B; = 0 on the capacity to obtain
the proper one-directional pipe and model, if needed the opposite direction by an own pipe.

2.7 Buffers

Buffers are devices used for storing energy. Typical examples of buffers are electrical batteries or
hot water storages but buffers can e.g. also be used for modelling fridges.

A buffer d is connected to one “main” pool p which is used for charging and discharging of the
buffer. However, a buffer may also be connected to a pool of losses.

The amount of energy stored in a buffer d in the beginning of time interval ¢ is called the state
of charge and is denoted by c4 . Since the amount of energy which the buffer d produces into the
pool p during time interval ¢ is given by eq, ¢, the state of charge decreases by the amount of eg p ;.
Hence, the basic charging formula is c¢q,4+1 = ¢4t —€q,p,c and the energy flow is eqp 1 = Ca,t —Cd,t+1-
Note that c4 741 denotes the state of charge at the end of the last time interval.

Capacity

Common buffers do not allow to store a negative amount of energy and their capacity is limited.
Therefore, we consider that the state of charge ¢4+ of a buffer d can be restricted by a lower bound
B, and an upper bound B;t on the capacity of the buffer at time interval t. We might have
chosen to consider lower and ﬁpper bounds that do not vary over time, but it is at least helpful to
use varying capacity to be able to incorporate the initial state of charge and to require a minimal
state of charge at the end of the planning horizon.

Note, that if the capacity of a buffer is infinite or irrelevant during the planning horizon (e.g.
the thermal storage of a heat pump), then it may be an option to replace the buffer by a one-side

pipe.

Lower bound on the capacity following from a real world case

The lower bounds on the capacity are often a consequence of technical properties of the buffers.
But next to these technical properties there maybe also desired lower levels on the content of the
buffer (we call them set points) which result from the usage of the buffer. E.g. a buffer for hot tap
water should be filled up to a certain level to be prepared to fulfill the demand inside the house. If
this demand occurs, the content of the buffer may fall below this set point, but then a connected
converter should start running to fill up the buffer again.

To model this, let d be a buffer which is connected to a pool p and let d be a converter that
is producing energy to the pool p. Furthermore, let Bj, be a set point on the capacity of the
buffer d which indicates when the converter d has to be turned on. This means that the converter
d has to be running (zg, = 1) when the state of charge of the buffer d is below the set point
(ca,r < Bj,). This can formulated using the inequality Zz g, > B}, — cq+ where Z is a sufficiently
large number; that is always greater than the difference B}, — cq,.
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The above introduced condition models the real usage of buffers more realistically than modi-
fying the lower bound only. Note that it is possible to use both the classical lower bound B, it and
the lower bound B}, on one buffer d simultaneously but they also may be considered one by one.

Losses

Buffers often have losses during charging, storing and discharging of energy. An often used way
to model storing losses is to assume that losses are linear in the current state of charge. If L3
denotes this linear factor of these losses, the amount of lost energy during time interval ¢ is
Licq:. Now, the charging formula is cg¢41 = ¢4t — €a,p,t — Ljcq+ which gives the energy flow
€d,p,t = (1 - Lf{)cd,t — Cd,t+1-

Furthermore, it is possible to model charging losses that are linear in the amount of charged
energy. For this we split the variable eg; ; in variables ed + and Capit which denotes the amount
of outgoing and incoming energy to a pool p in time 1nterval t for charging and discharging a
buffer d, respectively. Now, the energy flow is eq,,: = €5, , — ed’p’t. Let L be the linear factor of
the charging losses. Since sz@;,p,t energy is lost, the state of charge of the buffer is increased only
by (1 — L(Ci)edfp,t, meaning that the charging formula now is

capr1 = (1 —L5)car + (1 — L;)e;m — gt
Note that we also need to add non-negativity restrictions e;m > 0 and eqpt = 0

The discharging losses are modelled similarly using a parameter L%. For simplicity of the
notation, we consider that the amount of energy entering the pool p is e; ,, while the state of
charge of the buffer decreased by (1 + Lg)e;p’t. The charging formula now becomes

caprr = (1= Li)car+ (1 —Les , — (1+ Lieg, -

Note that discharging losses may also be modelled via the charging losses by adapting the capacity
of the buffer and adding all losses to the charging process.

In the mathematical model of buffers with losses we implicitly assume that we do not allow
charging and discharging in the same time interval (i.e. we assume that not both energy flows

e;m and €qpt A€ positive) as this is impossible in reality. To prevent this possibility, we have

to add a binary variable bq; and constraints Zbg; > ed+p ,and Z(1 —bg) > Capit for every time
interval t where Z is a sufficiently large number.

Maximal charging energy

The amount of charging or discharging may be bounded due to physical properties of a buffer or
limited capacity of a connection. This can be modelled by constraint —Mj < eqp: < M, j where
M§ gives the maximal charging and M, j the maximal discharging.

2.8 Time shiftable devices

Time shiftable devices are devices consuming energy whose consumption can be scheduled in time.
Time shiftable devices can have various operational restrictions which depends on the type of the
appliances and human interaction. In this paper, we restrict us to the basic case and do not discuss
more advanced properties and the possibility to preempt the operation of the device.

In the simplest case, a time shiftable device d has an energy profile Py, 1, ..., Pip 1, of length
Lgy. A controller of the time shiftable device decides the time interval t; € 7 in which the time
shiftable device starts. When the appliance is scheduled to start in time interval ¢4, then it
produces Py :—t,+1 energy into pool p in time interval ¢t = t4,...,tq + Lq — 1. Examples of such
appliances are intelligent washing machines, driers and dish washers.

Let x4. be a variable indicating whether the appliance d starts in time interval t. Observe
that the energy flow from this device is Py i%q,t—i+1 in time interval ¢ if the appliance d starts at
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producti¢n profile

Figure 2: Surplus and deficit pipes are used to model deviation from the production profile.

time ¢t — ¢ + 1. This implies that the energy flow formula is eq,; = Zf:Dl Py i%di—it1. Hereby,
we assume that the appliance has to start exactly once, leading to the restriction ), x4 = 1.

The time shiftable device may also have limitations on the time intervals it can start. In this
case, we may set x4 = 0 whenever the appliance cannot start in time interval ¢.

Furthermore, a time shiftable device may require to consume more than one type of energy
(e.g. washing machines may consume electricity and hot water), leading to given profiles for each
type of energy. However, we can assume that consuming profiles for all connected pools have the
same length since we can fill up the shorter profile by zeros.

2.9 Objective functions

In order to optimize production and consumption of all devices objective functions need to be
modelled. In this section we describe some objectives which can be used and optimized.

Section 2.6 shows that a simple energy market can be modelled using a single-side pipe. Let
G, be the price on a pipe (market) d in time interval ¢. As the amount of bought energy on the
market is the amount of transported energy x4 by the pipe d in time interval ¢, the total cost for
energy in this simple case is given by >, Gg47a,. Similarly, we can consider a price Gg,; for
running a converted d in time interval ¢ leading to the same mathematical formula ZtET Gatxa
determining the total operational cost.

Another common goal is to minimize the deviation of the used energy from a given prespecified
production profile. The aim is to adopt the consumption of all considered devices in such a way
that the total consumption over time is as close as possible to the given production profile. Figure
2 shows that this deviation can be measured using a surplus pipe ds and a deficit pipe dy that are
both connected to the same pool p thereby modelling the production profile. The lower bound on
the capacity of the both pipes equals zero and the transportation factors of pipes are Lg, , = —1
and Lg,, = 1. The objective function now is min ), +(wa, + + Za,.t)-

We may also be interested in minimizing the peak of the energy consumption instead of the
total sum. This is typical in situations where electrical cables or gas pipes need to dimensioned
for the maximal flow. In this case we introduce for a pipe d a new variable py which measures the
maximal flow over time. Constraints xq; < pq for every time interval ¢ € T guarantee that pq is
never smaller than the flow in the pipe. If energy can flow in both directions, we also should add
a constraint —x4; < pg. Now, we can minimize the peak by using the objective function min pg.

We can combine the last two approaches to minimize the maximal fluctuation. For this, we use
peak variables py, and pg, for the deficit pipe p; and the surplus p; and constraints =4, < pa,
and x4, ; < pq, for every t. The objective function now gets min(pq, + pa, )-
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fixed demand dj pipe do

converter dg

Figure 3: Example of reduction of an instance of binary LP into our model.

3 Relation to Binary Linear Programming

The previous section presents a model for energy flows in Smart Grids. The basic elements of
this model are devices and pools together with connections between them. Although only these
basic structures are used, the resulting model is already very flexible and powerful as we show in
this section. We do this by presenting a quite direct polynomial reduction of the binary linear
programming problem in the developed model whereby using only one time interval. The idea of
the reduction is to replace every continuous variable by one pipe and every binary variable by one
converter. Then, every equation is replaced by one pool and every right hand side of a constraint
by one non-controllable device.

Small example

We first present the reduction on a small example to give the reader a feeling of the used con-
struction. For this, consider the following binary LP.

min c1r; + CoTy + C3 T3

by
ba

s.t. a1,1T1 + a1.2 T2 + 1,373

vV

211 + a22T2 + az3T3
1 €ER, 29 >0, 3?36{0,1}

For the two constraints we introduce pools p; and ps, for the continuous variable x; we intro-
duce a pipe d; and for the continuous variable xo we introduce a pipe ds having a lower bound
on the capacity B;, = 0. Both pipes d; and d are connected to both pools p; and p; with the
transportation factor Tgy; ,, = a; ; for 4,5 € {1,2}. For the binary variable x3 we introduce a con-
verter dz which is connected to both pools p; and p, with the production factors Lg, ,, = a; 3 for
i € {1,2}. For the right hand side of the equality we introduce a non-controllable device d; with
the production parameter Fy , = —b;. For the right hand side of the inequality we introduce
a pipe dy connected to the pool ps with the transportation factors Ty, p, = 1 and a lower bound
on the capacity of T, ,, = —ba. For the objective function we introduce prices Gy, 1 = ¢; for
j €{1,2,3}. The model obtained by this reduction is presented on Figure 3.

General reduction

For the general reduction, let us consider a binary linear programming problem of the basic form
min{ch; Ax=b,2>0,z; € {0,1} for j € I}

where I is the set of binary variables.
The reduction is as follows: For every equation ) j A; jxj = b; of Ax = b we introduce a pool
pi, for every binary variable z; with j € I we introduce a converter d; which is connected to every

pool p; with the production factor Ly, ,, = A;; and for every continuous variable z; with j ¢ I
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we introduce a pipe d; having a lower bound on the capacity Bd_j = 0. The pipe d; is connected to
every pool p; with the transportation factor Ty, ,, = A; ;. We do not need to connected a device
d; and a pool p; if A; ; = 0 since such a connection has no influence on the model. For the right
hand side b; we connect a non-controllable device d; having a production parameter Fy, ,,, 1 = —b;
to pool p;. For the objective function, we introduce prices Gg, 1 = ¢; for every variable z;.

Note that if we allow an advanced converter whose operational state can be any integer instead
of only 0 and 1, we are also able to reduce a general Mixed Integer Linear Problem (MILP) to the
model. Such an advanced converter can be useful to model e.g. a valve.

Methods from LP

Based on the presented reduction, we have one-to-one correspondence between variables and con-
straints of the binary LP and devices and pools of the model. This natural correspondence is
very useful since we can use knowledge from LP theory within the energy model. Some of this
knowledge has already been used without explicit notion. In the following, we summarize these
methods and discuss the relation between the model and LP theory.

An unbounded variable z can be replaced by two non-negative variables z+ and =~ in order
to obtain the basic form where all variables are non-negative. A similar approach is used to
transform the absolute value |z| into an LP. Note that we use such a method in Section 2.9 to
model deviation from a given production profile. Furthermore, in Section 2.7 we use the positive
el . and negative e, , parts of the energy flow €4+ to model charging and discharging losses of
a buffer. We also model those losses using two pipes which represent positive and negative parts
of the energy flow between a pool and a buffer. Generally, we can replace a bi-directional pipe by
two one-directional pipes, but we have to be careful whether flows in both pipes can be positive
in the same time interval.

In LP theory, non-negative slack variables are used to replace inequalities with equalities in
the constraints. For this purpose, we can use within our energy model a pipe with the capacity
constraint B; = 0. In the presented example above we use the pipe dy to model the inequality.

Finally, the classical algorithm for solving LP is the Simplex method which is based on Gaussian
elimination. In Section 2.7 we note that buffers without any capacity constraints can be replaced
by a pipe. The correctness of this replacement can e.g. be proven using Gaussian elimination.

4 Combination of devices

The previous section indicates the strength of the model by presenting a relation to Binary Linear
Programming. In this section we present some further examples demonstrating this strength.
More precisely, we show how some advanced devices can be obtained by using combinations of
basic devices presented in Section 2.

Examples of this section proofs the strength of the model in various ways. Section 4.1 shows
that the same combination of a converter, a buffer and a non-controllable device be used for
purposes unrelated on the first sight. Section 4.2 shows that losses of a buffer can be modelled
using pipes and the main observation is that MILP solver should not require significantly more
computational time to solve the model with the combination, although the model looks more
complex. Section 4.3 shows that basic thermodynamics can be modelled using simple devices.
Section 4.4 discusses modelling devices that are not connected during the whole planning horizon
(e.g. electrical cars). Section 4.5 shows that energy flows eg,: do not necessarily mean only
amount of energy but they can also be used for purely mathematical purposes to model mutual
restrictions between devices.

4.1 A combination of a converter, a buffer and a non-controllable device

Several complex devices can be modelled using combinations of basic devices and some of such
combinations may be handy in different situations. One of the most useful combinations is formed
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converter

consumption

Figure 4: Combination of a converter, buffer and non-controllable consumption.

by a converter, a buffer and a non-controllable device which are connected to a common pool, see
Figure 4. This combination can be used to model the following elements.

Hot water supply: The converter and buffer form a model of a simple electrical or gas boiler
to produce hot water. The added non-controllable device represents the consumption of hot
water.

Heating: The given combination may be used as a very simple model of house heating. Hereby,
the converter represents a simple heater. The capacity of the buffer corresponds to the heat
capacity of a house and the state of charge of the buffer is related to the temperature inside
the house. Heat losses may be modelled using the non-controllable device if we assume that
the temperature differences inside the house do not have significant influence on the losses.

Fridges and freezers: A fridge essentially works in the opposite way than heating, so it may
be modelled similarly. However, we should be careful with the correct interpretation of
all parameters. The state of charge of the buffer again represents the temperature inside
the fridge, but a higher state of charge means lower temperature. The converter does not
produce heat to the fridge but it decreases the temperature inside the fridge, so the converter
increases the state of charge of the buffer (fridge). The non-controllable device decreases the
state of charge of the fridge due to thermal loss and usage of the fridge by humans.

Inventory: The considered combination is also related to basic Inventory control problems (see
e.g. [25]). A buffer may represent an inventory and a converter may represent orders.
However, the way converters are defined leads to a situation, where it is only possible to
order a fix amount which is not a typical situation in inventory management.

Specialized algorithms for this combination of a converter, a buffer and a non-controllable
device are developed in [10, 11].

4.2 Losses of a buffer using pipes

Section 2.7 presents how charging and discharging limits and losses of a buffer can be incorporated
into the model of a buffer. In this section, we show that our energy model is strong enough to
model these limits and losses without the necessity to introduce a special constrains in the model
of a buffer. Our goal is to model charging and discharging limits and losses of a buffer using pipes
and a simple buffer without constrains for charging and discharging limits and losses. Next, we
show that this approach should not lead to an increase of the computational time needed to solve
the model using MILP solvers.

Figure 5(a) presents a buffer d connected to a pool p. Hereby this buffer and the pool are
only a part of a grid and other devices may also be connected to the pool p. If we now have
charging and discharging bounds for the buffer d, we can model this using a pipe d with bounds
on its capacity (see Figure 5(b)). Hereby, we set the transportation factors to be T;; , = —1 and
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Figure 5: Modelling charging and discharging limits and losses using pipes.

T;,, = 1 and the charging limit of the buffer is modelled by the upper bound B;—r on the capacity

of the pipe and the discharging limit is modelled by the negative value of the lower bound B .

If we further want to model charging and discharging losses of the buffer d we can do this as
indicated in Figure 5(c). The pipe d. is only used for charging while the pipe d4 is only used
for discharging. Therefore, both pipes have lower bounds B, = B, = 0 on their capacity and
upper bounds may be used for charging and discharging hmlts of the buffer. Charging losses L§
of the buffer are modelled using a transportation factor Ty, ,, = 1 — L of the charging pipe
d. and discharging losses L% of the buffer are modelled using a transportation factor Ty, p, =
—(1+ Lgd) of the discharging pipe d4. The transportation factors to the pool py are Ty, », = —1
and Ty, ,, = 1. In order to sum up both charging and discharging losses, we can connect both
charging and discharging pipes to a pool ps of losses which also is connected to a pipe of losses.
The transportation factors are Ty, ,, = L% and Ty, ,, = LS.

Computational time

In the following we compare the approach chosen in Section 2.7 for charging and discharging losses
of a buffer using the parameters L§ and Lg with the above approach, where losses are modelled by
pipes. More precisely, we investigate which approach is more efficient from an algorithmic point
of view. As there may exist specialized algorithms for both ways, the given arguments are only an
indication and not necessarily a finite answer. Nevertheless, we can at least compare corresponding
MILP models to see which problem might be solved faster by an MILP solver.

A simple example of our aim is given in Section 2.6 where a non-controllable device d is modelled
using a pipe d with tight bounds B dpt = By, = ngt Although the pipe introduces new
variables x4 constrained by inequalities B dpt < Tdt < BT dp.t? these variables can be eliminated
by MILP presolver, so the dominating computatlonal time spent on finding an integer solution

should not be influenced by using the pipe d instead of the non-controllable device d.

The analysis of the buffer is more complicated, so we first list all constraints of both modelling
approaches. The constraints for the model which uses an advanced buffer can be summarized as
follows.
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Charging formula: c¢g441 = cq¢ + (1 — Lé)ez{_’p’t -1+ Lg)e;’p’t

Energy flow: Cdpt = C€gpy — ej{ypyt
Non-negativity: ez{,p,t, €apt =0
The constraints for the model which uses pipes is as follows.

Charging pipe: €d.,p1,t = —Td,t since T, p, = —1
€d.,pa,t = (1 - Lfl)xdc,t since Ty, p, = (1 - L?i)
ZTg.t >0

Discharging pipe: €dg,pr,t = Tdg,t since Tg, p, =1
Cdypat = —(1+ Lg)mdd,t since Ty, p, = —(1+ Lg)
gyt >0

Buffer: Cd,t+1 = Cd,t — €d,pa,t

Pool ps: €de,pa,t T €dgpat T €dpot =0

Contribution to p1: €4, pyt + €dypr .t

On the first sight, these sets of constraints look completely different. Moreover, the second
model uses more variables and constraints. But we should notice that variables x4, ; and zgq,
represent variables echr,p,t’ Capit> respectively. Furthermore, most MILP solvers first run a presolver
which may eliminate variables eq, p, t; €d. ps.t> €dy,p1,t> €da,ps,t 30d €4 p, ¢ Using these substitutions
we simply observe that the contribution to the pool p; in the second model becomes

_ L +
€de,p1,t T €dg,pr,t = ~Tdet T Tdg,t = Capt — Cdpt

which is the energy flow formula in the first model. Similarly, we derive the charging formula of
the buffer as

Cdit+1 = Cdit — €d,ps,t

= Cdt T €d.pst T €dypot

= car+ (1= LYza, e — (14 LYTa,.
cae+ (1= Lgdeg,, — (1+Lieg,

Since the running time of the MILP presolver is negligible, we conclude that the running time
of the MILP solver should be similar for both models. This supports our idea that modelling
software for Smart Grids should only implement simple properties of basic devices and complex
properties should be modelled using combinations of basic devices. From the discussion above
it follows that computational time should not significantly increase when combinations of basic
devices is used instead of complex properties, even though the size of MILP problem is increased.

4.3 Losses of a buffer in unsteady environment

In this section we consider an environment where unsteady temperature has significant influence
on losses of a buffer which is placed in this environment; e.g. a hot water buffer is placed outside
a house. For the modelling, we assume that the state of charge cq; of the buffer d corresponds
to the amount of energy inside the buffer and that the average temperature inside the buffer; and
has a linear relation to this state of charge.

Let Ty: be the temperature in the buffer d in time interval ¢ and let the state of charge be
given by cq+ = Cyq(Ty—TY) where Cy is the thermal capacity and T the temperature if the state
of charge is zero. As losses depend on thermal conductivity, they can be determined by Fourier’s
law

kEAAL
Qar = ——(Tae = Tas),
where k is the thermal conductivity of the material of the cover of the buffer whose surface area

is A and thickness is [. Furthermore, in this formula, the length of one time interval is At and the
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ambient temperature in time interval ¢ is T4 ¢. Although, this formula is simple, it may not be easy
to use in practice since the material of the buffer may not be homogeneous and the thickness may

not be constant. In such cases, the value of Uy = % needs to be estimated or experimentally
measured.
From the law of energy conservation it follows that Cyq(Tg 41 — Tat) = —€apt — Qa¢- The

energy flow formula in the energy model now gets

€d,p,t = *Cd(Td,t-i-l - Td,t) - Ud(Td,t - TA,t)
=Cy(Tyt —T39) — Ca(Tuss1 —T9) +Uag(Tay —T3) — Ug(Tay — TY)

U,
= (1 - C’j) cdt — Caprr + Ua(Tas — T3,

so the charging formula is

U,
Cdt+1 = (1 - d) Cat — edpi+ Ua(Tar —T3).

Note that the length of one time interval At has to be small enough to ensure that the inequality
Cqg > Uy = % holds. This inequality is called stability criterion on forward approximation
in finite difference methods (e.g. see [8]). It would be possible to use backward approximation
instead, but that is beyond the scope of this paper. Also note that L% = g—j can be seen as losses
like introduced in Section 2.7. The last term Ug(T4,: — Tg) is a fix flow which does not depend
on the state of charge of the buffer. Thus, this term can be modelled using a non-controllable
device d connected to a pool p with the parameter Fipi= Ua(Ta+ —T3). The resulting formula
is egpt = (1 — LY)car — cq 41 which gives the energy flow for a buffer with losses which does
not depend on environment. Therefore, it is possible to model losses of a buffer in unsteady
environment using a combination of a basic buffer and a non-controllable device.

4.4 Electrical cars

Batteries of electrical cars (PHEV) can essentially be considered as buffers in the model. The
main difference is that electrical cars may not be connected to an electricity pool for the whole
planning horizon.

One option to incorporate electrical cars into the model is to slightly modify the model of a
buffer so that it is possible to explicitly set the energy flow e4,: = 0 for every ¢t when the buffer
d is not connected to a pool p and set a new state of charge cq; for the first time intervals when
the car become connected.

Another possibility is adding a pipe and a non-controllable device, see Figure 6. The pipe
has the capacity Bj,t = 0 when the car is not connected to the electricity pool p and the non-
controllable device represents the consumption for driving. We can also set up a negative value
for the lower bound B, when the car is connected to the electricity pool in order to allow to use
the energy in the battei"y of the car for other appliances in a house.

The advantage of the first approach is that we can explicitly set up the state of charge of the
buffer in the first time interval when the car is connected to an electricity pool. In the second
approach we can explicitly set up the consumption for driving by the non-controllable device and
battery losses are computed automatically in the model.

4.5 Multifunctional heat pump

Some types of heat pumps are able to generate warm water for a space heating system and also
hot water for tap. This generated warm and hot water is buffered and consumed later on meaning
that the production is to some extend independent of the consumptions. Such a heat pump has
two different operational modes for heating water and a third one for being turned off. In this
section we present a model of this heat pump.
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Figure 6: Model of electrical cars (PHEV).
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Figure 7: A model of heat pump with two operation modes for generating warm water for space
heating and hot water for tap.

To model this, the heat pump d is connected to an electricity pool p and two pools p; and
po for warm and hot water. When the heat pump is producing warm water, it consumes L1
electricity and produces Lg ,, warm water. Similarly, when the heat pump is producing hot Water
it consumes L2 p electricity and produces Lgp, hot water. For simplicity, we do not model the
thermal storage from which the heat pump extracts energy to heat the water.

The straightforward approach modelling the heat pump with an MILP is the following: Let
x}, and 22, be binary variables indicating whether the heat pump d is in time interval ¢ in the
first or the second operation mode, respectively. Since the heat pump cannot be in both modes
simultaneously, we have a condition ;v}i’t + mfm < 1. The heat pump consumes electricity from a
pool p and water flows to pool p; and ps. In an operation mode i € {1, 2}, the heat pump consumes
Lﬁl,p electricity and produces Lg ,, water, so the energy flow formula are eqp; = L} xd L2 pxd +
and €4, + = Ldmixfi,t-

One way for modelling the heat pump in an energy model is extending the model by a device
described type. But the heat pump can also be modelled using basic devices. For this, we use
the ideas of the reduction from Binary LP which is presented in Section 3. Since we have two
binary variables x}i’t and xi’t for every time interval, we have to consider two converters d; and
dy. The inequality x} , + 23, < 1 has to be modelled using a pool p and a pipe d with production
factors Ly, 5 = 1 and transportation factor 7;; ; = —1 and the upper bound BJr = 1. It remains
to connect to the converter d; to pools p and p; and set the production factors Lg, p = Ld7p and
Ly, p; = Lqp, for i € {1,2}. The resulting model is presented on Figure 7.

Note that pool p and pipe p do not represent any physical device. Similarly, variables eq; 5+
and eg 5, represent rather data communication than energy flow. In this example, we use the
formal mathematical formulation of our model to obtain desired variables and constrains.
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Figure 8: Model of Meppel project.

5 Study case

In this section we briefly presents one our previous study [12, 10] in which the model of this paper
was used. The studied problems originate from a project called MeppelEnergie which plans to
build a group of houses and a biogas station in Meppel, a small city in the Netherlands'. In this
project, the houses will have a heat pump for space heating and tap demands. Due to Dutch
legislation, the biogas station will provide electricity only to those heat pumps. Therefore, the
heat pumps should be scheduled in such a way that they only consume, if possible, the electricity
produced by the biogas station. If this is not possible, the remaining energy has to be bought on
the electricity market at minimal cost.

Figure 8 presents the model studied in papers [12, 10]. It consists of a central source of energy
represented by the pipe on the left. The energy is distributed though a pool to heating systems
(houses) represented by a combination of converter, buffer and demand (see Section 4.1 for more
details).

The study [12] shows that some central control of all heat pumps is necessary to avoid large
peak loads. Therefore, our task is to design one or more algorithms to control all heat pumps. The
first of our proposed algorithms is called global MILP control which uses an Mix Integers Linear
Programming solver to find an optimal (or near to optimal) solution of the minimizing peak
problem. The paper [12] shows that this approach can be used only for small number of houses.
For larger number of houses, a faster algorithm for the minimizing peak problem is necessary but
the problem is NP-hard. Therefore in papers [12, 10], we developed some algorithms to find a
good solution of the model.

6 Conclusion

In this paper we present a mathematical modelling approach for future Smart Grids. The model
considers various types of devices and energy streams within Smart Grids and is based on math-
ematical models of some basic devices with common operational restrictions. We indicate the
advantages to consider such basic devices compared to having complex ones by showing how

LFor more details, see websites http://www.utwente.nl/ctit/energy/projects/meppel.html and http://www.
meppelwoont.nl/nieuwveense-landen/
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advanced features can be obtained as a combination of the basic devices.

The model is strong in a computation sense since every instance of a Binary Linear Program-
ming can be reduced to the model. As a consequence, we should not aim to find fast algorithms
which find the optimal control for an arbitrary grid. This is even further pinpointed, as already
very special versions of the model have been proven to be NP-complete (see e.g. [10]). One ap-
proach to control the model is to aim only for approximate solutions instead of an optimal one.
Another possibility is to restrict the complexity of the model. One such simplification is e.g.
presented in Kok [15] and Molderink [19] where it is assumed that devices are connected into a
tree-like structures.

However, although the presented model is general, there are still some issues in practice which
are not considered in this paper. For example, a lot of parameters on the production and con-
sumption of energy within devices used in our model are not known when decisions need to be
made (e.g. since the values have a stochastic nature). In this case, e.g. stochastic methods or
prediction models have to be used (see e.g. [3]). Furthermore, different parts of Smart Grids (e.g.
houses, power stations and electrical networks) are owned by different parties who may have dif-
ferent objectives and their goals may be contradictory. Therefore, we do not get a model with one
overall objective, but different stakeholders with different objectives and constraints are involved
asking for game theoretical approaches to be considered for the control of Smart Grids.
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7 Appendix

Table of the important symbols used in this paper. For simplicity, terms like “by a device d into
a pool p in time interval ¢” are omitted in explanations of all symbols like Fy ;.

General, see Sections 2.1 and 2.2
t Index of time interval
P Index of a pool
d Index of a device
T Set of time intervals of given planning horizon
T The number of time intervals
D Set of all devices
D, Set of all devices connected to a pool p
P Set of all pools
Py Set of all pools connected to a device d
€d,p,t The amount of produced energy by a device d into a pool p in time interval ¢
Non-controllable device, see Section 2.4
Fap. Fixed amount of produced energy
Converter, see Section 2.5
T, Binary operational state
Lqp The amount of produced energy when the converter d is running
Pipe, see Section 2.6
Tt Continuous operational state
Tap Transportation factor; the amount of produced energy is eq .+ = T pTa,
B, B;{t Lower and upper bounds on the operational state
Buffer, see Section 2.7
Cd,t ‘ State of charge
Objective function, see Section 2.9
G ‘ Price for operational state of a converter or a pipe
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