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Abstract

In paper [7] we proved Kreweras’ conjecture [16] asserting that every perfect matching of
the n-dimensional hypercube can be extended into a Hamiltonian cycle. In this paper, we
present two algorithms to find a Hamiltonian cycle extending a given perfect matching. The
first algorithm finds whole Hamiltonian cycle in time linear in the number of vertices whose
existence was asked by Knuth [15]. The second algorithm prints edges as they occur on the
Hamiltonian cycle and the first k edges are found in time polynomial in both n and k.

1 Introduction

A set of edges P ⊆ E of a graph G = (V,E) is a matching if every vertex of G is incident with at
most one edge of P . If a vertex v of G is incident with an edge of P , we say that v is covered by
P and V (P ) denotes the set of vertices covered by P . A matching P is perfect if every vertex of
G is covered by P . For graph G = (V,E), we denote by V (G) and E(G) the set of vertices and
edges of G, respectively.

The n-dimensional hypercube Qn is a graph whose vertex set consists of all subsets of [n] =
{1, . . . , n}, with two vertices u, v ∈ [n] being adjacent whenever |u4v| = 1 where n ≥ 1 and
u4v denotes the symmetric difference of u and v. Elements of [n] are called coordinates. There
are several appealing problems related to hypercubes. Probably the most prominent of them
was the notorious Middle Levels Conjecture: Despite the attention it has attracted, it took over
three decades until, in a recent breakthrough, Mütze answered it affirmatively [17] and with
Nummenpalo [18] presented an algorithm generating a Hamiltonian cycle in the Middle Levels
Graph in constant time per vertex.

It is well known that Qn is Hamiltonian for every n ≥ 2. This statement can be traced back to
1872 [13]. Since then the research on Hamiltonian cycles in hypercubes satisfying certain additional
properties has received considerable attention. An interested reader can find more details about
this topic in the survey of Savage [20], e.g. Dvořák [3] showed that any set of at most 2n−3 edges
of Qn (n ≥ 2) that induces vertex-disjoint paths is contained in a Hamiltonian cycle.

Kreweras [16] conjectured that every perfect matching in the n-dimensional hypercube with
n ≥ 2 extends to a Hamiltonian cycle which was proved in [7]. Paper [7] actually proved a stronger
statement where K(G) is the complete graph on vertices of a graph G.

Theorem 1.1 ([7]). For every perfect matching P of K(Qn) for n ≥ 2 there exists a perfect
matching R of Qn such that P ∪R forms a Hamiltonian cycle of K(Qn).

Let us call edges of E(Qn) short while edges of E(K(Qn))\E(Qn) long. The idea of using long
edges has been successfully applied in many other papers, see e.g. [8, 9, 11, 6, 2, 10, 12, 1]. Although
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various modifications of the proof [7] of Kreweras’ conjecture have been presented [8, 9, 11], all
of them are based on long edges. Section 3 presents an alternative proof of Kreweras’ conjecture
which does not need to use long edges and this method is used in both algorithms for extending
perfect matching of Qn into a Hamiltonian cycle of Qn. Furthermore, this alternative proof may
be useful to solve another long-standing open problem formulated in 1993 by Ruskey and Savage
[19]: Does every matching (not only perfect) in a hypercube Qn extend to a Hamiltonian cycle of
Qn? Considering Theorem 1.1, one may ask whether every matching P of K(Qn) extends to a
Hamiltonian cycle of K(Qn) using short edges. Clearly, the matching P must be balanced, i.e. the
number of vertices u ∈ V (P ) with |u| even is equal to the number of vertices u ∈ V (P ) with |u|
odd. However, this condition is not sufficient since Dvořák and Fink [4] found a balanced matching
of K(Qn) which cannot be extended into a Hamiltonian cycle of K(Qn) using short edges. So,
extending a perfect matching of Qn into a Hamiltonian cycle without using long edges may be
useful to solve Ruskey and Savage conjecture.

Knuth [15] asked whether a Hamiltonian cycle extending a given perfect matching of Qn can
be found in linear time. The answer to this question may depend on the computational model.
In this paper, we consider the Random Access Machine (word-RAM), i.e. one vertex of the n-
dimensional hypercube can be stored in one word of memory (e.g. using the characteristic vector
of the subset of [n]) and bitwise operations can be computed by a single instruction, so e.g., we
can compute the symmetric difference u4v of two vertices u and u of V (Qn) and find an arbitrary
coordinate in which two vertices differ in constant time.

This computational model is important in the first (off-line) algorithm which finds a Hamilto-
nian cycle extending a given perfect matching on Qn in linear time. The size of the input and the
output is Θ(2n) and our algorithm requires Θ(2n) arithmetic and bitwise operations on O(n)-bit
words. In this algorithm, the input matching P is given as an array A of length 2n such that
uA[u] is an edge of P for every vertex u. Note that A[A[u]] = u.

The off-line algorithm does not generate edges of a Hamiltonian cycle extending a given perfect
matching in the order in which these edges lie on the cycle. Although it is possible to store all
generated edges and then list them in the appropriate order, this is not an efficient way to find
only first few edges. We are motivated by efficient algorithms generating all objects in a particular
combinatorial class such as permutations, subsets, combinations, partitions, trees, strings etc. in
particular order (see e.g. [20, 5, 14, 18]). So, our goal is developing an algorithm which for a
given perfect matching P of Qn iteratively finds a perfect matching R of Qn extending P into a
Hamiltonian cycle of Qn so that edges of R are generated in the order of Hamiltonian cycle P ∪R
and first k edges are found in time which is polynomial in both n and k for every k = 1, . . . , 2n.
Since the size of the given perfect matching P is exponential in n, we assume that P is given by
an oracle which for a given vertex u of Qn returns the vertex uP .

Our second algorithm presented in this paper is even more powerful. It is an on-line algorithm
solving the following problem.

Problem 1.2. Design an on-line algorithm for extending a perfect matching of Qn into a Hamil-
tonian cycle as follows.

Initial input: An oracle of a perfect matching P of Qn

On-line input: A vertex u of Qn

On-line output: An edge uv of Qn incident with the vertex u

Requirement: The union P ∪R is a Hamiltonian cycle of Qn where R is the set of edges returned
by the on-line algorithm iteratively called for every vertex of Qn.

That is, the on-line algorithm obtains the oracle in the beginning. Then iteratively, the on-line
algorithm obtains a vertex u of Qn and returns an incident edge uv of Qn. When the online
algorithm is called for every vertex of Qn, then the set of all returned edges forms a perfect
matching of Qn extending the perfect matching given by the oracle into a Hamiltonian cycle of
Qn. Using such an on-line algorithm, we can start in an arbitrary vertex u1 and iteratively for
every k = 1, . . . , 2n−1 call this on-line algorithm to find an edge ukvk of R and then call the oracle
to find the edge vkuk+1 of P (see Function find hamiltonian cycle in Algorithm 5.1). We prove
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that the running time of the k-th iteration of the on-line algorithm is O(k · poly(n)), so first k
edges of the Hamiltonian cycle extending a given perfect matching can be found in O(k2 ·poly(n))
time.

2 Preliminaries

In a multigraph, two vertices can be connected by more than one edge. We say that a multigraph
G is connected if G contains a path between each pair of vertices. A component of a multigraph is
a maximal connected subgraph. Every multigraph can be split into components and two vertices
belong to the same component if and only if there exists a path between these vertices. A direct
consequence is the following lemma.

Lemma 2.1. A multigraph is connected if and only if the multigraph contain a vertex u such that
for every vertex v there exists a path between u and v. Furthermore, a multigraph is connected if
and only if there exists two vertices u and v connected by a path such that for every w there exist
a path between u and w or between v and w.

A connected multigraph (V,E) on at least two vertices is 2-edge-connected if and only if (V,E\
{e}) is connected for every e ∈ E. A 2-edge-connected component of a multigraph is a maximal
2-edge-connected subgraph. Every multigraph can be split into 2-edge-connected components and
edges joining different 2-edge-connected components.

Lemma 2.2. Two vertices of a multigraph belong to the same component if and only if there
exists two edge-disjoint paths between these vertices. Furthermore, a multigraph on at least two
vertices is 2-edge-connected if and only if there exists two edge-disjoint paths between every pair
of vertices.

Lemma 2.3. Let G be a connected multigraph and u1, u2, u3, u4 be vertices of G. Then G contains
two edge-disjoint paths P1 and P2 such that the set of all endvertices of P1 and P2 is {u1, u2, u3, u4}
and these paths can be found in time O(|E(G)|).

Proof. Without lost of generality, we assume that G is a tree since we can restrict P1 and P2 to
contain edges of a given spanning tree of G. Let P1 be a path in G between u1 and u2 and P2

be a path in G between u3 and u4. If P1 and P2 have a common edge, then the graph on edges
E(P1)4E(P2) has no cycle and only vertices u1, u2, u3 and u4 have odd degrees, so E(P1)4E(P2)
forms another two edge-disjoint paths with endvertices u1, u2, u3 and u4. This proof is constructive
and it can be implemented in linear time.

Given sets A ⊆ B ( [n] where n is a positive integer, a subcube of Qn determined by the
pair (A,B) is the subgraph of Qn induced by the set of vertices u of Qn with u ∩ B = A. Let
coord(Q) = [n] \ B. Clearly, such a subcube Q is isomorphic to the hypercube of dimension
dim(Q) = | coord(Q)| ≥ 1. We can split the subcube Q by a coordinate d ∈ coord(Q) into two
subcubes Qd,0 and Qd,1 determined by pairs (A,B ∪ {d}) and (A ∪ {d} , B ∪ {d}), respectively.
For a vertex u of Q, let Qd,u be the subcube Qd,0 or Qd,1 containing u and let the other subcube
be denoted by Q′d,u. Since all Qd,0, Qd,1, Qd,u and Q′d,u are subcubes, we can split them by other

coordinate d′ ∈ [n] \ (B ∪ {d}) and we can applied notations denoting subcubes, so e.g. (Qd,0)d
′,1

is the subcube determined by the pair (A ∪ {d′} , B ∪ {d, d′}).
Let C be a non-empty set of vertex-disjoint subcubes of Qn. Let V (C) and E(C) be the set of

all vertices and edges of all subcubes of C , respectively, and let G(C) be the graph (V (C), E(C))
and let K(C) be the complete graph on vertices V (C). Note that G(C) contains only short edges
and furthermore only edges having both endvertices in the same subcube while K(C) contains
also long edges and also edges between different subcubes. An interconnection graph of C and a
set of edges Z ⊆ E(K(C)) is a multigraph I(C, Z) where every subcube of C is represented by a
single vertex and two vertices of I(C, Z) are connected by as many edges as there are edges of
Z between corresponding subcubes. In this paper, C always denotes a non-empty set of vertex-
disjoint subcubes of Qn.
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Algorithm 2.1: Algorihm finding four vertices of S according to Lemma 2.5

1 Function find four vertices(Q, S)
2 while there exists a coordinate d and i ∈ {0, 1} such that |S ∩ V (Qd,i)| ≤ 1 do
3 Q := Qd,1−i

4 Find a coordinate d and i ∈ {0, 1} with minimal |S ∩ V (Qd,i)|
5 Choose two vertices u1 and u2 of S ∩ V (Qd,i)
6 Choose a coordinate d′ ∈ u14u2

7 Find u3 a vertex of S ∩ V ((Qd,1−i)d
′,0) and u4 a vertex of S ∩ V ((Qd,1−i)d

′,1)
8 return (u1, u2, u3, u4)

Theorem 2.4 (Gregor [11]). For every perfect matching P of K(C) there exists a perfect matching
R of G(C) such that P ∪R is a Hamiltonian cycle of K(C) if and only if I(C, P ) is connected.

In Section 3 we present an alternative proof of Theorem 2.4 which does not rely on long edges
of K(Qn). For a vertex u covered by a matching P we denote uP a vertex such that uuP ∈ P .

For a set of vertices S of a subcube Q of C let D(S) be the set of coordinates that split Q into two
subcubes so that each subcube contains at least one vertex of S. Formally, D(S) =

⋃
u,v∈S u4v.

Lemma 2.5. Let S be a set of vertices of a subcube Q. Then |D(S)| ≥ |S| − 1, or Q can be split
by two coordinates d and d′ into four subcubes (Qd,0)d

′,0, (Qd,0)d
′,1, (Qd,1)d

′,0 and (Qd,1)d
′,1 such

that each of them contains at least one vertex of S. Furthermore if |D(S)| < |S| − 1, then these
coordinates d and d′ and a vertex of S from every subcube (Qd,0)d

′,0, (Qd,0)d
′,1, (Qd,1)d

′,0 and
(Qd,1)d

′,1 can be fount in time O(|S| · poly(n)).

Proof. Clearly, this lemma holds if |S| ≤ 3 or dim(Q) ≤ 2. For the sake of contradiction, let
us consider a counterexample with the smallest possible dimension of Q. Let k be the smallest
number such that there exists a coordinate d and i ∈ {0, 1} of Q such that Qd,i contains k vertices
of S. Note that k ≥ 2; for otherwise, the subcube Qd,1−i and the set of vertices S′ form a
smaller counterexample since D(S′) ⊆ D(S)\{d} where S′ = S∩V (Qd,1−i). Hence, there exists a
coordinate d′ which splits Qd,i so that both subcubes (Qd,i)d

′,0 and (Qd,i)d
′,1 contains at least one

vertex of S. Since vertices of S form a counterexample to the lemma, (Qd,1−i)d
′,0 or (Qd,1−i)d

′,1

contains no vertex of S. Hence, if we split Q by the coordinate d′, then Qd′,0 or Qd′,1 contains
less than k vertices of S which is a contradiction to the minimality of k.

If |D(S)| < |S| − 1, then Function find four vertices (Algorithm 2.1) presents an algorithm
finding vertices u1, u2, u3 and u4 of S from subcubes (Qd,0)d

′,0, (Qd,0)d
′,1, (Qd,1)d

′,0 and (Qd,1)d
′,1

as required by this lemma. Since the while-loop on line 2 halves the subcube Q in every iteration
and it terminantes with a subcube Q of dimension at least two, this while-loop iterates at most
n times. A single iteration of the while-loop can be implemented so that whole set S is processes
2 dim(Q)-times to enumerate the number of vertices of S in every Qd,i. Note that the minimality
of |S ∩V (Qd,i)| ensures that both S ∩V ((Qd,1−i)d

′,0) and S ∩V ((Qd,1−i)d
′,1) are non-empty. The

remaining lines of Function find four vertices are trivial. Hence, the complexity of Function
find four vertices is O(|S| · poly(n)).

We say that an edge uv of K(Qn) crosses a coordinate d if d ∈ u4v.

3 Extending perfect matching without using long edges

In this section, we present an alternative proof of Kreweras’ conjecture which does not use long
edges of K(Qn). Methods presented in this sections are used in algorithms described in the
following sections. The idea of our proof is based on Theorem 2.4, however, we present another
proof. Gregor [11] used an induction on the number of subcubes in C and for the base case
|C| = 1 he applied [7]. In our approach, subcubes of C of dimension at least two are iteratively
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split into subcubes. Once dimensions of all subcubes of C are one, edges of all subcubes form a
perfect matching R which extends a given perfect matching P into a Hamiltonian cycle of Qn.
As Theorem 2.4 states, we have to split subcubes of C so that I(C, P ) remains connected. The
splitting is described in the following two lemmas which hold in both cases where P is a perfect
matching of K(Qn) and P is a perfect matching of Qn.

Lemma 3.1. Let P be a perfect matching of K(C) and uv be an edge of P such that u and v are
vertices of the same subcube Q of C of dimension at least two. Let d be an arbitrary coordinate
of u4v which splits Q into Qd,u and Qd,v = Q′d,u. Let C′ = C \ {Q} ∪ {Qd,u, Qd,v}. If I(C, P ) is
connected, then I(C′, P ) is connected.

Proof. Subcubes Qd,u and Qd,v belong to the same components of I(C′, P ) because of the edge
uv. Furthermore, paths in I(C, P ) terminating at Q remain paths in I(C′, P ) terminating at Qd,u

or Qd,v. By Lemma 2.1, the graph I(C′, P ) remains connected if I(C, P ) is connected.

Lemma 3.2. Let P be a perfect matching of K(C) and uuP be an edge of P such that u is a vertex
of a subcube Q of C and uP is a vertex of another subcube Q′ of C. Then there exists another edge
vvP ∈ P such that v is a vertex of Q and vP is a vertex of a subcube that belongs in the same
component of I(C \ {Q} , P ) as Q′. Moreover, assume that dim(Q) ≥ 2 and let d be an arbitrary

coordinate of u4v and let C′ = C \ {Q} ∪
{
Qd,u, Q

′
d,u

}
. If I(C, P ) is connected, then I(C′, P ) is

connected.

Proof. First, we prove the existence of the edge vvP . Let B be the component of I(C, P ) \ {Q}
containing Q′. Let F be the subset of edges of P having exactly one endvertex in B. Since
every subcube of C contains an even number of vertices of Qn, the total number of vertices of Qn

contained in all subcubes of the component B is also even. Furthermore, P is a perfect matching
and P ∩E(B) covers an even number of vertices which implies that |F | is even. Since F contains
uuP , the size of F is at least two, and so F contains another edge vvP . Since B is a component
of I(C, P ) \ {Q}, every edge of F has one endvertex in Q, so v is the endvertex in Q.

Next, we prove the connectivity of I(C′, P ) assuming I(C, P ) is connected. Edges uuP and vvP

and the component B guarantee that Qu,d and Qv,d belong into the same component of I(C′, P ).
Furthermore, paths in I(C, P ) terminating at Q remain paths in I(C′, P ) terminating at Qd,u or
Qd,v. By Lemma 2.1, the graph I(C′, P ) remains connected if I(C, P ) is connected.

In order to find a Hamiltonian cycle of Qn extending a given perfect matching P of Qn where
n ≥ 2, we can start by setting C = {Qn}. Then iteratively choose a subcube Q of C of dimension
at least two and a vertex u of Q, and split Q into two subcubes using Lemma 3.1 or Lemma 3.2
depending on whether uP belongs to Q. At the end, all subcubes of C has dimension one and the
following lemma applies.

Lemma 3.3. Assume that C contains at least two subcubes and C contains subcubes of dimension
one only. Let P be a perfect matching of K(C) and let R be the set of all edges of all subcubes of
G(C). If I(C, P ) is connected, then P ∪R is a Hamiltonian cycle of K(C).

Proof. Since C is a set of vertex disjoint subcubes of Qn of dimension one, every vertex of C
is covered by R exactly once and so R is a perfect matching of G(C). Every vertex of C has
degree two in P ∪ R, so P ∪ R is a union of disjoint cycles. The graph I(C, P ) can be obtained
from (V (C), P ∪ R) by contracting every subcube of C into a single vertex. Therefore, we have
a bijection between components of I(C, P ) and components of (V (C), P ∪ R). Since I(C, P ) is
connected, (V (C), P ∪R) is connected and P ∪R forms a single Hamiltonian cycle.

Lemma 3.3 completes the proof of Theorem 2.4. Note that Lemmas 3.1, 3.2 and 3.3 do not
use long edges of Qn, if a given perfect matching P contains only short edges.

A slightly modified approach is used in both algorithms presented in the following sections.
The basic difference is that if C contains a subcube Q of dimension 1 on vertices u and v, then
we can add the edge uv to R and remove Q from C without waiting until all subcubes of C have

5



dimension one. However, we have to modify edges of P and use long edges in this case. Note that
the following lemma requires |V (C)| ≥ 6 only for formal purposes to prevent the possibility that
K(C′) contains at most two vertices where Hamiltonian cycles may not be well defined.

Lemma 3.4. Assume that V (C) contains at least six vertices and I(C, P ) is connected. Let P
be a perfect matching of K(Qn) and Q be a subcube of C of dimension one on vertices u and v.
Let P ′ = P \

{
uuP , vvP

}
∪
{
uP vP

}
and C′ = C \ {Q}. Then P ′ is a perfect matching of K(C′)

and I(C′, P ′) is also connected. Moreover, if R′ is a perfect matching of G(C′) extending P ′ to a
Hamiltonian cycle of K(C′), then R = R′ ∪ {uv} is a perfect matching of G(C) extending P to a
Hamiltonian cycle of K(C).

Proof. The edge uv is not an edge of P , otherwise Q is an isolated vertex of I(C, P ). Hence,
P ′ is a perfect matching of G(C′). Using the same parity argument as in Lemma 3.2, vertices
uP and vP belong to the same component of I(C, P ) \ {Q}, so I(C, P ) \ {Q} is connected if
I(C, P ) is connected. The graph I(C′, P ′) is also connected, because the graph I(C′, P ′) differ
from I(C, P ) \ {Q} at most by adding one new edge uP vP . The Hamiltonian cycle P ∪R of K(C)
is obtained from the Hamiltonian cycle P ′ ∪R′ of K(C′) by replacing the edge uP vP by the path
on vertices uP , u, v and vP .

Lemmas 3.1, 3.2 and 3.4 give another proof of Kreweras’ conjecture. Note that we can repeat-
edly apply Lemma 3.4 until |V (C)| ≥ 6. Once C consists of two subcubes of dimension one, P
consists of two edges between subcubes of C, so the resulting perfect matching R consists of both
edges of subcubes of C and P ∪R is a Hamiltonian cycle on four vertices of V (C).

4 Off-line algorithm

In this section, we describe Algorithm 4.1 which for a given perfect matching P of K(Qn) finds
a perfect matching R of Qn such that P ∪ R is a Hamiltonian cycle of K(Qn) in linear time.
Algorithm 4.1 uses a recursive function extend and three global arrays: a given perfect matching
P , an extending perfect matching R, and an auxiliary array A[u] for every vertex u of Qn so that
A[u] is another vertex of Qn. The array A is the matching obtained from P by updates described
in Lemma 3.4. After the initialization, R is empty and A[u] = uP for every u ∈ V (Qn). To
simplify the notation, A denotes both an array and a matching so that A[u] = uA. In order to
analyze the connectivity of the interconnection graph, Algorithm 4.1 also provides in comments
the set of subcubes C consisting of vertices which have not been covered by R yet and a matching
Z ⊆ A such that I(C, Z) is connected, so Z is used to prove that I(C, A) is connected. Clearly,
the initialization is C = {Qn} and Z = ∅, so Z ⊆ A and I(C, Z) is connected.

The recursive function extend(Q, u) splits Q to two subcubes using Lemmas 3.1 or 3.2 and
recursively calls extend on both subcubes. Once the recursion reaches a subcube of dimension
one, a function join is called to apply Lemma 3.4. Hence, C contains for every dimension d except
one at most one subcube of dimension d, and for the exceptional dimension C contains at most
two subcubes and this exceptional dimension is the smallest dimension of all subcubes of C. The
following lemma proves that graph I(C, Z) always forms a tree and we define that the root of that
tree is the subcube of C with the largest dimension.

Lemma 4.1. Algorithms 4.1 satisfies the following statements.

(1) The graph I(C, Z) always forms a tree and the dimension of every subcube of I(C, Z) is at
most the dimension of its parent and Z ⊆ A.

(2) Whenever the recursive function extend(Q,u) is called, Q is a subcube of C of the smallest
dimension and Q is a leaf of I(C, Z) and

(3) u is a vertex of Q and

(4) if |C| ≥ 2, then uuA ∈ Z.
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Algorithm 4.1: Off-line algorithm

Input: Perfect matching P of hypercube K(Qn)
9 R := ∅

10 for each uv in P do
11 A[u] := v
12 A[v] := u

// C := {Q} and Z := ∅
13 Let u be an arbitrary vertex of Qn

14 extend(Qn, u)
Output: Perfect matching R of Qn

15 Function join(u,v)
// Lemma 3.4

16 Insert the edge uv to R
17 A[A[u]] := A[v]
18 A[A[v]] := A[u]

19 Function extend(Q, u)
20 Choose v ∈ V (Q) arbitrarily (different from u)
21 if the dimension of Q is 1 then

// Lemma 3.4: C := C \ {Q} and Z := Z \
{
uuA

}
22 join(u, v)

23 else
24 if A[v] /∈ V (Q) then

// Split by Lemma 3.2

25 Choose d ∈ v4u arbitrarily

26 else
// Split by Lemma 3.1

27 Choose d ∈ v4A[v] arbitrarily
28 if v ∈ V (Qd,u) then
29 v := A[v]

// Split Q: C := C \ {Q} ∪
{
Q′d,u, Qd,u

}
and Z := Z ∪

{
vvA

}
30 extend(Q′d,u, v)

31 extend(Qd,u, u)

Proof. After the initialization, I(C, Z) is an isolated vertex, so (1) is satisfied and the initial
call extend(Qn, u) satisfies all conditions. When extend(Q, u) is applied to a subcube Q of
dimension one (see line 21 of Algorithm 4.1), then Q is a leaf of I(C, Z) by (2) and Q with uuA is
removed from I(C, Z), so (1) is satisfied.

When extend(Q, u) is called with a subcube Q of dimension at least two (line 23), Algorithm
4.1 chooses a vertex v of Q different from u. If vA /∈ V (Q) (line 24), then we split Q by an
arbitrary coordinate d ∈ u4v using Lemma 3.2. Since Q is a leaf of I(C, Z), the subcube Qd,u

replaces Q in I(C′, Z ′) and Q′d,u is a new leaf of I(C′, Z ′) connected by the edge vvA, so (1) is

satisfied for I(C′, Z ′) where C′ = C \ {Q}∪
{
Q′d,u, Qd,u

}
and Z ′ = Z ∪

{
vvA

}
. Furthermore, when

extend(Q′d,u, v) is called, (2), (3), (4) are satisfied. During the evaluation of extend(Q′d,u, v),
the subcube Qd,v is removed from I(C′, Z ′) while the rest of the graph I(C′, Z ′) is untouched.
Hence, I(C′′, Z ′′) = I(C′, Z ′) \ {Qd,v}, where C′′ and Z ′′ are the corresponding sets C and Z when
extend(Q′d,u, v) is evaluated. So, Qd,u is a leaf in I(C′′, Z ′′), and (2), (3), (4) are satisfied when
extend(Qd,u, u) is called.
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If vA ∈ V (Q) (line 26), then we split Q by an arbitrary coordinate d ∈ v4vA using Lemma
3.1. Clearly, either vA ∈ V (Qd,u) or v ∈ V (Qd,u) and we set v := vA in the latter case. So, Qd,u

replaces Q in I(C′, Z ′) and Q′d,u is a leaf of I(C′, Z ′) and the edge uuA connects Qd,u and Q′d,u.
All condition are satisfied to call extend(Q′d,u, v) which removes Q′d,u from C′ so Qd,u is a leaf
when extend(Qd,u, u) is called.

Theorem 4.2. Algorithm 4.1 finds a perfect matching R of Qn for a given perfect matching P
of K(Qn) such that P ∪R is a Hamiltonian cycle of K(Qn). The time complexity is linear in the
number of vertices of the hypercube Qn, assuming a single vertex can be stored in a single word of
a RAM machine.

Proof. Lemma 4.1 proves that I(C, Z) is a tree and Z ⊆ A, so I(C, A) is always connected. The
function join fulfills Lemma 3.4. When C contains only one subcube Q of dimension 1, then
Function extend splits Q into Qd,0 and Qd,1 so that both edges of A contain one endvertex in
Qd,0 and the other endvertex in Qd,1 and Function join adds the only edge of Qd,0 and the only
edge of Qd,1 into R. Hence, P ∪R is a Hamiltonian cycle of K(Qn). Time complexity follows from
the fact that the function extend is called (2n−1)-times and the function join is called 2n−1-times
and a single evaluation of both functions (without recursion) requires Θ(1) operations.

5 On-line algorithm

In this section, we present an on-line algorithm for Problem 1.2; see Algorithm 5.1. The basic
idea of the algorithm is simple (see Function online): for a given vertex u, the on-line algorithm
repeatedly splits the subcube Q ∈ C containing u using a variant of Lemmas 3.1 and 3.2 until the
dimension of Q is one. Then the only edge uv of Q is the resulting uv edge required by Problem
1.2.

Similarly as in the off-line algorithm, we denote by A the perfect matching of K(C) that has
to be extended to a Hamiltonian cycle of K(C), so A is initialized by P and then modified by
a variant of Lemma 3.4. However, the initialization A := P would take exponential time in n,
so the on-line algorithm uses a data structure (e.g. a trie) which for a vertex u of V (C) stores
the incident edge uv of A only if uP 6= uA. Hence, this trie is empty in the beginning and so it
can be initialized in constant time. In order to keep the notation consistent, we use the matching
notation uA, although the algorithm has to first search the trie to find the matching edge uuA,
and then call the oracle if the edge uuA is not found in the trie (see Function A). Furthermore,
changing the matching A means an appropriate modification of the trie (see Function online).

Again, we use a set of edges Z ⊆ A to guarantee the connectivity of the interconnection graph
as required in Theorem 2.4. However, the connectivity of I(C, Z) is insufficient in this section,
so we keep I(C, Z) 2-edge-connected. Recall that I(C, A) is a multigraph which preserves the
multiplicity of edges between subcubes which is important in this section. The interested reader
can observe that I(C, A) is connected if and only if I(C, A) is 2-edge-connected, so e.g. Theorem
2.4 holds if the connectivity of I(C, P ) is replaced by the 2-edge-connectivity of I(C, P ). Lemma
5.1 is a modification of Lemma 3.4 for 2-edge-connected multigraphs.

Lemma 5.1. Assume that V (C) contains at least six vertices. Let A be a perfect matching of K(C)
and let Z ⊆ A and let Q be a subcube of C of dimension one on vertices u and v. Assume that
I(C, Z) is 2-edge-connected. Let A′ = A\

{
uuA, vvA

}
∪
{
uAvA

}
and Z ′ = Z\

{
uuA, vvA

}
∪
{
uAvA

}
and C′ = C \ {Q}. Then Z ′ ⊆ A′ and A′ is a perfect matching of K(C′) and I(C′, Z ′) is 2-edge-
connected. Furthermore, if R′ is a perfect matching of G(C′) extending A′ to a Hamiltonian cycle
of K(C′), then R = R′ ∪ {uv} is a perfect matching of G(C) extending A to a Hamiltonian cycle
of K(C).

Proof. It suffices to prove that I(C′, Z ′) is 2-edge-connected since the remaining statements of this
lemma follow from Lemma 3.4. From the 2-edge-connectivity of I(C, Z) it follows that uuA, vvA ∈
Z. Every path in I(C, Z) with endvertices different from Q is a path in I(C′, Z ′) or it can be
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Algorithm 5.1: On-line algorithm (part 1 of 3)

32 Function find hamiltonian cycle(oracle)
33 Initialize an empty trie
34 Z := ∅
35 R := ∅
36 C := {Qn}
37 Choose a starting vertex u
38 for i := 1 to 2n−1 do
39 v := online(u)
40 w := oracle(v)

Output: uv, vw
41 u := w

42 Function online (u)
43 if u is covered by R then
44 return uR

45 else
46 while the subcube Q containing u has dimension at least two do
47 split(Q)

// Lemma 5.1

48 Let v be the other vertex of Q

49 uA := A(u)

50 vA := A(v)

51 Z := Z \
{
uuA, vvA

}
∪
{
uAvA

}
52 C := C \ {Q}
53 R := R ∪ {uv}
54 Insert the key u with the value vA into the trie

55 Insert the key v with the value uA into the trie
56 return v

57 Function A (vertex u)
58 if u is stored in the trie then
59 return find the vertex uA in the trie
60 else
61 return call the oracle to find uP

shortened to a path in I(C′, Z ′) using the edge uAvA. Hence, I(C′, Z ′) is 2-edge-connected by
Lemma 2.2.

Now, we show how to split a subcube of C and preserve 2-edge-connectivity of the intercon-
nection graph.

Lemma 5.2. Let Q ∈ C be a subcube of dimension at least 2 and Z be a matching of K(C). Let
Q be split into Qd,0 and Qd,1 by a coordinate d and let F ⊆ E(K(C′)) be a set of edges forming
two edge-disjoint paths between Qd,0 and Qd,1 in I(C′, F ) where C′ = C \ {Q} ∪

{
Qd,0, Qd,1

}
. If

I(C, Z) is 2-edge-connected, then also I(C′, Z ′) is 2-edge-connected where Z ′ = Z ∪ F .

Proof. For a contradiction, we assume that I(C′, Z ′) is not 2-edge-connected. Since Qd,0 and Qd,1

are connected by two edge-disjoint paths in I(C′, Z ′), Lemma 2.2 implies that Qd,0 and Qd,1 belong
to the same 2-edge-connected component of I(C′, Z ′), say B. Let B′ be another 2-edge-connected
component of I(C′, Z ′). Since I(C, Z) is 2-edge-connected, there are two edge-disjoint paths P1

and P2, each joining a vertex of B with a vertex of B′ and assume that P1 and P2 have the shortest

9



Algorithm 5.2: On-line algorithm (part 2 of 3)

62 Function find Si and S’ (Q)
// Find sets S1, . . . , Sb and S′ satisfying (1) or (3) in Lemma 5.4.

63 Let B1, . . . , Bb be the set of all components of I(C, Z) \ {Q}
64 for i := 1 to b do
65 Let Si be the set of all vertices v of Q such that vvA ∈ Z and vA is a vertex of a

subcube of the component Bi

66 Let S′ be the set of edges of Z having both endvertices in Q

67 while 2|S′|+
∑b

i=1 |Si| < 2 dim(Q) + 2 do
68 Choose a vertex v of Q which is not contained in any S1, . . . , Sb and also v is not

covered by S′

69 vA := A(v)

70 if vA is a vertex of Q then
71 Insert vvA into S′

72 else
73 for i := 1 to b do
74 if vA is a vertex of a subcube of Bi then
75 Insert v into Si

76 return (S1, . . . , Sb, S
′)

possible length. Then both P1 and P2 contain at most one vertex of B. If Q is an endvertex of P1

or P2, we replace Q by Qd,0 or Qd,1 to obtain two edge-disjoint paths between B and B′ which
contradicts the assumption that B and B′ are distinct 2-edge-connected components.

The following lemma presents a constructive proof to split a given subcube and this approach
is summarized in Functions find four vertices and split.

Lemma 5.3. Let A be a perfect matching of K(C) and Z ⊆ A and Q ∈ C be a subcube of
dimension at least two and I(C, Z) be 2-edge-connected. Then Q can be split into Qd,0 and Qd,1

by a coordinate d and there exists a set of edges Z ′ such that Z ⊆ Z ′ ⊆ A and |Z ′| ≤ |Z| + 4
and I(C′, Z ′) is 2-edge-connected where C′ = C \ {Q} ∪

{
Qd,0, Qd,1

}
. Moreover, both the splitting

coordinate d and the set Z ′ can be found in time O((|C|+ |Z|) · poly(n)).

Proof. Observe that the statement holds if dim(Q) = 2 so we assume that dim(Q) ≥ 3. Let
B1, . . . , Bb be the set of all components of I(C, Z) \ {Q}. Let Si be the set of all vertices u of Q
such that uuA ∈ Z and uA is a vertex of a subcube of the component Bi (line 65). Since I(C, Z)
is 2-edge-connected, Lemma 2.2 implies that |Si| ≥ 2. Furthermore, let S′ be the set of edges of
Z having both endvertices in Q (line 66). Note that Function find four vertices enlarges sets
B1, . . . , Bb and S′, so the above definitions are only initial values and these sets always satisfy
assumptions of the following lemma.

Lemma 5.4. Let Si be a subset of vertices of Q and S′ be a subset of E(K(Q)) ∩ A where
i = 1, . . . , b. Assume that uA is a vertex of Bi for every vertex u of Si. Then, at least one of the
following conditions is satisfied.

(1) There exists a component Bi with |D(Si)| < |Si| − 1.

(2) There exists a vertex v of Q which is not contained in any of S1, . . . , Sb and also v is not

covered by S′ and 2|S′|+
∑b

i=1 |Si| < 2 dim(Q) + 2.

(3) It holds that
∑

uv∈S′ |u4v|+
∑b

i=1 |D(Si)| ≥ dim(Q) + 1.
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Algorithm 5.3: On-line algorithm (part 3 of 3)

77 Function split (Q)
78 (S1, . . . , Sb, S

′) := find Si and S’(Q)
79 if there exists a component Bi with |D(Si)| < |Si| − 1 then
80 (u1, u2, u3, u4) := find four vertices(Q,Si)
81 Z := Z ∪ {u1A(u1), u2A(u2), u3A(u3), u4A(u4)}
82 Let P1 and P2 be two edge-disjoint paths P1 and P2 of the graph (V (C), Z) with

endvertices u1, u2, u3 and u4 by Lemma 2.3.

83 Let d ∈ coord(Q) such that both P1 and P2 are path between Qd,0 and Qd,1

84 else
85 Initialize an array of integers h of length n by 0
86 for uv ∈ S′ do
87 for d ∈ u4v do
88 h[d] := h[d] + 1

89 for i := 1 to b do
90 for d ∈ D(Si) do
91 h[d] := h[d] + 1

92 Let d be a coordinate such that h[d] ≥ 2
93 paths := 0
94 for uv ∈ S′ do
95 if d ∈ u4v and paths < 2 then
96 Z := Z ∪ {uv}
97 paths := paths + 1

98 for i := 1 to b do
99 if d ∈ D(Si) and paths < 2 then

100 Find a vertex of u of Si ∩ V (Qd,0) and a vertex v of Si ∩ V (Qd,1)
101 Z := Z ∪ {uA(u), vA(v)}
102 paths := paths + 1

103 C := C \ {Q} ∪
{
Qd,0, Qd,1

}

Proof. We assume that (1) does not hold. Then

∑
uv∈S′

|u4v|+
b∑

i=1

|D(Si)| ≥ |S′|+
b∑

i=1

(|Si| − 1) ≥ |S′|+
b∑

i=1

|Si|
2

since |Si| ≥ 2 and |u4v| ≥ 1. If (3) also does not hold, then 2|S′| +
∑b

i=1 |Si| < 2 dim(Q) + 2 ≤
2dim(Q) where the second inequality follows from the assumption that dim(Q) ≥ 3. Since every
edge of S′ covers two vertices and the total number of vertices of Q is 2dim(Q), there exists a vertex
of Q not counted in 2|S′|+

∑b
i=1 |Si| which implies that (2) holds.

Now, we continue in the proof of Lemma 5.3. When (2) is satisfied (line 67), there exists a
vertex v of Q which is not contained in any of S1, . . . , Sb and also v is not covered by S′. Function
find four vertices iteratively inserts v into Si if vA is a vertex of Bi for some i, or it inserts
vvA into S′ if vA is a vertex of Q. After at most 2 dim(Q) + 2 iterations, (2) fails. Note that
assumptions of Lemma 5.4 are still satisfied, so (1) or (3) hold.

If (1) holds (line 79), then let Bi be a component with |D(Si)| < |Si|−1. By Lemma 2.5 Q can
be split by two coordinates d′ and d′′ into four subcubes so that each of them contains at least one
vertex of Si, so let u1, u2, u3, u4 be the four vertices of Si in the four subcubes on Q. By Lemma
2.3, there exist two edge-disjoint paths in Bi with endvertices uA

1 , u
A
2 , u

A
3 , u

A
4 and these paths
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can be extended by edges u1u
A
1 , u2u

A
2 , u3u

A
3 , u4u

A
4 into two edge-disjoint paths P1 and P2 with

endvertices u1, u2, u3, u4. For at least one coordinate d ∈ {d′, d′′} it holds that P1 and P2 form two
edge-disjoint paths between Qd,0 and Qd,1 in I(C′, Z ′) where Z ′ = Z ∪

{
u1u

A
1 , u2u

A
2 , u3u

A
3 , u4u

A
4

}
and C′ = C \ {Q} ∪

{
Qd,0, Qd,1

}
. By Lemma 5.2, the graph I(C′, Z ′) is 2-edge-connected.

Every edge uv ∈ S′ contributes to the sum
∑

uv∈S′ |u4v| +
∑b

i=1 |D(Si)| of (3) by |u4v|
coordinates (line 88) and every component Si contributes by |D(Si)| coordinates (line 91). If (3)
holds (line 84), then there exists a coordinate d which contributes to the sum

∑
uv∈S′ |u4v| +∑b

i=1 |D(Si)| by at least 2 (line 92), that is

• S′ contains two edges crossing the coordinate d, or

• S′ contains an edge crossing the coordinate d and there exists a component Bi and a path
in I(C′, Z ′) between Qd,0 and Qd,1 passing through Bi, or

• there exists two components Bi and Bj and there exists two edge-disjoint paths P1 and P2

in I(C′, Z ′) between Qd,0 and Qd,1 passing through Bi and Bj , respectively,

where Z ′ is obtained from Z by inserting at most four appropriate edges of A (lines 96 and 101).
In all cases, the graph I(C′, Z ′) is 2-edge-connected by Lemma 5.2.

All components can be found in O((|C| + |Z|) · poly(n)). Then it suffices to analyze at most
2 dim(Q) + 2 vertices of Q to ensure that (2) does not hold and this is done in time poly(n). Next,
we determine whether (3) holds in time poly(n) and finally apply (3) or (1) to split Q in time
O((|C|+ |Z|) · poly(n)).

One iteration of the on-line algorithm splits some subcube at most n-times, so |C| ≤ kn and
|Z| ≤ 4kn after k iterations. Time complexity of k-th iteration is O(k · poly(n)) which implies the
following theorem.

Theorem 5.5. Described algorithm finds a Hamiltonian cycle of Qn extending a given perfect
matching as Problem 1.2 requires and the complexity of finding first k edges is O(k2 · poly(n)).

6 Conclusion

One downside of the on-line algorithm is that the running time of one iteration is increasing after
every iteration. It may be interesting whether there exists an algorithm for Problem 1.2 with
complexity polynomial only in n. Next, it would be natural to generalize these off-line and on-line
algorithms for finding a Hamiltonian cycle of Qn extending a given general (not only perfect)
matching Qn, if such Hamiltonian cycle exists. However, it is still open whether every matching
of Qn can be extended to a Hamiltonian cycle [19].

Acknowledgements. I am very grateful to Petr Gregor and Tomáš Dvořák for fruitful discussions
on this topic.
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a perfect matching to a hamiltonian cycle. Discrete Mathematics & Theoretical Computer
Science, 17, 2015.

[2] X.B. Chen. Unpaired many-to-many vertex-disjoint path covers of a class of bipartite graphs.
Information Processing Letters, 110:203–205, 2010.
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[14] D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicles 0-4. Addison-Wesley
Professional, 2009.

[15] Donald E. Knuth. Personal communication, 2008.

[16] G. Kreweras. Matchings and Hamiltonian cycles on hypercubes. Bull. Inst. Combin. Appl.,
16:87–91, 1996.

[17] T. Mütze. Proof of the middle levels conjecture. Proceedings of the London Mathematical
Society, 112(4):677–713, 2016.

[18] T. Mütze and J. Nummenpalo. A constant-time algorithm for middle levels gray codes. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2238–2253, 2017.

[19] F. Ruskey and C.D. Savage. Hamilton Cycles that Extend Transposition Matchings in Cayley
Graphs of Sn. SIAM Journal on Discrete Mathematics, 6(1):152–166, 1993.

[20] C. Savage. A survey of combinatorial Gray codes. SIAM Review, 39(4):605–629, 1997.

13

http://theory.stanford.edu/~tomas/circmat.ps

	Introduction
	Preliminaries
	Extending perfect matching without using long edges
	Off-line algorithm
	On-line algorithm
	Conclusion

