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Abstrakt:

Jedńım ze základńıch problémů moderńı statistické fyziky je snaha porozumět
frustraci a chaosu. Základńım modelem je konečně dimenzionálńı Edwards-Anderson
Ising model. V této práci zavád́ıme zobecněńı tohoto modelu. Studujeme množinové
systémy uzavřené na symetrické rozd́ıly. Ukážeme, že významnou otázku, zda ground-
state v Ising modelu je jednoznačný, lze studovat v těchto množinových systémech.

Krewerasova hypotéza ř́ıká, že každé perfektńı párováńı v hyperkrychli Qn lze
rozš́ı̌rit na Hamiltonovskou kružnici. Tuto hypotézu jsme dokázali.

Matching graf M(G) grafu G má za vrcholy perfektńı párováńı v G a hranami
jsou spojeny ty dvojice perfektńıch párováńı, jejichž sjednoceńı tvoř́ı Hamiltonovskou
kružnici v G. Dokážeme, že matching graf M(Qn) je bipartitńı a souvislý pro n ≥ 4.
Toto dokazuje Krewerasovu hypotézu, že graf Mn je souvislý, kde Mn vznikne z grafu
M(Qn) kontrakćı vrchol̊u M(Qn), které odpov́ıdaj́ı izomorfńım perfektńım párováńım.

Cesta v Qn vyhýbaj́ıćı se zadaným f chybným vrchol̊um se nazývá dlouhá, jestliže
jej́ı délka je alespoň 2n − 2f − 2. Analogicky kružnice je dlouhá, pokud jej́ı délka je
alespoň 2n−2f . Pokud jsou všechny chybné vrcholy ze stejné bipartitńı tř́ıdy Qn, pak
jsou tyto délky nejlepš́ı možné.

Dokážeme, že pro každou množinu nejvýše 2n−4 chybných vrchol̊u Qn a každé dva
bezchybné vrcholy u a v splňuj́ıćı jednoduchou nutnou podmı́nku na okoĺı u a v existuje
dlouhá cesta mezi u a v. Počet chyb je nejlepš́ı možný a zlepšuje předchoźı známé
výsledky. Také uvažujeme podstatně slabš́ı podmı́nky na okoĺı u a v. Dokážeme, že
pro každou množinu nejvýše (n2 +n−4)/4 chybných vrchol̊u Qn existuje dlouhá cesta
mezi libovolnými dvěma bezchybnými vrcholy, které maj́ı nejvýše 3 chybné sousedy.

Označme f(n) maximálńı č́ıslo takové, že pro každou množinu nejvýše f(n) chyb
Qn existuje dlouhá kružnice. Castañeda and Gotchev položili hypotézu, zda f(n) =
(

n
2

)

− 2. Nejprve jsme našli elegantńı d̊ukaz, že f(n) ≥ n2/10 + n/2 + 1 pro n ≥ 15,
což byl prvńı známý kvadratický dolńı odhad. Později jsme tuto hypotézu dokázali
pomoćı nové techniky potenciál̊u, kterou jsme zavedli.



6

Title: Probabilistic Methods in Discrete Applied Mathematics
Author: Jǐŕı Fink
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Abstract:

One of the basic streams of modern statistical physics is an effort to understand
the frustration and chaos. The basic model to study these phenomena is the finite
dimensional Edwards-Anderson Ising model. We present a generalization of this model.
We study set systems which are closed under symmetric differences. We show that the
important question whether a groundstate in Ising model is unique can be studied in
these set systems.

Kreweras’ conjecture asserts that any perfect matching of the n-dimensional hy-
percube Qn can be extended to a Hamiltonian cycle. We prove this conjecture.

The matching graph M(G) of a graph G has a vertex set of all perfect matchings of
G, with two vertices being adjacent whenever the union of the corresponding perfect
matchings forms a Hamiltonian cycle. We prove that the matching graph M(Qn) is
bipartite and connected for n ≥ 4. This proves Kreweras’ conjecture that the graph
Mn is connected, where Mn is obtained from M(Qn) by contracting all vertices of
M(Qn) which correspond to isomorphic perfect matchings.

A fault-free path in Qn with f faulty vertices is said to be long if it has length at
least 2n − 2f − 2. Similarly, a fault-free cycle in Qn is long if it has length at least
2n − 2f . If all faulty vertices are from the same bipartite class of Qn, such length is
the best possible.

We show that for every set of at most 2n − 4 faulty vertices in Qn and every two
fault-free vertices u and v satisfying a simple necessary condition on neighbors of u
and v, there exists a long fault-free path between u and v. This number of faulty
vertices is tight and improves the previously known results. We also consider much
weaker condition of neighbors of u and v. We prove that for every set of at most
(n2 + n − 4)/4 faulty vertices of Qn, there exists a long fault-free path between any
two vertices such that each of them has at most 3 faulty neighbors.

Let f(n) be the maximum integer such that for every set of at most f(n) faulty
vertices of Qn, there exists a long fault-free cycle. Castañeda and Gotchev conjectured
that f(n) =

(

n
2

)

− 2. First, we fount an elegant proof that f(n) ≥ n2/10 + n/2 + 1
for n ≥ 15 which was the first known quadratic lower bound. Later, we proved this
conjecture using new technique of potentials which we introduced.
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Binary linear codes

Discrete mathematics is a branch of mathematics which studies structures that are
fundamentally discrete rather than continuous. It consists of logic, combinatorics,
set theory, graph theory, probability, number theory, information theory, geometry,
game theory, algebra and other various branches. Applied mathematics usually con-
tains operations research, theoretical computer science, numerical methods, statistical
mechanics, economics and many other topics.

In this thesis, we combine several of those fields to obtain results in different dis-
ciplines. A common topic is the information theory which answers fundamental ques-
tions in communication theory. It has important contributions to statistical physics,
computer science, probability and statistics.

One of studied objects of the information theory is a linear code which is an impor-
tant type of block code used in error correction and detection schemes. A linear code
of length n and rank k is a linear subspace with dimension k of the vector space Fn

q

where Fq is the finite (Galois) field with q elements. As the first class of linear codes
developed for error correction purpose, famous Hamming codes have been widely used
in digital communication systems.

A binary linear code is a linear code over the binary field F2. A vector of a binary
linear code can be seen as an n-tuple of elements of the set {0, 1}, or a vertex of
the n-dimensional hypercube, or as a subset of a ground set of size n. The bijection
between vectors and subsets is provided by a characteristic vector of a subset. We
combine those points of view depending on what is more convenient for us in particular
contents.

A linear subspace of Fn
2 corresponds to a subset of the potential set of an n element

set that is closed under symmetric differences. We [38] study such set systems in Part II
in connection with the Ising model which is a mathematical model of ferromagnetism
in statistical mechanics.

The Ising model studies the physics of phase transitions, which arise when a small
change in a parameter such as temperature or pressure causes a large and qualitative
change in the state of a system. Phase transitions are common in everyday life.
We can see them when water is freezing, boiling or sublimating. Another examples
of phase transitions are the emergence of superconductivity in certain metals when
cooled below a critical temperature, the transition between the ferromagnetic and
paramagnetic phases of magnetic materials at the Curie point, and many others.

The historical interest of Ising model originally arises in study of the phenomenon
of ferromagnetism which was the subject of Ising’s doctoral dissertation [54] but it was
invented by the physicist Wilhelm Lenz. One purpose of the Ising model is to explain
how short–range interaction between molecules in a crystal give rise to long–range
interaction and to predict in some sense the potential for phase transition. We study
Ising model as a pure mathematical problem using combinatorics and the theory of

11
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probability.
In the model of ferromagnetism, magnetic materials are represented as lattices

where vertices are atoms and edges are nearest-neighborhood interactions. Each atom
has a magnetic moment which is allowed to point either “up” or “down”. Magnetic
moment of an atom i is called a spin, it is denoted by σi and its orientation is repre-
sented by +1 or −1. Nearest-neighborhood interactions are called coupling constants.
The interaction between atoms i and j is denoted by Jij. The energy of the system is
called the Hamiltonian and it is defined by

H(σ) = −
∑

〈i,j〉

Jijσiσj.

We study a state of the minimal energy which is called a groundstate.
Note that a change of a spin has influence on energy of adjacent interactions.

Similarly, a change of a set of spins has influence on energy of interactions between
such pairs of atoms that change a spin of exactly one atom of each pair. Furthermore,
the family of all sets of interactions that can be changed by flipping some set of spins
is closed under symmetric differences. In another words, this family forms a binary
linear code when we consider characteristic vectors of its sets. This leads us back to
our original motivation of studying the theory of information.

A binary linear code is also used in error correction which is a technique that
enables reliable delivery of digital data over unreliable communication channels. In
digital communication it is hard to transfer a sequence of numbers if adjacent numbers
differ in more than one bit because it is very unlikely that switches will change states
exactly in synchrony. In the brief period while channels are changing, the receiver will
read some spurious position. In 1947, Bell Labs researcher Frank Gray [48] invented
the reflected binary code which is a permutation code of numbers from 0 to 2n−1 such
that every two adjacent numbers differ in exactly one bit. Nowadays, generalizations of
the reflected binary code are called Gray codes and it is used in digital communications
such as digital terrestrial television and some cable TV systems.

Gray codes have found applications in such diverse areas as circuit testing [78], sig-
nal encoding [67], ordering of documents on shelves [66], data compression [77], statis-
tics [19], graphics and image processing [2], processor allocation in the hypercube [15],
hashing [31], computing the permanent [75], information storage and retrieval [14],
and puzzles, a such as the Chinese Rings and Towers of Hanoi [47].

The reflected binary code has very elegant recursive construction but often more
general Gray code is needed. Therefore, Gray codes having special properties are
studied. An interested reader can find more details about this topic in the survey of
Savage [80]. For example, is there a Gray code such that prescribed pairs of vectors
that differ in a single bit are adjacent? In this point it is more convenient to switch
the terminology from a Gray code to a Hamiltonian cycle in a hypercube.

Dvořák [23] showed that any set of at most 2n − 3 edges of the n-dimensional hy-
percube that induces vertex-disjoint paths is contained in a Hamiltonian cycle. Every
Hamiltonian cycle of a hypercube can be split into 2 perfect matchings. Therefore, it
is natural to ask the opposite question whether every perfect matching of the hyper-
cube can be extended into a Hamiltonian cycle. As far as we know, the first mention
of this question was published by Kreweras [59] who conjectured that answer to this
question is positive. Independently, this problem was stated by Donald E. Knuth [57,
problem 7.2.1.1–55]. We [35] proved this conjecture and similar results are presented
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in Part III.
Choosing an appropriate interconnection network is an important part of designing

parallel processing or distributed systems. A large number of network topologies have
been proposed [6, 89]. Among those interconnecting networks, the hypercube [7] has
several excellent properties, such as a recursive structure, regularity, symmetry, small
diameter, relatively short mean vertex distance, low degree, and low edge complexity
which are very important when designing massively parallel or distributed systems
[61].

Hamiltonian cycles and paths are used as control/data flow structures for dis-
tributed computation in arbitrary networks. An application of longest paths to a
practical problem was encountered in the on-line optimization of a complex Flexible
Manufacturing System [4]. These applications motivate the embedding of paths and
cycles in networks. Since processor or link faults may develop in real world networks,
it is important to consider faulty networks. The problems of diameter [18], routing
[29], multicasting [64], broadcasting [88], gossiping [20], and embedding [32, 63] have
been solved in various faulty networks.

Let f(n) be the maximum integer such that Qn − F has a cycle of length at least
2n − 2|F | for every set F of at most f(n) vertices in n-dimensional hypercube Qn.
Firstly, Chan and Lee [13] showed that f(n) ≥ (n − 1)/2. This lower bound was
improved in several papers up to f(n) ≥ 3n − 7 by Castañeda and Gotchev [12] who
conjectured that f(n) =

(

n
2

)

− 2. The upper bound was noticed by Koubek [58] and
independently Castañeda and Gotchev [12]. We [41] obtained the first quadratic lower
bound f(n) ≥ n2/10 + n/2 + 1, and later, we [39] proved this conjecture. These and
similar results about paths in faulty hypercube are presented in Part IV.
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Chapter 1

Groundstates in Ising model

1.1 Introduction

A fundamental and extensively studied problem in spin glass physics is the multiplicity
of infinite-volume groundstate in finite dimensinal short-ranged systems [74]. In the
mean-field Sherrington-Kirkpatrick model [56], it is conjectured that finite dimensional
short-ranged systems with frustration have infinitely many groundstate pairs [70, 8]. A
different conjecture based on droplet-scaling theories predicts that there is only a single
groundstate pair in all finite dimensions [69, 9, 42]. The later scenario has received
support from recent simulations, some [1, 76] based on “chaotic size dependence” [72]
and some [51] using other techniques.

Mathematically the problem remains open. Newman and Stein [73] ruled out
the appearance of multiple domain walls between groundstates. Arguin et al. [3]
considered the Edwards-Anderson Ising spin glass model on the half-plane Z × Z+.
They took finite-volume measures corresponding to joint distributions of the couplings
and groundstates and proved that these converge to a unique limit and the conditional
distribution of the limiting measure is supported on a single groundstate pair. On
the other hand, there are also papers supporting existence of different groundstate
pairs [65].

We focus our attention on the nearest-neighbor Edwards-Anderson Ising model [27]
on a graph G = (V,E) with Hamiltonian

HJ(σ) = −
∑

uv∈E

Juvσuσv (1.1)

where J is the set of couplings Juv, uv ∈ E. We take the spins σu, u ∈ V , to be Ising,
i.e. σu = ±1. The couplings Juv are independent, identically distributed random
variables and their common distribution is symmetric around zero. The most common
examples are the Gaussian and ±J distribution. The Hamiltonian (1.1) has clear sense
if the graph G is finite. If G is infinite, then we consider expression (1.1) as formal
power series in variables Juv.

In this paper, we study groundstates in an arbitrary graph and in a special class
of set systems.

17



18 CHAPTER 1. GROUNDSTATES IN ISING MODEL

1.2 Definition of a cut system

For simplicity, we translate some terms of statistical physics to terms of graph theory.
Instead of a state σ we consider the set of vertices T := {v ∈ V | σ(v) = −1} which
gives us a natural one-to-one correspondence between states and subsets of vertices.
A T -cut is the set of edges CT of G which have exactly one end-vertex in T ⊆ V . Note
that uv ∈ CT if and only if σuσv = −1 where uv ∈ E. We consider a weight function
on edges ω : E → R instead of coupling constants J.

Definition 1.1. Let G = (V,E) be a graph on countable many vertices V such that
every vertex has finite degree and E 6= ∅. The family of all cuts of G is denoted by
CG. The pair (E, CG) is called a cut system.

In this paper we use the following notation.

Definition 1.2. Let B ⊆ A be two sets and ω : A → R be a function. By ωB we
denote the function obtained from ω by switching the sign on elements that belong to
B, that is

ωB(x) =

{

−ω(x) if x ∈ B

ω(x) otherwise

for all x ∈ A. By ω(B) we denote the sum
∑

x∈B ω(x).

Note that ωB(B) = −ω(B). The sum ω(B) is well-defined if B is finite. We use
the sum ω(B) for an infinite set B only for physical motivation of the Hamiltonian
but we avoid it in mathematical proofs.

Let A,B ⊆ E and S, T ⊆ V . Let ωT denotes ωCT
. Observe that (ωA)B = ωA△B

where A△B = (A \B)∪ (B \A) is called the symmetric difference of A and B. From
CS △CT = CS △T it follows that (ωS)T = ωS △T . This simplifies the notation of the
Hamiltonian:

HJ(σ) = −
∑

uv∈E

Juvσuσv = −
∑

e∈E

ωT (e) = −ωT (E).

We are interested in a state σ (or T in the new notation) with minimal Hamiltonian.
If the graph is finite we can enumerate the Hamiltonian for every state and choose the
minimal one. But for a graph on infinitely many vertices, the sum ωT (E) is not well
defined. Therefore, we restrict the condition of minimality of the Hamiltonian only
for finite changes: we say that T is an ω-groundstate if −ωT △T ′

(E) ≥ −ωT (E) for
every finite set T ′ ⊆ V . For a finite graph this condition already says that there is no
state T △T ′ of smaller Hamiltonian. Since ωT △T ′

(e) = ωT (e) for every e ∈ E \ CT ′ ,
we change the last inequality to ωT △T ′

(CT ′) ≤ ωT (CT ′) which is well-defined even for
infinite graph. Observation that ωT △T ′

(e) = −ωT (e) for every e ∈ CT ′ simplifies our
condition: A state T ⊆ V is an ω-groundstate if ωT (CT ′) ≥ 0 for every finite set
T ′ ⊆ V . For further simplification we use a definition which is a little bit stronger on
some graphs.

Definition 1.3. Let (E, CG) be the cut system of a graph G = (V,E) and ω : E → R

be a weight function. A state T ⊆ V is an ω-groundstate if ωT (C) ≥ 0 for every finite
cut C ∈ CG.
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Observe that CT is finite for every finite set T ⊆ V since every vertex of G has
finite degree. On the other hand, it does not generally hold that T ⊆ V is finite if
CT is finite. For example, let us consider the omnidirectional infinite path P∞. Every
finite set of edges F of P∞ forms a cut CT but the set of vertices T has to be infinite
if |F | is odd.

Later, we show that there always exists an ω-groundstate in more general con-
cept. We are interested whether ω-groundstate is unique. From the observation that
ω(e) = ωV (e) for every e ∈ E, it follows that T is an ω-groundstate if and only if
V \ T is an ω-groundstate. Such two groundstates are called groundstate pairs and
we do not consider them as different groundstates. Note that a state T ⊆ V can be
also represented by a cut CT which is more convenient for us because it avoids the
ambiguity of groundstate pairs.

An edge e ∈ E is frustrated in a state T ⊆ V if ωT (e) < 0. Another prob-
lem in Edwards-Anderson Ising model is determining how large the symmetric dif-
ference of the sets of frustrated edges of two groundstates can be. Let F(ω, T ) =
{

e ∈ E
∣

∣ ωT (e) < 0
}

be the set of frustrated edges. We show that symmetric differ-
ence of frustrated edges in two states forms a cut.

Lemma 1.4. If T1, T2 ⊆ V and ω : E → R \ {0}, then F(ω, T1)△F(ω, T2) = CT1 △T2.

Proof. An edge e belongs to CT1 △T2 if and only if e belongs to exactly one cut of CT1

and CT2 which means that ωT1(e) and ωT2(e) have different signs.

If ω is chosen randomly from the Gaussian distribution, then an edge of weight 0
occurs with probability 0.

1.3 Definition of a σ-XOR-system

We generalize our definition of a groundstate of graphs into a special type of set
systems. Let us note that every cut system is closed under symmetric difference; and
this property is crucial for us.

Definition 1.5. Let M be a countable set and S be a family of subsets of M such that
both M and S are nonempty and

⋃

A∈S A = M . We say that (M,S) is a XOR-system,
if A△B ∈ S for every A,B ∈ S. Let Sk be the family of finite sets of S.

The set systems (M,S), where M or S is the empty set, are not interesting for us.
If some element m ∈ M does not occur in any set of S, then we can remove m from
M , so we require that

⋃

A∈S A = M . Note that the cut system of every graph with at
least one edge forms a XOR-system.

Let us observe that Sk is countable. Indeed, Sk is countable for the complete
XOR-system (N, S) where S = 2N. That is because Sk is countable union of countable
sets Rn where Rn the set all subsets of N of size n; and Rn is countable because there
exists an injection from Rn to the Cartesian product Nn which is countable.

One may ask why we require only the symmetric difference of finitely many sets in
the definition of a XOR-system. That is because it is not obvious what the symmetric
difference of countably many subsets of M is. First, we need to define the limit of a
sequence of sets.
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Definition 1.6. Let (An)n∈N be a sequence of subsets of a set M . The sequence
(An)n∈N converges to A ⊆ M if for every m ∈ M the number of n ∈ N satisfying
m ∈ A△An is finite. This is denoted by limn→∞ An = A or An

n
−→ A.

Note that a sequence (An)n∈N of subsets of a set M converges to A ⊆ M if and
only if for every finite set B ⊆ M there exists n0 ∈ N such that for every n ≥ n0

it holds that (An △A) ∩ B = ∅. We say that x ∈ M is an alternating item for the
sequence (An)n∈N if both sets {n | x ∈ An} and {n | x /∈ An} are infinite. Clearly, the
sequence (An)n∈N converges if and only if it has no alternating item.

Now, we define the symmetric difference of an infinite sequence (An)n∈N as limit of
partial symmetric differences △n

i=1Ai.

Definition 1.7. Let (An)n∈N be a sequence of subsets of a set M and Bn = △n
i=1Ai for

n ∈ N. The symmetric difference of the sequence (An)n∈N converges to A if Bn
n
−→ A.

This is denoted by △n∈NAn = A.

As usual, every sequence has at most one limit and at most one symmetric differ-
ence. Our main tool is compactness on a XOR-system (M,S), which states that every
sequence (An)n∈N of S has a subsequence (Akn

)n∈N converging to A ⊆ M . We need
to know whether the limit of a sequence of S remains in S which is provided by the
following definition.

Definition 1.8. We say that a XOR-system (M,S) is closed under limits if the family
S contains the limit of every converging sequence of S. We say that a XOR-system
(M,S) is closed under symmetric differences if for every sequence (An)n∈N of S such
that △n∈NAn = A, the family S contains A.

Now, we show that it suffices to consider only the closure under limits.

Proposition 1.9. A XOR-system (M,S) is closed under limits if and only if it is
closed under symmetric differences.

Proof. If the XOR-system (M,S) is closed under limits, then it contains limits of
convergent partial symmetric differences of sequences. On the other hand, let (An)n∈N

be a sequence of S converging to A. Let B1 = A1 and Bn = An △An−1 for n ≥ 2.
From △n

i=1Bi = An it follows that △n∈NBn = A ∈ S.

We use limits of sequences instead of their symmetric differences because it is more
convenient for us.

Definition 1.10. If a XOR-system (M,S) is closed under limits, then we define Sσ

be the set of all limits of converging sequences of Sk. A XOR-system (M,S) is called
σ-XOR-system if it is closed under limits and S = Sσ.

In another words, a XOR-system (M,S) is a σ-XOR-system if S contains a limit
of every converging sequence of S and for every set A ∈ S there exists a sequence of
Sk converging to A.

For example, a complete system (M, 2M) is σ-XOR-system. On the other hand,
(

N,
(

N

even

))

is not σ-XOR-system where
(

N

even

)

is the family of all subset of even size

because the limit of the sequence ({1, n + 1})n∈N is {1} /∈
(

N

even

)

. Later, we present
examples of XOR-systems which are closed under limits but does not satisfy S = Sσ.

Let us show properties and relations between Sk and Sσ.
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Lemma 1.11. Let (M,S) be a XOR-system which is closed under limits. It holds that
Sk ⊆ Sσ and Sk = (Sσ)k.

Proof. If A ∈ Sk, then the constant sequence (A)n∈N converges to A which implies
that A ∈ Sσ and the first part of the statement holds.

If A ∈ Sk, then A ∈ Sσ which also implies that A ∈ (Sσ)k. It remains to prove
that Sk ⊇ (Sσ)k.

Let A ∈ (Sσ)k which means that A ∈ Sσ and A is finite. Since Sσ ⊆ S, we have
A ∈ Sk.

We say that a XOR-system (M,S) is finite if M is finite; otherwise, it is infinite.
Now, we prove that every finite XOR-system is σ-XOR-system. In Section 1.4 we
present more details about the boundary between finite and infinite XOR-systems.

Proposition 1.12. Let (M,S) be a finite XOR-system. Then, (M,S) is a σ-XOR-
system and S = Sk = Sσ and they are finite.

Proof. Since all sets of S are finite, we know that S = Sk. Moreover, S is finite because
|S| ≤ 2|M |.

Let (An)n∈N be a converging sequence of S. If (An)n∈N contains two different sets
A,B ∈ S infinitely many times, then every element of A△B is alternating, which
contracts convergency of (An)n∈N. So, (An)n∈N has only one set A infinitely many
times which implies that An → A. This proves that (M,S) is closed under limits.

Finally, Sk ⊆ Sσ ⊆ S by definition and Lemma 1.11 which concludes the proof
since S = Sk.

Now, we prove that every converging sequence of Sσ has its limit in Sσ. It implies
that a XOR-system (M,S) is σ-XOR-system if S contains a limit of every converging
sequence of Sk and for every set A ∈ S there exists a sequence of Sk converging to A.

Lemma 1.13. Let (M,S) be a XOR-system which is closed under limits. For every
sequence (An)n∈N of Sσ converging to A ∈ S there exists a sequence (Bn)n∈N of Sk

converging to A.

Proof. If M is finite, then S = Sσ = Sk by Proposition 1.12, and the statement holds.
So, we assume that M is infinite and (dn)n∈N is a sequence of all elements of M . Let
Mn be {d1, . . . , dn} for every n ∈ N.

Let (An)n∈N be a sequence of Sσ such that An
n
−→ A ∈ S.

Since An ∈ Sσ, there exists a sequence (Ak
n)k∈N of Sk such that Ak

n
k
−→ An.

Since An
n
−→ A, there exists im such that (Aim △A) ∩ Mm = ∅ for every m ∈ N.

Since Ak
im

k
−→ Aim , there exists jm such that (Ajm

im
△Aim) ∩ Mm = ∅ for every

m ∈ N.
We prove that Bn = Ajn

in
is the requested sequence which satisfies Bn

n
−→ A, that

is for every m ∈ N there exists n′ ∈ N such that for every n ≥ n′ it holds that
(Bn △A)∩Mm = ∅. For given m ∈ N we choose n′ = m. Let n ≥ m. From Mm ⊆ Mn

it follows that

(Bn △A) ∩ Mm ⊆ (Bn △A) ∩ Mn = (Ajn

in
△A) ∩ Mn =

((Ajn

in
△Ain)△ (Ain △A)) ∩ Mn ⊆ ((Ajn

in
△Ain) ∩ Mn) ∪ ((Ain △A) ∩ Mn)

By definition of the sequence (in)n∈N it holds that (Ain △A) ∩ Mn = ∅.
By definition of the sequence (jn)n∈N it holds that (Ajn

in
△Ain) ∩ Mn = ∅.

Therefore, (Bn △A) ∩ Mm = ∅.
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Now, we study the condition that σ-XOR-system has to be closed under limits.
Later, we define a groundstate in a XOR-system and prove that (M,S) has always a
groundstate and show that it suffices to study groundstates in Sσ.

If a XOR-system (M,S) is closed under limits and S = Sσ, then (M,S) = (M,Sσ)
is a σ-XOR-system. But we prove that (M,Sσ) is a σ-XOR-system even if Sσ 6= S.

Proposition 1.14. If (M,S) is a XOR-system which is closed under limits and
⋃

A∈Sσ
= M , then (M,Sσ) is a σ-XOR-system.

Proof. First, we prove that (M,Sσ) is a XOR-system. From ∅ ∈ S it follows that
∅ ∈ Sσ. For A,B ∈ Sσ there exist sequences An and Bn of Sk such that An

n
−→ A and

Bn
n
−→ B. It follows from An △Bn

n
−→ A△B that A△B ∈ Sσ, and therefore (M,Sσ)

is a XOR-system.
Let (An)n∈N be a sequence of Sσ converging to A. By Lemma 1.13 there exists a

sequence (Bn)n∈N of Sk converging to A. Since (M,S) is closed under limits, A belongs
to Sσ. Therefore, (M,Sσ) is closed under limits too.

Clearly, (Sσ)σ ⊆ Sσ by definition. On the other hand, let (An)n∈N be a sequence of
(Sσ)k converging to A ∈ (Sσ)σ. By Lemma 1.11 we know that (An)n∈N is a sequence
of Sk and therefore, A ∈ Sσ. All together, (Sσ)σ = Sσ.

Now, we prove that the cut system (E, CG) of a graph G = (V,E) forms a σ-XOR-
system. Recall that we consider only graphs on countably many vertices with finite
degree of every vertex.

Theorem 1.15. If G = (V,E) is a connected graph with at least one edge, then (E, CG)
is a XOR-system which is close under limits. Moreover, if the maximum degree of G
is finite, then (E, CG) is a σ-XOR-system.

Proof. From C∅ = ∅ and CT1 △CT2 = CT1 △T2 , it follows that (E, CG) is a XOR-system.
Now, we prove that CG is closed under limits. Let (Cn = CTn

)n∈N be a sequence
of cuts of G such that Cn

n
−→ C ⊆ E. We prove that C is a cut of G. Let x be a

vertex of G. We suppose that x /∈ Tn; otherwise, we may consider V \ Tn instead of
Tn because CTn

= CV \Tn
.

Does the sequence (Tn)n∈N of a subsets of V converge? If it does not, then (Tn)n∈N

contains an alternating item u ∈ V . Note that x 6= u. Let us consider a path from
x to u and let v be the first alternating vertex in (Tn)n∈N on that path and w be the
previous vertex which is not alternating. Hence, vw is an alternating edge on (Cn)n∈N

but (Cn)n∈N is convergent which is a contradiction. Therefore, Tn
n
−→ T ⊆ V \ {x}.

If CT and C are different, then cut sequences (CTn
)n∈N and (Cn)n∈N are different

for sufficiently large n which contradicts the assumption that CTn
= Cn for all n ∈ N.

Hence, C = CT ∈ CG and CG is closed under limits.
Finally, we prove that for every CT = C ∈ CG there exists a sequence (Cn)n∈N of

finite cuts of G converging to C. If T is finite, then CT is finite and we consider the
constant sequence (CT )n∈N. Otherwise, let (vn)n∈N be a sequence of all vertices of T .
Clearly, the sequence

(

C{v1,...,vn}

)

n∈N
converges to CT and C{v1,...,vn} is finite for every

n ∈ N.

It is obvious that common lattices satisfy all conditions of the last theorem. On
the other hand, the request that the maximum degree of G is finite, is necessary. Let
KN be the complete graph with infinitely countably many vertices.
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Proposition 1.16. The only finite cut of KN is the empty one. Moreover,
(CKN

)σ = {∅}.

Proof. For a contradiction, let us suppose that there exists a finite cut CT containing
edge uv. Assume that u ∈ T and v 6∈ T . For every vertex x ∈ V \ {u, v}, either xu or
xv belongs into CT and we denote it by ex. Clearly, edges {ex | x ∈ V \ {u, v}}, are
pairwise different. Hence, we have infinitely many edges in CT which is a contradiction.

The only sequence of finite cuts of KN is (∅)n∈N which implies that (CKN
)σ = {∅}.

1.4 Finite XOR-systems

One of the main tools in this article is compactness which guarantees that every
sequence has a convergent subsequence. Recall that a sequence (An)n∈N of subsets of
a set M converges to A ⊆ M if for every m ∈ M the number of n ∈ N satisfying
m ∈ A△An is finite. A sequence (Akn

)n∈N is called a subsequence of a sequence
(An)n∈N if (kn)n∈N is an increasing sequence of N.

Theorem 1.17 (Compactness). Every sequence of subsets of a set has a converging
subsequence.

The proof of this theorem follows from well know Tychonoff Theorem [84]. It holds
for every set of arbitrary cardinality; nevertheless, we use it only for countable sets in
this article.

A XOR-system (M,S) is finite if M is finite. Proposition 1.12 states that a finite
XOR-system (M,S) satisfies S = Sk = Sσ. Such property is not expected in infinite
XOR-system. But it does not hold generally that Sk 6= Sσ if M is infinite; for example,
Proposition 1.16 shows an example of XOR-system (M,S) where M is infinite but
Sσ = Sk = {∅}. We need to require that (M,S) is σ-XOR-system.

Proposition 1.18. Let (M,S) be a σ-XOR-system. For every m ∈ M there exists
A ∈ Sk such that m ∈ A.

Proof. The definition of a XOR-system requires that
⋃

A∈S A = M which implies that
there exists A ∈ S such that m ∈ A. The definition of σ-XOR-system requires that
S = Sσ which implies that A ∈ Sσ. Hence, there exists a sequence (An)n∈N of Sk

converging to A which implies that m ∈ An for sufficiently large n.

Theorem 1.19. Let (M,S) be a σ-XOR-system. The following statements are equiv-
alent.

1. M is infinite.

2. Sk is infinite.

3. Sσ is not countable.

4. Sk 6= Sσ.

5. There exists a sequence (An)n∈N of Sk such that
⋃

n∈N
An is infinite.

6. There exists a sequence (Bn)n∈N of Sk of pair-wise disjoint nonempty sets.
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Proof. First, we prove that the statements (1), (2) and (5) are equivalent. The state-
ment (5) implies (2) because

⋃

n∈N
An is not infinite if Sk is finite. From Proposi-

tion 1.12 it follows that (2) implies (1). Let (mn)n∈N be a sequence of all elements of
M . By Proposition 1.18 there exists An ∈ Sk such that mn ∈ An for every n ∈ N.
Therefore, M =

⋃

n∈N
An is infinite and (1) imples (5).

Now, we prove that (3), (4), (5) and (6) are equivalent. Since Sk is always countable,
(3) implies (4).

From (4) it follows that there exists a sequence (An)n∈N of Sk converging to
A ∈ Sσ \ Sk. Therefore, A is infinite and

⋃

n∈N
An ⊇ A is also infinite which implies

(5).
Now, we prove that (5) implies (6). Let (An)n∈N be a sequence of Sk such that

⋃

n∈N
An is infinite. Note that the sequence (An)n∈N has infinitely many different sets.

Suppose that sets (An)n∈N are pair-wise different nonempty sets, since we may consider
only the first occurrence of each set in the sequence. By compactness, the sequence
(An)n∈N has a subsequence (Akn

)n∈N converging to a set A ∈ Sσ.
We define Bn by induction on n. Let B1 = Ak1 . Assume that B1, . . . , Bn−1 ∈ Sk

are pair-wise disjoint nonempty sets. Our aim is to find Bn ∈ Sk such that Bn∩B = ∅,
where B =

⋃n−1
i=1 Bi. Since Akn

n
−→ A, there exists m such that (Ak

m′ △A) ∩ B = ∅
holds for all m′ ≥ m. Therefore,

(Akm
△Akm+1) ∩ B = ((Akm

△A)△ (Akm+1 △A)) ∩ B ⊆

((Akm
△A) ∩ B) ∪ ((Akm+1 △A) ∩ B) = ∅.

Hence, we define Bn = Akm+1 △Akm
, which is non-empty and disjoint with all sets

B1, . . . , Bn−1. This proves (6).
Let (Mn)n∈N be a sequence of pair-wise disjoint nonempty sets by (6). For a

sequence (an)n∈N of {0, 1} we define a set Z(an) to be the symmetric difference of all
Bn where an = 1. For different sequences (an)n∈N we obtain different sets Z(an) ∈ Sσ.
The system Sσ is uncountable because there are uncountably many sequences (an)n∈N

which implies (3).

Proposition 1.18 and Theorem 1.19 give us basic characterization of finite and
infinite σ-XOR-systems. They also say that Sσ is either finite or uncountable for
every σ-XOR-system (M,S).

1.5 Existence of a groundstate

In this section, we define a groundstate for a XOR-system and we prove that every
σ-XOR-system has a groundstate. One can check that the following definition only
extends the definition for cut systems into a general XOR-system.

Definition 1.20. Let (M,S) be a XOR-system and ω : M → R be a weight function.
Then, A ∈ S is an ω-groundstate if ωA(B) ≥ 0 for every B ∈ Sk.

Before we study groundstates, we need two simple lemmas. The first one directly
follows from the fact that (ωA)B = ωA△B.

Lemma 1.21. Let (M,S) be a XOR-system, A,B ∈ S and ω : M → R. Then, B is
an ωA-groundstate if and only if A△B is an ω-groundstate.
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Lemma 1.22. Let A and B be finite subsets of a set M and ω : M → R be a weight
function. Then, ωA(B △A) = ω(B) − ω(A).

Proof.

ωA(B △A) = ωA((B \ A) ∪ (A \ B))

= ωA(B \ A) + ωA(A \ B)

= ω(B \ A) − ω(A \ B)

= (ω(B \ A) + ω(B ∩ A)) − (ω(A \ B) + ω(B ∩ A))

= ω(B) − ω(A).

We prove that there always exists a groundstate in a σ-XOR-system. But we need
to start with a groundstate in a finite XOR-system.

Lemma 1.23. Every finite XOR-system (M,S) has an ω-groundstate for every
ω : M → R.

Proof. Since S is finite by Proposition 1.12, we choose A ∈ S such that ω(A) is
minimal. Then, A is an ω-groundstate because ωA(B) = ω(A△B) − ω(A) ≥ 0 for
every B ∈ Sk by Lemma 1.22.

A closure of a finite set Z ⊆ S in a XOR-system (M,S) is the minimal subset of
S containing Z that is closed under finite symmetric differences. Note that (M̄, Z̄) is
a XOR-system where M̄ =

⋃

A∈Z̄ A.

Theorem 1.24. Let (M,S) be a XOR-system that is closed under limits. Then, (M,S)
contains an ω-groundstate in Sσ for every ω : M → R.

Proof. Since Sk is countable there exists a sequence (Xn)n∈N of all sets of Sk. Let
Zn = {X1, . . . , Xn}. Let set An be an ω-groundstate of the finite XOR-system
(
⋃

D∈Zn
D,Zn). By compactness (Theorem 1.17) there exists a subsequence (Akn

)n∈N

of (An)n∈N converging to A ∈ Sσ. We show that A is an ω-groundstate of (M,S).
For a contradiction, let Xl ∈ Sk such that ωA(Xl) < 0. Since Akn

n
−→ A, there

exists n ∈ N such that kn ≥ l and (Akn
△A) ∩ Xl = ∅. Hence, Xl ∈ Zkn

and
ωAkn

(Xl) = ωA(Xl) < 0 but Akn
is an ω-groundstate in (

⋃

D∈Zkn

D,Zkn
) which is a

contradiction.

The condition that XOR-system (M,S) is closed under limits is necessary. For
example, let S be the set of all finite subsets of an infinite set M . Then, (M,S) is
a XOR-system which is not closed under limits. If ω : M → {−1}, then there is no
ω-groundstate because for every A ∈ S we choose a finite and nonempty B ⊆ M \ A
to have ωA(B) = ω(B) = −|B| < 0.

Let (M,S) be a XOR-system which is closed under limits. Let σ be the relation
on S such that AσB if A△B ∈ Sσ, where A,B ∈ S. The relation σ is an equivalence
on S. Let us consider classes of equivalence S/σ. One of the classes of S/σ is Sσ.

One of the crucial properties of every XOR-system is called invariance, that is
S = {B △A | B ∈ S } for every A ∈ S. From the invariance it follows that it is really
easy to find an ω-groundstate in every class S/σ.
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Corollary 1.25. Every XOR-system (M,S), that is closed under limits, contains an
ω-groundstate in every class of S/σ for every ω : M → R.

Proof. Let S ′ be a class of S/σ and X ∈ S ′. By Theorem 1.24 there exists an
ωX-groundstate A in Sσ. By Lemma 1.21, A△X is an ω-groundstate.

For example, let

S = {A ⊂ N | |A ∩ {2n − 1, 2n}| is even ∀n ∈ N}

∪ {A ⊂ N | |A ∩ {2n − 1, 2n}| is odd ∀n ∈ N} .

Clearly, (N, S) is a XOR-system which is closed under limits and S/σ has two classes.
Let us consider the complete graph KN on countably many vertices. By Proposition

1.16 we know that Sσ = {∅} which implies that every set of CKN
forms a class of CKN

/σ.
Since there are uncountably many cuts in KN, there are also uncountably many classes
in CKN

/σ.
Now, we know how groundstates behave between different classes in S/σ. By

Corollary 1.25 we can consider only one class of S/σ; and by invariance groundstates
have the same behaviour in every class S/σ. Moreover, by Theorem 1.15 common
lattices satisfies S = Sσ so we restrict our attention on σ-XOR-systems.

The following proposition proves that the limit of converging sequences of ground-
states is also a groundstate.

Proposition 1.26. Let (M,S) be a XOR-system and ω : M → R be a weight function.
Let (An)n∈N be a sequence of S such that An is an ω-groundstate for every n ∈ N. If
An

n
−→ A, then A is an ω-groundstate.

Proof. Let B ∈ Sk. Since An → A there exists n such that (A△An) ∩ B = ∅. Hence
ωA(B) = ωAn

(B) ≥ 0 which proves that A is an ω-groundstate.

1.6 Distributions of weight functions ω

As we mention in the beginning, the most common distributions for coupling constants
J (or, weight function ω) are the Gaussian and ±J distributions. It is natural to
consider that distribution of weight function ω is symmetric around zero.

The Hadamard product of vectors u, v ∈ RM is the vector u ∗ v of RM where
(u ∗ v)i := uivi for all i ∈ M . Moreover, u ∗ B := {u ∗ x | x ∈ B } where B ⊆ RM .

Definition 1.27. Let M be a countable set. The probability space (RM ,BM , P) is
symmetric if P (B) = P (s ∗ B) for every B ∈ BM and s ∈ {±1}M .

In ±J distribution the coupling constants are independently and uniformly chosen
between two numbers +1 and −1. Crucial but physically unnatural property of this
distribution is that it too often happens that a finite change F of a state A does not
change the weight of the state A, i.e. ωA(F ) = 0.

For example, let S be a family of all subsets of N that contains 2n if and only if it
contains 2n−1 for every n ∈ N. Note that (N, S) is a σ-XOR-system which is generated
by {{2n − 1, 2n} | n ∈ N}. We consider a random weight function ω : N→ {±1} with
independent and uniform distribution. Let

Iω := {n ∈ N | ω(2n − 1) = −ω(2n)} .
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Since the probability that ω(2n− 1) and ω(2n) have the opposite sign is 1
2
, the set Iω

is infinite for almost every ω. Let A be an ω-groundstate. Since Iω = IωC
for every

C ∈ S we know that Iω = IωA
. Observe that B := A△ {2n − 1, 2n | n ∈ Z } is an

ω-groundstate too for every Z ⊆ Iω. Hence, for almost every ω we have uncountably
many ω-groundstates.

On the other hand, if the distribution of ω is the Gaussian, then the proba-
bility that ω(2n − 1) = ω(2n) is zero. Therefore, ω-groundstate is almost sure
unique in this XOR-system. For this reason we require that for almost every ω the
probability that ω(F ) = 0 is zero for every finite F ⊆ M . Therefore, we consider
the following property of the distribution of ω which is stronger than the condition
P (ω(A) 6= 0 for all A ∈ Sk) = 0, but it is more handy and Gaussian distribution sat-
isfies it.

Definition 1.28. Let M be a countable set. Let Z be the set of all x ∈ RM for which
there exists k ∈ ZM \ {(0, 0, . . . )} such that km 6= 0 for finitely many m ∈ M and

∑

m∈M,km 6=0

kmxm = 0.

The probability space (RM ,BM , P) is unique if P (Z) = 0.

Note that ω ∈ Z if A ⊆ M finite and ω(A) = 0. Moreover, for every A ⊆ M it
holds that ω ∈ Z if and only if ωA ∈ Z.

Note that if distribution of ω is unique and symmetric, then P (ω(A) ≥ 0) = 1
2

for
every nonempty and finite A ⊆ M , since P (ω(A) ≥ 0) = P (ω(A) ≤ 0) by symmetry
and P (ω(A) = 0) = 0 by uniqueness.

Let us prove that the uniqueness is well defined.

Proposition 1.29. The set Z is measurable and P (Z) = 0 for the Gaussian distri-
bution.

Proof. The set Z is measurable because it is a countable union of linear spaces
{

x ∈ RM | kx = 0
}

where k ∈ ZM \ {(0, 0, . . . )} such that km 6= 0 for finitely many
m ∈ M . Furthermore, every linear space

{

x ∈ RM | kx = 0
}

has measure zero which
implies that P (Z) = 0 for the Gaussian distribution.

Now, we prove that every finite XOR-system has a unique groundstate almost
surely. This can be proven directly but first we prove one stronger property of a
XOR-system. It says that the symmetric difference of two groundstates does not
contain any set of Sk as a subset almost surely.

Proposition 1.30. Let (M,S) be a XOR-system and a weight function ω be chosen
from a unique distribution. There is almost surely no ω-groundstates A,B ∈ S such
that A△B contains a non-empty set of Sk as a subset.

Proof. Let A,B ∈ S be an ω-groundstates and K ∈ Sk such that K ⊆ A△B. Since
ωB(K) = (ωA)A△B(K) = −ωA(K), we have ωA(K) = 0. Hence, ω ∈ Z and

P (∃ω-groundstates A,B ∈ S,∃C ∈ Sk : C ⊆ A△B) ≤ P (Z) = 0.
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Corollary 1.31. Let (M,S) be a finite XOR-system and distribution of a weight
function ω be unique. Then, ω-groundstate is almost surely unique.

Proof. The symmetric difference of two groundstates belongs into Sk and last propo-
sition implies the statement.

The proof of Proposition 1.30 is very simple but it has many other consequences.
For example, the complete infinite σ-XOR-system (N, 2N) has unique groundstate al-
most surely, because the symmetric difference of every two difference states of 2N

contains a finite subset of N. Note that the complete σ-XOR-system has a physical
interpretation: It is the cut system of one-dimensional lattice.

Newman and Stein [73] proved that multiple domain walls between groundstates
in 2D lattice does not exist. Their Lemma 1 states that a domain wall in 2D lattice
is infinite and contains no loops or dangling ends. This lemma also follows from
Proposition 1.30.

Now, we prove that every state in an infinite σ-XOR-system is a groundstate with
zero probability.

Proposition 1.32. Let (M,S) be a σ-XOR-system and distribution of ω be unique,
symmetric and random variables (ω(m))m∈M be mutually independent. Then, M is
infinite if and only if P (A is ω-groundstate) = 0 for every A ∈ S.

Proof. Let M be infinite. Then by Theorem 1.19, there exists a sequence (Mn)n∈N

of Sk, of pairwise different nonempty sets. Since random variables (ω(m))m∈M are
mutually independent, random variables (ω(Mn))n∈N are also mutually independent.
Hence,

P (A is ω-groundstate) ≤ P (ωA(Mn) ≥ 0 ∀n ∈ N)

=
∏

n∈N

P (ωA(Mn) ≥ 0) =
∏

n∈N

1

2
= 0.

Let M be finite. Then by Proposition 1.12, it holds that S = Sk and S is finite. If
P (A is ω-groundstate) = 0 for all A ∈ S, then

1 = P (∃A ∈ Sσ : A is ω-groundstate) ≤
∑

A∈Sk

P (A is ω-groundstate) = 0,

which is a contradiction.

Let us present an example which shows that we cannot avoid the independence in
the last statement. Let (M,S) be an infinite σ-XOR-system. Assume that M = N

to simplify the notation. Let ω(1) be a random variable chosen from the Gaussian
distribution and let ω(n) = en−1ω(1) for all n ∈ N and for almost every ω ∈ RN. This
distribution is symmetric; and moreover, it is unique because e is Euler constant which
is transcendental. Therefore, weights of all elements of M have the same sign almost
surely which implies that P (∅ is an ω-groundstate) = 1

2
.

Now, we present other unnatural properties of ±J distribution. In ±J distribution
the coupling constants are independently and uniformly chosen between two numbers
+1 and −1. Crucial but physically unnatural property of this distribution is that it
too often happen that a finite change of states (or, set of Sk) has weight zero. Hence,
one can consider a sharp inequality in the definition of groundstate.
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Definition 1.33. Let (M,S) be a XOR-system and let ω : M → R be a weight
function. A state A ∈ S is a sharp ω-groundstate if ωA(B) > 0 for every non-empty
state B ∈ Sk.

In a unique distribution we do not need to distinguish between groundstates and
sharp groundstates because every groundstate is almost surely sharp. But the situation
is more complicated in ±J distribution.

Proposition 1.34. Let graph G = (V,E) be a cycle and let (E, CG) be its cut system. If
weight function ω : E → {±1} is chosen from ±J distribution, then there is no sharp
ω-groundstate in (E, CG) with probability 1/2 and there are multiple ω-groundstates
with probability 1/2.

Proof. Let neg(ω) be the set of edges e ∈ E with ω(e) = −1. Observe that cuts in the
cycle are exactly sets of edges of even size. Note that |neg(ωA)| has the same parity
for every cut A. The probability that |neg(ω)| is odd is 1/2.

Therefore, if |neg(ω)| is odd, then we find multiple ω-groundstates but no sharp
one. Indeed, a cut A is an ω-groundstate if and only if A is even and |A△neg(ω)| = 1.
On the other hand, if A would be a sharp ω-groundstate, then there exists an edge
e ∈ neg(ωA) and let f be any other edge but ωA({e, f}) = 0.

If |neg(ω)| is even, then A = neg(ω) is the only ω-groundstate which is sharp
because ωA has no edge of negative weight.

In the last proposition we can notice that there is no sharp ω-groundstate if and
only if there are multiple ω-groundstates for every ω : M → R. This statement holds
generally.

Proposition 1.35. Let (M,S) be a XOR-system and ω : M → R. There exists an
ω-groundstate which is not sharp if and only if there exist ω-groundstates A,B ∈ S
such that A△B is finite and non-empty.

Proof. Since A is not a sharp ω-groundstate, there exists B ∈ Sk such that ωA(B) = 0.
We prove that A△B is also an ω-groundstate. We use Lemma 1.22 to obtain

ωA△B(C) = ωA(B △C) − ωA(B) = ωA(B △C) ≥ 0,

since A is an ω-groundstate, where C ∈ Sk. Therefore, ωA△B(C) ≥ 0 for every C ∈ Sk

which proves that A△B is an ω-groundstate.
On the other hand, let A,B ∈ S be ω-groundstates such that A△B is finite and

non-empty. From definition it follows that ω(X) = −ωX(X) for every finite set X ⊆ M
which implies that

0 ≤ ωA(A△B) = −ωB(A△B) ≤ 0.

Hence, both A and B are ω-groundstates that are not sharp.

Proposition 1.36. Let (M,S) be a finite XOR-system and ω : M → R. There is no
sharp ω-groundstate if and only if there exist at least two ω-groundstates.

Proof. If there is no sharp ω-groundstate, then there are at least two ω-groundstates
by Theorem 1.24 and Proposition 1.35.

For a contradiction, let us assume that there exist ω-groundstates A,B ∈ S such
that A is sharp. So,

0 ≤ ωA(A△B) = −ωB(A△B) ≤ 0.

Hence, A is not a sharp ω-groundstate.
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Proposition 1.37. Let graph G = (V,E) be the 2-dimensional square lattice and
let (E, CG) be its cut system. If weight function ω : E → {±1} is chosen from ±J
distribution, then there are at least two ω-groundstates in (E, CG) almost surely but
there is no sharp ω-groundstate almost surely.

Proof. First, we prove that there is no ω-sharp groundstate almost surely. Then, the
existence of at least two ω-groundstates follows from Proposition 1.35.

We split whole infinite lattice into infinitely many pair-wise disjoint finite sublat-
tices. We present a particular configuration of weights ω on those finite sublattices
which prevents the existence of a sharp ω-groundstate. Since we consider ±J distri-
bution, such configuration occurs on each sublattice with positive probability. Hence,
the probability that the configuration does not occur in any sublattice is zero.

So, it remains to present the configuration which prevents the existence of a sharp
ω-groundstate. Let neg(ω,E ′) be the set of edges e ∈ E ′ with ω(e) = −1 where
E ′ ⊆ E. Recall that |neg(ωA, C)| and |neg(ω,C)| have the same parity for every cut
A where C is a finite cycle in G. In the configuration of weights ω we prescribe parity
of |neg(ω,C)| on some squares C. The configuration of parities in squares is described
in Figure 1.1. Those prescribed parities remains in a sharp ω-groundstates.

O

OO

O

O OOO

O

O

O

O

O

EE

E

E

E E

E

E

0

1

2

3

−1

−2

0 1 2 3−1−2

Figure 1.1: A configuration in a sublattice for Proposition 1.37. Letters “O” and
“E” mean that the square has odd and even number of edges e with ω(e) = −1,
respectively.

In the rest of the proof, we use the following notation. Let [a, b] be the vertex
on coordinates a and b. Let [a : a + 1, b] be the edge between vertices [a, b] and
[a + 1, b], similarly [a, b : b + 1]. Let [a : a + 1, b : b + 1] be the square on edges
[a : a + 1, b], [a + 1, b : b + 1], [a : a + 1, b + 1] and [a, b : b + 1].

Let A be a sharp ω-groundstate. We use two observations. First, every vertex is
incident with at most one edge e with ωA(e) = −1 because every vertex has degree 4.
Second, if |neg(ωA, C)| is odd for a square C, then |neg(ωA, C)| = 1, because the
only other possibility is |neg(ωA, C)| = 3 which volatiles the first observation for some
vertex on the square C.

By the second observation we know that |neg(ωA, [0 : 1, 0 : 1])| = 1. Since the con-
figuration is symmetric, we assume without lost of generality that ωA([1, 0 : 1]) = −1
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and other edges on the square [0 : 1, 0 : 1] have positive weight. From the first obser-
vation it follows that all edges incident with vertices [1, 0] and [1, 1] except the edge
[1, 0 : 1] have positive weight because ωA([1, 0 : 1]) = −1. Next, ωA([2, 0 : 1]) = −1
because |neg(ωA, [1 : 2, 0 : 1])| is even and all other edges have known weight. From
the first observation it follows that all edges incident with vertices [2, 0] and [2, 1]
except the edge [2, 0 : 1] have positive weight because ωA([2, 0 : 1]) = −1. Again,
ωA([3, 0 : 1]) = −1 because |neg(ωA, [2 : 3, 0 : 1])| is even and all other edges
have known weight. For the last time, from the first observation it follows that all
edges incident with vertices [3, 0] and [3, 1] except the edge [3, 0 : 1] have positive
weight because ωA([3, 0 : 1]) = −1. Finally, all edges on squares [1 : 2, 1 : 2] and
[2 : 3, 1 : 2] except [1 : 2, 2] and [2 : 3, 2] have positive weight, which implies that
ωA([1 : 2, 2]) = ωA([2 : 3, 2]) = −1 which contradicts the first observation on ver-
tex [2, 2]. This concludes the proof.

1.7 Transitive XOR-systems

A graph G = (V,E) is vertex transitive if for every u, v ∈ V there exists a graph
automorphism f : V → V on G such that f(u) = v. Similarly, G is edge transitive
if for every d, e ∈ E there exists a graph automorphism f : V → V on G such that
f(d) = e. A lattice is a vertex and edge transitive graph. In this section we describe
this property on XOR-systems.

Definition 1.38. We say that XOR-systems (M1, S1) and (M2, S2) are isomorphic
if there exists a bijection f : M1 → M2 such that A ∈ S1 if and only if f(A) ∈ S2

for every A ⊆ M1. Such function f is called an isomorphism between (M1, S1) and
(M2, S2). An isomorphism between (M1, S1) and (M1, S1) is called an automorphism
on (M1, S1). A XOR-system (M1, S1) is transitive if for every m,n ∈ M1 there exists
an automorphism fm,n on (M1, S1) such that fm,n(m) = n.

Clearly, cut systems of common lattices (i.e. n-dimensional square lattice, hexag-
onal lattice) form transitive σ-XOR-systems. Let

G := {ω : M → R | ∃A,B ω-groundstates: A 6= B }

and

Gm := {ω : M → R | ∃A,B ω-groundstates: m ∈ A△B }

where m ∈ M . So, P (G) is the probability that there exist two different groundstates
and P (Gm) is the probability that there exist two groundstates whose symmetric dif-
ference contains given element. Note that P (G) = P (∪m∈MGm).

Lemma 1.39. Let (M,S) be a transitive XOR-system and the distribution of weight
function ω be independently and identically distributed. Then, P (Gn) = P (Gm) for
every m,n ∈ M .

Proof. Let fm,n be an automorphism on (M,S) such that fm,n(m) = n. Observe, that
Gn is the set of all weight functions ω′ : M → R such that ω′(x) = ω(fm,n(x)) for all
x ∈ M where ω ∈ Gm. Therefore, P (Gn) = P (Gm).
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Let (M,S) be a transitive σ-XOR-system. Let the weight function ω : M → R be
chosen from an independent and identical distribution. Let α = P (Gn) for any n ∈ M .
We prove that if α = 0 then the probability that there exist two different groundstates
is zero. It implies that there are no incongruent groundstates if α = 0.

Theorem 1.40. Let (M,S) be a transitive XOR-system and let the distribution of
weight function ω be independent and identical. Then, α = 0 if and only if P (G) = 0.

Proof. If P (G) = 0, then α = 0 because Gm ⊆ G for every m ∈ M .

Let us assume that α = 0. Since M is countable we can use the sub-additivity to
obtain

P (∃A,B ω-grounstates: A 6= B) = P (∃A,B ω-grounstates ∃m ∈ M : m ∈ A△B)

= P

(

⋃

m∈M

Gm

)

≤
∑

m∈M

P (Gm) =
∑

m∈M

α = 0.

Note that there exist two different groundstates with probability at least α. Now,
we prove that α < 1.

Lemma 1.41. Let (M,S) be a XOR-system, K ∈ Sk, m ∈ K and ω : M → R. If

|ω(m)| >
∑

x∈K\{m}

|ω(x)|, (1.2)

then there do not exist ω-groundstates A,B ∈ S such that m ∈ A△B.

Proof. First, observe that (1.2) is equivalent to (1.3).

∀C ⊆ M : |ω(m)| > ωC(K \ {m}) (1.3)

For a contradiction, let us assume that there exist ω-groundstates A,B ∈ S such
that m ∈ A△B. Without lost of generality, assume that m ∈ A \ B.

If ω(m) > 0, then 0 ≤ ωA(K) = ωA(m) + ωA(K \ {m}) = −ω(m) + ωA(K \ {m})
since A is an ω-groundstate which contradicts (1.3).

If ω(m) < 0, then 0 ≤ ωB(K) = ωB(m) + ωB(K \ {m}) = ω(m) + ωB(K \ {m})
since B is an ω-groundstate which also contradicts (1.3).

Theorem 1.42. Let (M,S) be a transitive σ-XOR-system and let distribution of
ω : M → R be the independent and identical Gaussian distribution. Then, α < 1.

Proof. Let m ∈ M . By Proposition 1.18, there exists K ∈ Sk containing m. Since
we consider the Gaussian distribution, we know that P ((1.2) holds) > 0. Therefore,
α = P (Gm) ≤ 1 − P ((1.2) holds) < 1.
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1.8 Domain walls

Proposition 1.32 states that every state is a groundstate with probability zero in infinite
σ-XOR-systems. In this section we study the probability that a state is a domain wall,
that is, a state is a symmetric difference of two groundstates. By Corollary 1.31, every
finite XOR-system has a unique groundstate almost surely, so we restrict our attention
in infinite σ-XOR-systems.

Let (M,S) be a XOR-system. We say that a sequence (An)n∈N of Sk has bounded
size if maxn∈N |An| is finite.

We prove that a state is not a symmetric difference of two groundstates almost
surely only for transitive σ-XOR-systems and cut systems (M,S) because our proof
uses a sequence (Am)m∈M of Sk with bounded size such that m ∈ Am for every
m ∈ M . Such sequence does not exist in general σ-XOR-system, for example, the
σ-XOR-system on N generated by sets

{1} , {2, 3} , {4, 5, 6} , {7, 8, 9, 10} , . . . .

Lemma 1.43. Let (M,S) be a transitive σ-XOR-system. There exists a sequence
(Am)m∈M of Sk with bounded size such that m ∈ Am for every m ∈ M .

Proof. Let us choose m′ ∈ M . By Proposition 1.18, there exists A′ ∈ Sk containing
m′. Since (M,S) is transitive, there exists an automorphism fm on (M,S) such that
fm(m′) = m for all m ∈ M . Let Am be fm(A′). Note that m ∈ Am for all m ∈ M and
all sets (Am)m∈M have the same size.

Lemma 1.44. Let (E, CG) be a cut system of a graph G = (V,E) with bounded degree.
There exists a sequence (Am)m∈E of CG with bounded size such that m ∈ Am for every
m ∈ E.

Proof. For every edge m = uv let Am be the set of edges incident with the vertex u.
Since the graph G has bounded degree, the sequence (Am)m∈E has sets of bounded
size.

Lemma 1.45. Let (M,S) be an infinite σ-XOR-system which has a sequence (Am)m∈M

of Sk with bounded size such that m ∈ Am for all m ∈ M . Then, for every infinite set
C ⊆ M there exists a sequence (Cn)n∈N of Sk of pair-wise disjoint sets with bounded
size such that Cn ∩ C 6= ∅ for every n ∈ N.

Proof. First, we construct an infinite subsequence (Bn)n∈N of the sequence (Am)m∈M

which moreover has pair-wise different sets. Note that the sequence (Am)m∈C has
infinitely many different sets because C ⊆

⋃

m∈C Am is infinite. We consider a sub-
sequence (Bn)n∈N of the sequence (Am)m∈C which has exactly one occurrence of each
set of (Am)m∈C . Since m ∈ Am for all m ∈ M , let (bn)n∈N be the sequence of corre-
sponding elements of M which satisfies bn ∈ Bn for every n ∈ N. Hence, the sequence
(Bn)n∈N has similar properties as (An)n∈N. It is a sequence of pair-wise different sets
of Sk with bounded size and for all n ∈ N it holds that bn ∈ Bn ∩ C.

We construct the desired sequence (Cn)n∈N by induction. Let C1 be B1. Let us
assume that C1, . . . , Ck ∈ Sk are pair-wise disjoint sets such that Cn ∩C 6= ∅ for every
n ∈ {1, . . . , k}. Let Dk be

⋃k
n=1 Cn. We find Ck+1 ∈ Sk such that Ck+1 ∩ Dk = ∅ and

Ck+1 ∩ C 6= ∅.
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Let Ek be the set of indexes n ∈ N such that bn /∈ Dk. Let us consider the
sequence (Bn ∩ Dk)n∈Ek

. Since Dk is finite and Ek is infinite, (Bn ∩ Dk)n∈Ek
is an

infinite sequence of finitely many sets. Therefore, there exists an infinite set Fk ⊆ Ek

such that (Bn ∩ Dk)n∈Fk
is a constant sequence. Hence, (Bi △Bj) ∩ Dk = ∅ for every

i, j ∈ Fk.
It remains to find i, j ∈ Fk such that (Bi △Bj) ∩ C 6= ∅. But it is easy to prove a

stronger claim: For every i ∈ Fk there exists j ∈ Fk such that bj /∈ Bi. It holds because
Bi is finite and Fk is infinite. Since bj ∈ Bj ∩ C we know that bj ∈ (Bi △Bj) ∩ C.

Note that maxn∈N |Cn| ≤ 2 maxm∈M |Am| because every set of (Cn)n∈N is defined as
a symmetric difference of (at most) two sets of (Am)m∈M . This finishes the proof.

Proposition 1.46. Let (M,S) be an infinite σ-XOR-system and let A be an infinite
set of S. Let (An)n∈N be a sequence of Sk of pair-wise disjoint sets with bounded size
such that An ∩ A 6= ∅ for every n ∈ N. Let a weight function ω : M → R be chosen
from the independent and identical Gaussian distribution. Then,

P (∃B ∈ S : B,A△B are ω-groundstates) = 0.

Proof. First, observe that

P (∃B ∈ S : B,A△B are ω-groundstates)

≤ P (∃B ∈ S : ωB(An) ≥ 0, ωA△B(An) ≥ 0 ∀n ∈ N)

≤ P (∃B ⊆ M : ωB(An) ≥ 0, ωA△B(An) ≥ 0 ∀n ∈ N) .

The formula “∃B ⊆ M” says that we have to change signs of ω to satisfy conditions
ωB(An) ≥ 0 and ωA△B(An) ≥ 0. Since sets (An)n∈N are pair-wise disjoint, we can
choose signs of ω independently for every An. Hence,

P (∃B ⊆ M : ωB(An) ≥ 0, ωA△B(An) ≥ 0 ∀n ∈ N)

=
∏

n∈N

P (∃B ⊆ M : ωB(An) ≥ 0, ωA△B(An) ≥ 0) .

Let
Pn = P (∃B ⊆ M : ωB(An) ≥ 0, ωA△B(An) ≥ 0) .

If we prove that Pn ≤ c for some constant c < 1 which does not depend on n, then
P (∃B ∈ S : B,A△B are ω-groundstates) = 0.

In the probability Pn we have two conditions

ωB(An) = ωB(An \ A) + ωB(An ∩ A) ≥ 0

and
ωB △A(An) = ωB(An \ A) − ωB(An ∩ A) ≥ 0

which we simplify into one condition

ωB(An \ A) ≥ |ωB(An ∩ A)|.

Let tn = |An ∩ A| and rn = |An \ A|. Let X1, . . . , Xtn and Y1, . . . , Yrn
be random

variables (ω(m))m∈An∩A and (ω(m))m∈An\A, respectively. Since An ∩ A is non-empty,
tn ≥ 1. If rn = 0, then Pn = 0 by Proposition 1.30. We assume that rn ≥ 1.
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In order to prove that the probability that |ωB(An ∩ A)| ≥ 1 for all B ⊆ M is
positive, we consider the event that |Xi| is close to 2i for every i ∈ {1, . . . , tn}. Observe
that if |Xi| and 2i differ less than 1

tn
for all i ∈ {1, . . . , tn}, then |ωB(An ∩ A)| > 1.

Because the distribution of ω is Gaussian, we know that

P (∀B ⊆ M : |ωB(An ∩ A)| > 1) ≥ P

(

∣

∣Xi − 2i
∣

∣ <
1

tn
∀i = 1, . . . , tn

)

> 0.

On the other hand, if |Yi| ≤
1
r

for every i ∈ {1, . . . , rn}, then |ωB(An \ A)| < 1 for
every B ⊆ M . Hence,

P (∀B ⊆ M : |ωB(An \ A)| < 1) ≥ P

(

|Yi| <
1

rn

∀i = 1, . . . , rn

)

> 0.

All together, we have

Pn = P (∃B ⊆ M : ωB(An \ A) ≥ |ωB(An ∩ A)|)

= 1 − P (∀B ⊆ M : ωB(An \ A) < |ωB(An ∩ A)|)

≤ 1 − P (∀B ⊆ M : ωB(An \ A) < 1 < |ωB(An ∩ A)|)

= 1 − P (∀B ⊆ M : |ωB(An \ A)| < 1)) · P (∀B ⊆ M : |ωB(An ∩ A)| > 1)

≤ 1 − P

(

|Yi| <
1

rn

∀i = 1, . . . , rn

)

· P

(

∣

∣Xi − 2i
∣

∣ <
1

tn
∀i = 1, . . . , tn

)

< 1.

Hence, Pn < 1 and moreover, the probability Pn depends only on rn and tn.
Since the sequence (An)n∈N has sets of bounded size, there are finitely many different
combination of values rn and tn, and we define c to be the maximal value of Pn. Hence,
we have c < 1 such that Pn ≤ c for every n ∈ N which concludes the proof.

Theorem 1.47. Let (M,S) be an infinite transitive σ-XOR-system or a cut system
of a graph with bounded degree. Let distribution of ω : M → R be the independent and
identical Gaussian distribution. Let A ∈ S. Then,

P (∃B ∈ S : B,A△B are ω-groundstates) =

{

0 if A is non-empty,

1 otherwise.

Proof. If A is the empty set, then the statement only says that there (almost surely)
exists a groundstate which follows from Theorem 1.24. If A non-empty and finite,
then the statement follows from Proposition 1.30. Let us assume that A is infinite.

By Lemmas 1.43 and 1.44 there exists a sequence (Am)m∈M of Sk with bounded
size such that m ∈ Am for every m ∈ M . By Lemma 1.45 there exists a sequence
(An)n∈N of Sk of pair-wise disjoint sets with bounded size such that An ∩ A 6= ∅ for
every n ∈ N. Finally, from Proposition 1.46 we conclude that

P (∃B ∈ S : B,A△B are ω-groundstates) = 0.
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1.9 Conclusions

We study groundstates in a generalization of Edwards-Anderson Ising model. The
original motivation of Ising model is ferromagnetism in critical structures which form
lattices or grids but the concept of Hamiltonian

H(σ) = −
∑

〈i,j〉

Jijσiσj

and groundstates makes mathematical sense in an arbitrary graph.
A groundstate is a state σ of locally minimal Hamiltonian. The Hamiltonian

is essentially a sum over all edges of their weights multiplied by 1 or −1. But we
cannot choose arbitrary set of edges whose weight we want to multiply by −1 in the
Hamiltonian. We can choose only those sets of edges which form cuts in the graph. A
groundstate is also a cut which leads us to study cut systems (E, CG) where G = (V,E)
is a graph on countably many vertices with bounded degree and CG is the family of
all cuts of G.

For our convenience, we denote the coupling constants J by a weight function
ω : E → R. A sum

∑

e∈A ω(e) is denoted by ω(A), and ωA is the weight function
obtained from ω by flipping the sings on all edges of A, where A ⊆ E (Definition 1.2).
In this terminology and notation, a cut A is an ω-groundstate if ωA(B) ≥ 0 for every
finite cut B (Definition 1.1).

The essential property of a cut system is the closure on symmetric differences; i.e.
the symmetric difference of every pair of cuts is a cut also. We focus our attention
on this property and say that (M,S) is a XOR-system if M is a countable ground set
and S is a family of subsets of M which is closed under finite symmetric differences
(Definition 1.5). It is clear that every cut system forms a XOR-system.

It is quite unnatural to consider only finite symmetric differences. Therefore, we
define a limit and a symmetric difference of a sequence of S by the classical way
in Definitions 1.6 and 1.7. We restrict our attention on limits instead of symmetric
differences of sequences because it is more convenient and Proposition 1.9 proves that
a XOR-system contains limits of all converging sequences of S if and only if it contains
symmetric differences of sequences of S.

We consider XOR-systems (M,S) that contain limits of converging sequences of S
(Definition 1.8). This gives us a very useful tool called compactness (Theorem 1.17).
Let Sk be the set of all finite sets of S. Let Sσ be the sets of all limits of converg-
ing sequences of Sk. We say that a XOR-system is a σ-XOR-system if it is closed
under limits and S = Sσ (Definition 1.10). Theorem 1.15 shows that every cut sys-
tem is a σ-XOR-system which is one of the reasons why we are mainly interested in
σ-XOR-systems.

Another interesting property of Sσ is that Sσ does not contain only all limits of con-
verging sequences of Sk but also limits of converging sequences of Sσ by Lemma 1.13.
Moreover, Proposition 1.14 states that for a XOR-system (M,S) which is closed under
limits it holds that (M,Sσ) is a σ-XOR-system.

We can use Sσ for factorization of a σ-XOR-system (M,S). Let A,B ∈ S be in
a relation σ if A△B ∈ Sσ. The relation σ is an equivalence which factorizes S into
classes S/σ. The translation invariance of a σ-XOR-system (M,S) also shows that
classes S1 and S2 of S/σ are the same because there is the bijection between B ∈ S1

and B △A1 △A2 ∈ S2 where A1 ∈ S1 and A2 ∈ S2. These classes are crucial for
groundstates.



1.9. CONCLUSIONS 37

We say that A ∈ S is an ω-groundstate in a XOR-system (M,S) where ω : M → R

if ωA(B) ≥ 0 for all B ∈ Sk (Definition 1.20). Note that this definition only extends
the definition of groundstates in cut systems into more general set systems. The-
orem 1.24 proves that an ω-groundstate exists in every σ-XOR-system (M,S) and
every ω : M → R. Moreover, Corollary 1.25 shows that the translation invariance
gives us an ω-groundstate in every class S/σ of a XOR-system (M,S) which is closed
under limits. This leads us to study groundstates in σ-XOR-systems and ask whether
groundstates are unique in σ-XOR-systems.

A XOR-system (M,S) is finite if M is finite; otherwise, (M,S) is infinite. We
present dichotomy between finite and infinite σ-XOR-systems. Proposition 1.12 proves
that a finite XOR-system (M,S) is a σ-XOR-system and S = Sk = Sσ and they are
finite. On the other hand, if (M,S) is an infinite σ-XOR-system, then Sk is infinite
and Sσ is uncountable by Theorem 1.19.

We know that an ω-groundstate always exists in a σ-XOR-system (M,S) and we are
interested whether the ω-groundstate is unique almost surely. This question depends
on the distribution function of ω : M → R. The most common distributions are
independent and identical Gaussian and ±J distributions. Generally, the distribution
of ω is symmetric around zero (Definition 1.27).

The unnatural property of ±J distribution is that P (ω(B) = 0) is positive for
every B ∈ Sk. Moreover, Proposition 1.37 shows that an ω-groundstate is not unique
in 2D lattice if ω is chosen from ±J distribution. On the other hand, there is almost
surely no cut A such that ωA(B) > 0 for every finite and non-empty cut B. But for
Gaussian distribution, every ω-groundstate A ∈ S almost surely satisfies the stronger
condition ωA(B) > 0 for every non-empty B ∈ S in every σ-XOR-system (M,S). This
leads us to Definition 1.28 of unique distribution which ensures that ω(B) 6= 0 for all
B ∈ SK almost surely.

Proposition 1.30 claims that if a weight function ω is chosen from a unique distri-
bution, there are almost surely no pair of ω-groundstates A,B ∈ S such that A△B
contains a non-empty set of Sk as a subset.

We say that a XOR-system (M,S) is transitive if for every m,n ∈ M there exists
a bijection f : M → M such that f(m) = n and for every A ⊆ M it holds that
A ∈ S if and only if f(A) ∈ S (Definition 1.38). A typical example of a transitive
σ-XOR-system is the cut system of a lattice. Let P (Gm) be the probability that
there exist two ω-groundstates whose symmetric difference contains m ∈ M . It is not
surprising that P (Gm) = P (Gn) for every m,n ∈ M in a transitive XOR-system and
ω chosen from an independent and identical distribution (Lemma 1.39). It may be
more interesting that P (Gm) = 0 if and only if ω-groundstate is almost surely unique
under the assumptions that ω chosen from an independent and identical distribution
(Theorem 1.40). Furthermore, P (Gm) < 1 if the weight function is chosen from the
independent and identical Gaussian distribution (Theorem 1.42).

We study the probabilities that a given state is a groundstate and also a symmetric
difference of two groundstates. Both probabilities are zero in infinite σ-XOR-systems
under the following assumptions. By Proposition 1.32, a state of S is not almost
surely an ω-groundstate if the distribution of ω is unique, symmetric and indepen-
dent. By Theorem 1.47, for every state of A ∈ S the probability that there exist
two ω-groundstates B,C ∈ S such that A = B △C is zero, if (M,S) is an infinite
transitive σ-XOR-system or a cut system of a graph with bounded degrees and the
distribution of ω is the independent and identical Gaussian distribution.
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Our study of XOR-systems convince us to believe in uniqueness of groundstate.

Conjecture 1.48. Let (M,S) be a transitive σ-XOR-system and weight function ω be
chosen from the independent and identical Gaussian distribution. Then, ω-groundstate
is almost surely unique.

Furthermore, we do not know any example of a σ-XOR-system having multiple
ω-groundstates with positive probability if the distribution of ω is independent, unique
and symmetric.



Part III

Perfect matchings
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Chapter 2

Introduction

A set of edges P ⊂ E of a graph G = (V,E) is a matching if every vertex of G is
incident with at most one edge of P . If a vertex v of G is incident with an edge of P ,
we say that v is covered by P . A matching P is perfect if every vertex of G is covered
by P .

The d-dimensional hypercube Qd is a graph whose vertex set consists of all bi-
nary vectors of length d, with two vertices being adjacent whenever the corresponding
vectors differ at exactly one coordinate. The binary vectors are labelled by the set
[d] := {1, 2, . . . , d}.

It is well known that Qd is Hamiltonian for every d ≥ 2. This statement can be
traced back to 1872 [50]. Since then the research on Hamiltonian cycles in hypercubes
satisfying certain additional properties has received considerable attention. An inter-
ested reader can find more details about this topic in the survey of Savage [80], e.g.
Dvořák [23] showed that any set of at most 2d − 3 edges of Qd (d ≥ 2) that induces
vertex-disjoint paths is contained in a Hamiltonian cycle. Dimitrov et al. [21] proved
that for every perfect matching P of Qd (d ≥ 3) there exists a Hamiltonian cycle that
faults P , if and only if P is not a layer of Qd.

Every Hamiltonian cycle of Qd can be split into 2 perfect matchings. Therefore,
it is natural to ask the opposite question whether every perfect matching of Qd can
be extended into a Hamiltonian cycle. As far as we know, the first mention of this
question was published by Kreweras [59] who conjectured that answer to this question
is positive. Independently, this problem was stated by Donald E. Knuth [57, problem
7.2.1.1–55].

Conjecture 2.1 (Kreweras [59]). Every perfect matching in the d-dimensional hyper-
cube with d ≥ 2 extends to a Hamiltonian cycle.

We proved Conjecture 2.1 in paper [35]. We present the original proof [35] in Chap-
ter 3. An interested reader may notice that the proof gives at least 22d−4

Hamiltonian
cycles that extend given perfect matching of Qd. This is one example of usefulness of
our proof. Other applications of the proof are presented in next chapters.

Let K(Qd) be the complete graph on the vertices of the hypercube Qd. If G is
bipartite and connected, then let B(G) be the complete bipartite graph with the same
color classes as G. The main trick of our proof is that we proved a stronger statement:
Every perfect matching of K(Qd) can be extended into a Hamiltonian cycle of K(Qd)
using only edges of Qd. This allows us to use an induction by dimension in a very
simple way.
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Ruskey and Savage [79, page 19, question 3] asked the following more general
question which is still open.

Question 2.2. Does every (not necessarily perfect) matching of Qd for d ≥ 2 extend
to a Hamiltonian cycle of Qd?

The statement can be shown to be true for d = 2, 3, 4. However, our approach does
not seem to lead to proving this stronger statement.

Figure 2.1: The matching graph M(Q3). The circles and bold lines are vertices and
edges of M(Q3).

The matching graph M(G) of a graph G on an even number of vertices has a
vertex set of all perfect matchings of G, with two vertices being adjacent whenever
the union of the corresponding perfect matchings forms a Hamiltonian cycle of G;
e.g. Figure 2.1 shows the matching graph M(Q3). There is a natural one-to-one
correspondence between Hamiltonian cycles of G and edges of M(G). The problems
of determining the number h(d) of Hamiltonian cycles of Qd and the number of perfect
matchings of Qd, are well-known open problems. Douglas [22] presented upper and
lower bounds

(

d−1
∏

i=5

i2
d−i−1

)

d(1344)2d−4

22d−2−1−d ≤ h(d) ≤

(

d(d − 1)

2

)2d−1−2d−1−log2(d)

.

Feder and Subi [34] presented the following bounds

((

d log 2

e log log d

)

(1 − o(1))

)(2d)

≤ h(d) ≤
1

2
(d!)

2d

2d ((d − 1)!)
2d

2(d−1) .

Independently, Fisher [43] and Kasteleyn [55] proved that the number of perfect
matchings of G is the permanent of A(G) when G is a balanced bipartite graph with
adjacency matrix A(G). Brègman [10] proved the conjecture of Minc [71] that for
any n × n 0, 1-matrix A with row sums r1, . . . , rn, the permanent of A is at most
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∏n
i=1(ri!)

1/ri . In particular, a d-regular bipartite graph on n vertices has at most

(d!)n/(2d) =
(

d
e
(1 + o(1))

)n/2
perfect matchings.

Independently, Egoryĉev [28] and Falikman [30] proved the conjecture of van der
Waerden [85] that for any doubly stochastic n × n matrix A the permanent of A
is at least n!

nn . This was used by Clark, George and Porter [17] to show that the
number of perfect matchings of a d-regular bipartite graph on n vertices is at least
(

2d
n

)n/2 (n
2

)

! =
(

d
e
(1 + o(1))

)n/2
perfect matchings.

Knowledge of structural properties of M(Qd) may help to improve those bounds
and give us other informations about Hamiltonian cycles of hypercubes.

Type 4400, number 12 Type 6200, number 48 Type 4400, number 24

Type 2222, number 48 Type 4220, number 96 Type 2222, number 32

Type 4220, number 48

Type 8000, number 4

Figure 2.2: The graph M4. For every equivalence class [P ] of isomorphism there is
a frame which contains P . Four type digits above each frame are numbers of edges
crossing each dimension. Above each frame there is also a number of perfect matchings
which are contracted to the equivalence class.

We say that two perfect matchings P and R of Qd are isomorphic if there exists
an isomorphism f : V (Qd) → V (Qd) such that f(u)f(v) ∈ R for every edge uv ∈ P .
This relation of isomorphism is an equivalence and it partitions the set of all perfect
matchings. Kreweras [59] considered a graph Md which is obtained from M(Qd) by
contracting all vertices of each class of this equivalence. For example, Q3 has two
non-isomorphic perfect matchings, so M3 has two vertices connected by an edge. The
graph M4 is presented on Figure 2.2. Kreweras [59] proved by inspection of all perfect
matchings that the graphs M3 and M4 are connected and he conjectured that Md is
connected for d ≥ 3.

Conjecture 2.3 (Kreweras [59]). Graphs Md are connected for every d ≥ 3.

It is more general to also ask whether the graph M(Qd) is connected since the
connectivity of M(Qd) implies the connectivity of Md. The answer is negative for
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d = 3 (see Figure 2.1). However, we [36] prove that this is the only counter-example
in Chapter 4.

A partitioning of the edges of a graph G into perfect matchings is a 1-factorisation.
A 1-factorisation is perfect if the union of every pair of its perfect matchings forms a
Hamiltonian cycle of G. Observe that k-regular G on even number of vertices has a
perfect 1-factorisation if and only if M(G) contains a complete graph on k vertices as
a subgraph. Wanless [86] proved that Kp,p and K2p−1,2p−1 have perfect 1-factorisation
if p is a prime and proved that Kn,n has no perfect 1-factorisation if n is even and
n > 2. Wanless [86] conjectured that Kn,n has a perfect 1-factorisation if n is odd and
n ≥ 3.

We proved [37] that if n is even or n = 1, then M(Kn,n) is connected and bipartite,
otherwise M(Kn,n) is not bipartite and it has two components. We [37] also proved
that the distance between every pair of perfect matchings in M(Kn,n) is at most 3.
Moreover, we [37] computed exact distance between every pair of perfect matching in
M(Kn,n)



Chapter 3

Perfect matchings extend to

Hamiltonian cycles

In this chapter we present the proof of Kreweras’ [59] conjecture 2.1 which was pub-
lished in the paper [35].

Let us consider a perfect matching P of the hypercube Qd which is contained in a
Hamiltonian cycle C of Qd. Let R denote the set of edges contained in the cycle C but
not in P . Obviously, R is also a perfect matching of Qd. Hence, Kreweras’ conjecture
can be restated in the following way:

For every perfect matching P of the hypercube Qd, d ≥ 2, there exists a perfect
matching R such that P ∪ R is a Hamiltonian cycle of Qd.

In fact, we prove the following theorem which is clearly stronger than the above
and so implies Kreweras’ conjecture.

Theorem 3.1. For every perfect matching P of K(Qd) there exists a perfect matching
R of Qd, d ≥ 2, such that P ∪ R is a Hamiltonian cycle of K(Qd).

The crucial step of our proof lies in the following lemma. A forest is linear, if each
component of it is a path.

Lemma 3.2. Let P be a matching of K(Qd) that is not perfect. Then, there exists a
perfect matching R of Qd, d ≥ 2, such that P ∩ R = ∅ and P ∪ R is a linear forest.

Before proof the lemma, let us first prove the theorem.

Proof of Theorem 3.1. Let e = xy be an arbitrary edge of P . For the matching
P ′ = P \ {e}, by Lemma, there exists a perfect matching R of Qd such that P ′∩R = ∅
and P ′ ∪ R is a linear forest. If e ∈ R then every vertex of the graph with edge set
(P ′ ∪ R) \ {e} has even degree, but P ′ ∪ R is a forest. Hence, e /∈ R. Now, it easily
follows that P ′ ∪ R is a Hamiltonian path of K(Qd) from x to y. Hence, P ∪ R is a
Hamiltonian cycle of K(Qd).

Now, we prove the lemma:

Proof of Lemma 3.2. The proof proceeds by induction on d. The statement holds
for d = 2. Let us suppose that the statement is true for every hypercube Qk with
2 ≤ k ≤ d − 1 and let us prove it for d.
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We know that P is a matching which is not perfect. Hence, there must exist at least
two vertices u1, u2 ∈ V (Qd) uncovered by P . We can divide the d-dimensional hyper-
cube Qd into two (d−1)-dimensional sub-hypercubes Q1 and Q2 such that ui ∈ V (Qi)

for i ∈ {1, 2}. Let Ki = (V (Qi),
(

V (Qi)
2

)

) and P i = P ∩ E(Ki) for i ∈ {1, 2}.
The set of edges P 1 is a matching of K1 which is not perfect since u1 is not covered.

Hence, there exists a perfect matching R1 of Q1 such that R1 ∩ P 1 = ∅ and R1 ∪ P 1

is a linear forest.
We would like to find a similar perfect matching R2 of Q2, that would join the

perfect matching R = R1 ∪ R2 of Qd. However, we forbid some edges to be contained
in R2 which will preserve that P ∪ R is acyclic. The forbidden set of edges is

S =

{

xy ∈ E(K2)

∣

∣

∣

∣

∃x′, y′ ∈ V (Q1) such that xx′, yy′ ∈ P
and there exists a path from x′ to y′ of P 1 ∪ R1

}

.

Every vertex v of the graph (V (K1), P 1 ∪ R1) has degree one, if and only if v is
not covered by P 1. If there exists a path from x′ to y′ of P 1 ∪ R1 and xx′, yy′ ∈ P
and xy ∈ E(K2), then x′ and y′ are not covered by P 1 and x′ and y′ are vertices
of both ends of a path of P 1 ∪ R1. Thus, the set of edges S is a matching of K2.
Moreover, the set of edges P 2 ∪ S is a matching of K2 which is not perfect because S
covers (not necessary all) vertices covered by P but not by P 2 and u2 is not covered
by P . Hence, there must exist a perfect matching R2 of Q2 by the induction such that
R2 ∩ (P 2 ∪ S) = ∅ and R2 ∪ P 2 ∪ S is a linear forest.

We show that the perfect matching R = R1∪R2 of Qd satisfies the requirements of
the lemma. For sake of contradiction, suppose that C is a cycle of R∪P . Notice that
C cannot belong to K1 or to K2. So C has edges in both K1 and K2. Now, we can
shorten every path xx′ · · · y′y, such that x, y ∈ V (Q2), x′, y′ ∈ V (Q1), xx′, yy′ ∈ P
and x′ · · · y′ is a path of P 1 ∪ R1, by the edge xy ∈ S. Hence, we obtain a cycle of
R2 ∪ P 2 ∪ S, which is a contradiction. Thus, P ∪ R is a forest. Since every vertex in
the graph P ∪ R has degree one or two, it is a linear forest.

An interested reader may notice that this proof also works if we exchange K(Qd)
by B(Qd), where B(Qd) is the complete bipartite graph with the same color classes as
G.



Chapter 4

Connectivity of matching graph

In this chapter we present the proof of Kreweras’ [59] conjecture 2.3 which was pub-
lished in the paper [36].

4.1 Extending with an edge

Let P be a perfect matching of K(Qd). Let Γ(P ) be the set of all perfect matchings
R of Qd such that P ∪R is a Hamiltonian cycle of K(Qd). Note that if P is a perfect
matching of Qd and R ∈ Γ(P ), then P ∪ R is a Hamiltonian cycle of Qd, so PR is an
edge of M(Qd).

We say that an edge uv of K(Qd) crosses a dimension α ∈ [d] if vertices u and v
differ in dimension α, otherwise uv avoids α. A perfect matching P of K(Qd) crosses α
if P contains an edge crossing α, otherwise P avoids α. Let Iα

d be the perfect matching
of Qd that contains all edges in dimension α ∈ [d]. Observe that a perfect matching
P of Qd crosses α if and only if P ∩ Iα

d 6= ∅.

Proposition 4.1. Let P be a perfect matching of K(Qd) avoiding β ∈ [d] and e ∈ Iβ
d .

There exists R ∈ Γ(P ) containing e.

Proof. The proof proceeds by induction on d. The statement holds for d = 2. Let us
assume that the statement is true for every k-dimensional cube Qk with 2 ≤ k ≤ d−1
and let us prove it for d.

Clearly, P crosses some α ∈ [d] \ {β}. We divide Qd by dimension α into two
(d − 1)-subcubes Q1 and Q2 so that e ∈ E(Q1). Let Ki := K(Qi) and P i := P∩E(Ki)
for i ∈ {1, 2}.

The set of edges P 1 is a matching of K1 which is not perfect since P crosses α. Let
M be the set of vertices of K1 that are uncovered by P 1. The size of M is even. If we
divide Q1 by dimension β, then numbers of vertices of M on both subcubes of Q1 are
even because P 1 avoids β. We choose an arbitrary perfect matching S1 on vertices of
M such that S1 avoids β. The perfect matching P 1 ∪S1 of K1 avoids β. By induction
there exists a perfect matching R1 ∈ Γ(P 1 ∪ S1) of Q1 containing e. Let

S2 :=

{

xy ∈ E(K2)

∣

∣

∣

∣

∃x′, y′ ∈ V (Q1) such that xx′, yy′ ∈ P and
there exists a path between x′ and y′ of P 1 ∪ R1

}

. (4.1)

Observe that P 1∪R1 is a partition of Q1 into vertex-disjoint paths between vertices
uncovered by P 1. For every path between x′ and y′ of this partition there exist vertices
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x and y of Q2 such that xx′, yy′ ∈ P . Thus, the set of edges S2 is a matching of K2.
Moreover, the set of edges P 2 ∪ S2 is a perfect matching of K2 because S2 covers
each vertex covered by P but not by P 2. Hence, there exists a perfect matching
R2 ∈ Γ(P 2 ∪ S2) of Q2 by Theorem 3.1. Clearly, R := R1 ∪ R2 is a perfect matching
of Qd containing e. Finally, R ∈ Γ(P ) by Lemma 4.2.

Lemma 4.2. Let P be a perfect matching of K(Qd) crossing some dimension α ∈ [d].
Let Qd be divided into two (d−1)-subcubes Q1 and Q2 by dimension α. Let Ki := K(Qi)
and P i := P ∩E(Ki) for i ∈ {1, 2}. Let S1 be a perfect matching on vertices of K(Q1)
uncovered by P 1. Let R1 ∈ Γ(P 1 ∪S1). Let S2 be given by (4.1). Let R2 ∈ Γ(P 2 ∪S2)
and R := R1 ∪ R2. Then R ∈ Γ(P ).

Proof. We prove that P ∪R is a Hamiltonian cycle of K(Qd). Suppose on the contrary
that C is a cycle of P ∪R which is not Hamiltonian. Since P crosses α, both S1 and S2

are non-empty sets. Because P i ∪ Si ∪Ri is a Hamiltonian cycle of Ki, whole cycle C
cannot belong to Ki, for i ∈ {1, 2}. So C has edges in both K1 and K2. Now, we
shorten every path xx′ · · · y′y such that x, y ∈ V (Q2); x′, y′ ∈ V (Q1); xx′, yy′ ∈ P
and x′ · · · y′ is a path of P 1 ∪ R1 by the edge xy ∈ S2. Hence, we obtain a cycle C ′

of (P 2 ∪ S2) ∪ R2. We prove that C ′ does not contain a vertex of K2 which is a
contradiction because (P 2 ∪ S2) ∪ R2 is a Hamiltonian cycle of K2.

If C does not contain a vertex u of K2, then C ′ also does not contain u. Suppose
that C does not contain a vertex v of K1. Let x′ and y′ be the end vertices of the
longest path of P 1 ∪R1 that contains v. Let xx′, yy′ ∈ P . Observe that x, y ∈ V (K2)
and xy ∈ S2. Hence, C ′ does not contain x and y.

Observe that the perfect matching R obtained in Lemma 4.2 avoids dimension α.
The interested reader may ask whether there exists a perfect matching R in Theo-
rem 3.1 that avoids given set of dimension A ⊂ [d]. Clearly, the graph on edges of
P and allowed edges of Qd (i.e. edges of Qd that avoid every dimension of A) must
be connected. Gregor [49] proved that this is also a sufficient condition which implies
following lemma.

Lemma 4.3. For every perfect matching P of K(Qd) and α ∈ [d] there exists R ∈ Γ(P )
avoiding α if and only if P crosses α where d ≥ 2.

4.2 Bipartiteness of M(Kn,n)

There is a natural one-to-one correspondence between perfect matchings of the com-
plete bipartite graph Kn,n and permutations on a set of size n. A permutation π is
even if n − k is even where k is a number of cycles of π, otherwise π is odd. It is
well-known that π1 ◦ π2 is even if and only if permutations π1 and π2 have the same
parity. Hence, the inverse permutation π−1

2 has the same parity as π2.
Let c(P ) be the number of components of the graph on a set of edges P . Recall

that B(G) is the complete bipartite graph with the same color classes as a bipartite
and connected graph G.

Let P1 and P2 be perfect matchings of Kn,n and π1 and π2 be their corresponding
permutations. Observe that c(P1∪P2) is equal to the number of cycles of π1◦π−1

2 . If n
is even and P1∪P2 is a Hamiltonian cycle of Kn,n, then π1 and π2 have different parities.
Hence, M(Kn,n) is bipartite for n even. The matching graph M(Qd) is also bipartite
because M(Qd) is a subgraph of M(B(Qd)) which is isomorphic to M(K2d−1,2d−1).
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The above discussion proves the following theorem.

Theorem 4.4. The matching graphs M(Qd) and M(B(Qd)) are bipartite.

We did not define which perfect matchings of B(Qd) are even and odd. But we
know that perfect matchings P1 and P2 of B(Qd) belong to the same color class of
M(B(Qd)) if and only if c(P1 ∪ P2) is even. Hence, we fix one perfect matching of
B(Qd) to be even.

Let us recall that Iα
d is the perfect matching of Qd that contains all edges in

dimension α ∈ [d]. We simply count that c(Iα
d ∪ Iβ

d ) = 2d−2 for every two different

dimensions α, β ∈ [d] because the graph on edges Iα
d ∪ Iβ

d consists of 2d−2 independent

cycles of size 4. Hence, perfect matchings Iα
d and Iβ

d belong to the same color class of
M(B(Qd)) for d ≥ 3. We call a perfect matching P of B(Qd) even if c(P ∪ I1

d) is even
and otherwise odd where d ≥ 3.

4.3 Walks in M(Qd)

We will prove that M(Qd) is connected by induction on d. Therefore, we need to
know how we can make a walk in M(Qd) from a walk in M(Qd−1). In this section we
present two lemmas which help us.

Let P 0 and P 1 be perfect matchings of Qd−1. We denote by 〈P 0|P 1〉 the per-
fect matching of Qd containing P i in the (d − 1)-subcube of vertices having i in the
coordinate d for i ∈ {0, 1}.

Lemma 4.5. Let P1, P2, P3, R1, R2, and R3 be perfect matchings of Qd−1 such that
P1∪P2, P2∪P3, R1∪R2, and R2∪R3 are Hamiltonian cycles of Qd−1. If P2∩R2 6= ∅,
then there exists a perfect matching S of Qd such that 〈P1|R1〉∪S and S ∪〈P3|R3〉 are
Hamiltonian cycles of Qd. Moreover, S crosses the dimension d and every dimension
that is crossed by P2 or R2.

Proof. Let uv ∈ P2 ∩ R2. Let ui be the vertex of Qd obtained from u by appending i
into dimension d, where i ∈ {0, 1}. Vertices v0 and v1 are defined similarly.

Let S := (〈P2|R2〉 \ {u0v0, u1v1}) ∪ {u0u1, v0v1}. The graph on edges 〈P1|R1〉 ∪
〈P2|R2〉 consists of two cycles covering all vertices of Qd. These cycles are joined
together in 〈P1|R1〉 ∪ S. Hence, 〈P1|R1〉 ∪ S is a Hamiltonian cycle of Qd. Similarly,
S ∪ 〈P3|R3〉 is a Hamiltonian cycle of Qd.

The edge u0u1 crosses dimension d, so S also crosses d. Let us consider a dimension
β ∈ [d − 1] which is crossed by P2 or R2. Without loss of generality we suppose that
P2 crosses β. There exist at least 2 edges crossing β in P2. It can happen that the
edge u0v0 is one of them, so at least one edge crossing β remains in S.

Let P be a perfect matching of K(Qd) and A ⊆ [d]. We say that P crosses A if P
crosses every dimension of A.

Lemma 4.6. Let P1, P2, P3, and R1 be perfect matchings of Qd−1 such that P1 ∪ P2

and P2 ∪ P3 are Hamiltonian cycles of Qd−1. Let α, β ∈ [d − 1], α 6= β. If P2 crosses
[d − 1] \ {α} and R1 avoids β, then there exists a perfect matching S of Qd such that
〈P1|R1〉 ∪ S and S ∪ 〈P3|R1〉 are Hamiltonian cycles of Qd and S crosses [d] \ {α}.

Proof. Let e ∈ P2 ∩ Iβ
d−1. There exists R2 ∈ Γ(R1) containing e by Proposition 4.1. If

we apply Lemma 4.5 on P1, P2, P3, R1, R2, and R1, then we obtain a perfect matching
S which satisfies the requirements of this lemma.
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4.4 Base of induction

Let us recall that Md is obtained from M(Qd) by contracting all vertices of M(Qd)
whose corresponding perfect matchings are isomorphic. Let P and R be perfect match-
ings of Qd. If there exists a walk between vertices representing P and R in M(Qd),
then the length of the shortest one is d(P,R), otherwise d(P,R) is infinity. Hence,
d(P,R) < ∞ means that P and R belong to the same component of M(Qd).

The proof, that M(Qd) is connected, proceeds by induction on d. We present a
base of this induction in this section. We showed that M(Q3) has 3 components (see
Figure 2.1), so the induction starts from d = 4. Kreweras [59] proved that M4 is
connected (see Figure 2.2). We prove that if Md is connected and d ≥ 4, then M(Qd)
is connected. Hence, M(Q4) is connected.

First, we present a simple lemma.

Perfect matching S0
4 = Iα

4

Perfect matching S6
4 = I

β
4

Perfect matching S1
4 Perfect matching S2

4

Perfect matching S3
4 Perfect matching S4

4 Perfect matching S5
4

Figure 4.1: The walk between perfect matchings Iα
4 and Iβ

4 in M(Q4).

Lemma 4.7. If d ≥ 4, then d(Iα
d , Iβ

d ) ≤ 6 for every α, β ∈ [d], α 6= β.

Proof. The proof proceeds by induction on d. The walk between Iα
4 and Iβ

4 is drawn
in Figure 4.1.

Let

Iα
d−1 = S0

d−1, S
1
d−1, S

2
d−1, S

3
d−1, S

4
d−1, S

5
d−1, S

6
d−1 = Iβ

d−1

be a walk in M(Qd−1). Let Si
d :=

〈

Si
d−1|S

i
d−1

〉

for even i. For odd i let Si
d be given by

Lemma 4.5 where P1 = R1 := Si−1
d−1, P2 = R2 := Si

d−1, and P3 = R3 := Si+1
d−1. Then

Iα
d = S0

d , S
1
d , S

2
d , S

3
d , S

4
d , S

5
d , S

6
d = Iβ

d

is a walk in M(Qd).
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Let us recall that perfect matchings P and R are isomorphic if there exists an
isomorphism f : V (Qd) → V (Qd) such that f(u)f(v) ∈ R for edge uv ∈ P . This
relation of isomorphism is an equivalence on the set of all perfect matching. Let
[P ] be the equivalence class containing P . Observe that [Id] := {Iα

d | α ∈ [d]} is an
equivalence class. If there exists a walk between [P ] and [R] of Md, then the length of
the shortest one is d([P ], [R]), otherwise d([P ], [R]) is infinity.

Let us consider perfect matchings P and R of Qd such that d([P ], [R]) = 1. There
exist isomorphisms f and g such that f(P ) ∪ g(R) forms a Hamiltonian cycle. More-
over, P ∪ f−1(g(R)) forms a Hamiltonian cycle. Hence, we have a perfect matching
f−1(g(R)) ∈ Γ(P ) such that f−1(g(R)) is isomorphic to R.

Proposition 4.8. If d ≥ 4 and Md is connected, then M(Qd) is connected.

Proof. We prove that vertices {P ∈ V (M(Qd)) | [P ][Id] ≤ k} belong into one compo-
nent of M(Qd) by induction on k. This claim holds for k = 0 by Lemma 4.7.

Let P be a perfect matching of Qd such that d([P ], [Id]) = k. There exists a perfect
matching R of Qd such that d([R][Id]) = k − 1 and d([P ][R]) = 1. Hence, there exists
R′ ∈ Γ(P ) isomorphic to R. By induction d(Id, R

′) < ∞. Therefore, d(P, Id) < ∞.

4.5 Induction step

We define a set of perfect matchings Z(d, k, α) of Qd by following induction on d,
where d ≥ k ≥ 3 and α ∈ [d].

Definition 4.9. Let Z(d, d, α) contain only Iα
d . The set Z(d, k, α), where d > k ≥ 3

and α ∈ [d], is the set of all perfect matchings of Qd in the form 〈P1|P2〉, where
P1 ∈ Z(d−1, k, α) and P2 is an even perfect matching of Qd−1 avoiding some dimension
β ∈ [d] \ {α}.

Observe that every perfect matching of Z(d, k, α) is even and it contains Iα
k in some

k-subcube Qk. We want to prove that the graph M(Qd) is connected, so we need to
show that there exists a perfect matching I of Qd such that for every perfect matching
P of Qd there exists a walk between P and I in M(Qd). Lemma 4.7 says that perfect
matchings [Id] belong to a common component of M(Qd), so it is sufficient to find a
walk from P to an arbitrary one of [Id]. Without loss of generality we assume that P
is odd by Theorems 3.1 and 4.4. We find this walk in two steps: First, we find a walk
from P to some perfect matching of Z(d, k, α) for some α ∈ [d] and k, d ≥ k ≥ 3.
Next, for every perfect matching of Z(d, k, α) we find a walk to some perfect matching
of Z(d, k + 1, α), so by induction on k we obtain a walk from P to Z(d, d, α) which
contains only Iα

d by definition.
Since Qd is bipartite, we call vertices of one color class black and the other white.

Lemma 4.10. For every odd perfect matching P of B(Qd) there exists Y ∈ Z(d, k, α)
for some dimension α ∈ [d] and k, d ≥ k ≥ 3, such that d(P, Y ) ≤ 3.

Proof. We prove by induction on d that for every perfect matching P of B(Qd) there
exist perfect matchings R,X and Y of Qd such that P ∪ R,R ∪ X and X ∪ Y are
Hamiltonian cycles and X crosses [d] \ {α} and Y ∈ Z(d, k, α).

First, we prove the statement for d = 3. Let P be an odd perfect matching of
B(Q3). Therefore, c(P ∪ Iδ

3) is 1 or 3 for every δ ∈ [3]. If there exists δ ∈ [3] such that
c(P ∪ Iδ

3) = 1, then we choose R := Y := Iδ
3 and X ∈ Γ(R).
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We prove that there exists δ ∈ [3] such that c(P ∪Iδ
3) = 1. Suppose on the contrary

that c(P ∪Iδ
3) = 3 for every δ ∈ [3]. The graph on edges P ∪Iδ

3 consists of two common
edges and one cycle of size 4. Perfect matchings of [I3] are pairwise disjoint and P
has two common edges with each of them. This is a contradiction because P has only
4 edges.

In the induction step we need to have a dimension γ ∈ [d] that is crossed by at
least 4 edges of P . If d ≥ 5, such a dimension exists for every perfect matching P of
B(Qd) by the pigeonhole principle. Every perfect matching P of B(Q4) has 8 edges.
If P contains an edge crossing at least two dimensions, then we use the pigeonhole
principle again.

A perfect matching P of Q4 is balanced if it has 2 edges in every dimension. Luckily,
Kreweras [59] proved that there are 8 perfect matchings of Q4 up to isomorphism and
only two of them are balanced; see Figure 2.2. Check that the balanced perfect
matchings S3

4 drawn in Figure 4.1 and R1 drawn of Figure 4.2 satisfy the requirements
of this lemma.

Now, we present the induction step. Let γ ∈ [d] such that P has at least 4 edges
crossing γ. Without loss of generality we assume that γ = d. We divide Qd into two
(d − 1)-subcubes Q1 and Q2 by dimension γ. Let Bi := B(Qi) and P i := P ∩ E(Bi)
for i ∈ {1, 2}. Let M be the set of vertices of B1 that are uncovered by P 1. We know
that |M | ≥ 4. Moreover, M has the same number of black vertices as white ones.

Let b1 and b2 be two different black vertices of M and w1 and w2 be two different
white vertices of M . Let S ′ be a matching of B1 covering M \{b1, b2, w1, w2}. We have
two ways of extending S ′ to obtain a matching S1 of B1 covering M : We can insert
edges {b1w1, b2w2} or {b1w2, b2w1}. Those two ways give us two perfect matchings
P 1 ∪ S1 of B1 having different parity. Of course, we choose the way that gives us odd
perfect matching P 1 ∪ S1.

Let R1, X1 and Y 1 be perfect matchings of Q1 given by induction – (P 1 ∪ S1) ∪ R1,
R1 ∪ X1 and X1 ∪ Y 1 are Hamiltonian cycles of B1, X1 crosses [d] \ {α} and
Y 1 ∈ Z(d − 1, k, α). Hence, R1 is even by Theorem 4.4. Let S2 be given by (4.1).

We prove that P 2 ∪ S2 is odd. Let R̄2 ∈ Γ(P 2 ∪ S2) by Theorem 3.1. Let
R̄ := R1 ∪ R̄2. By Lemma 4.2 it holds that R̄ ∈ Γ(P ), so R̄ is even by Theorem 4.4.
Also R̄2 is even because R1 and R̄ are even. Hence, P 2 ∪ S2 is odd by Theorem 4.4.
Moreover, P 2 ∪ S2 6= Iα

d−1.
Hence, the perfect matching P 2 ∪ S2 crosses some β ∈ [d] \ {α} and there exists

R2 ∈ Γ(P 2 ∪ S2) avoiding β by Lemma 4.3. Let R := R1 ∪ R2. Therefore, R ∈ Γ(P )
by Lemma 4.2 and R is even by Theorem 4.4. Because R1 is even, R2 is even. We
apply Lemma 4.6 on R1, X1, Y 1 and R2 to obtain a perfect matching X such that
〈R1|R2〉 ∪ X and X ∪ 〈Y 1|R2〉 are Hamiltonian cycles of Qd and X crosses [d] \ {α}.
Finally, Y := 〈Y 1|R2〉 ∈ Z(d, k, α) by definition.

Lemma 4.11. Let P ∈ Z(d, k, α), where 3 ≤ k < d and α ∈ [d]. If M(Qk) is
connected or k = 3, then there exists S ∈ Z(d, k + 1, α) such that d(P, S) < ∞.

Proof. We prove by induction on d that for every P ∈ Z(d, k, α) there exists a walk
P = R0, R1, . . . , Rn = S in M(Qd) of even length such that Rl crosses [d] \ {α} for
every odd l and S ∈ Z(d, k + 1, α). The base of this induction is for d = k + 1.

By definition of Z(d, k, α) we divide P into perfect matchings P 1 and P 2 such that
P = 〈P 1|P 2〉, P 1 ∈ Z(d−1, k, α) and P 2 is an even perfect matching of Qd−1 avoiding
some β ∈ [d] \ {α}.
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Perfect matching R1

Perfect matching R3

Perfect matching R2

Perfect matching R4 = Iα
4 = S

Perfect matching R0 = P = [Iα
3 |I

γ
3 ]

Figure 4.2: A walk between P ∈ Z(4, 3, α) and Iα
4 .

First, we present the base of induction for d = 4, so k = 3. By definition, P 1 = Iα
3

and P 2 is even. There are two perfect matchings of Q3 up to isomorphism with different
parities; see Figure 2.1. Hence, P 2 = Iγ

3 for some γ ∈ [3]. If P 2 = Iα
3 , then P = Iα

4 ,
which belongs to Z(4, 4, α) by definition. Otherwise, the walk in Figure 4.2 satisfies
requirements of this lemma.

Now, we present the base of the induction for k ≥ 4 and k + 1 = d. In that case
P 1 = Iα

k . There exists a walk P 2 = R0, R1, . . . , Rn = Iα
k on M(Qk) of even length

because M(Qk) is connected and bipartite and P 2 is even. Let R′
l := 〈P 1|Rl〉 for even

l. Clearly, R′
n ∈ Z(d, k + 1, α) because R′

n = Iα
k+1.

Let l be odd. Since Rl is odd, it holds that Rl 6= Iα
k . We choose an edge el ∈ Rl\Iα

k .
By Proposition 4.1 there exists Zl ∈ Γ(Iα

k ) containing el. The perfect matching Zl

crosses [k] \ {α} by Lemma 4.3. We apply Lemma 4.5 on Rl−1, Rl, Rl+1, I
α
k , Zl, and

Iα
k to obtain a perfect matching R′

l. The walk P = R′
0, R

′
1, . . . , R

′
n = Iα

k+1 satisfies the
requirements.

Finally, we present the induction step for k ≥ 3 and k + 1 < d. By induction
there exists a walk P 1 = R0, R1, . . . , Rn = S1 in M(Qd−1) of even length such that
S1 ∈ Z(d− 1, k + 1, α) and Rl crosses [d− 1] \ {α} for every odd l. Let R′

l := 〈Rl|P
2〉

for even l. For odd l we apply Lemma 4.6 on Rl−1, Rl, Rl+1 and P 2 to obtain a perfect
matching R′

l of Qd crossing [d] \ {α}. Now, the walk P = R′
0, R

′
1, . . . , R

′
n = S satisfies

the requirements and S ∈ Z(d, k + 1, α).

Corollary 4.12. Let P ∈ Z(d, k, α), where 3 ≤ k ≤ d and α ∈ [d]. If M(Ql) is
connected for every l ∈ {4, 5, . . . , d − 1}, then d(P, Iα

d ) < ∞.

Proof. The proof proceeds by induction on d− k. If d = k, then P = Iα
d by definition

of Z(d, k, α). Let 3 ≤ k < d. By Lemma 4.11 there exists S ∈ Z(d, k +1, α) such that
d(P, S) < ∞. By induction d(S, Iα

d ) < ∞. Hence, d(P, Iα
d ) < ∞.

Theorem 4.13. The matching graph M(Qd) is connected for d ≥ 4.

Proof. The proof proceeds by induction on d. Kreweras [59] proved that the graph M4

is connected; see Figure 2.2. Hence, the graph M(Q4) is connected by Proposition 4.8
and the statement holds for d = 4. Let us assume that the graph M(Ql) is connected
for every l with 4 ≤ l ≤ d−1. Let us prove that for some β ∈ [d] and for every perfect
matching P of Qd it holds that d(P, Iβ

d ) < ∞.
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If P is even, then we choose R ∈ Γ(P ) by Theorem 3.1 which is odd by Theorem 4.4.
Otherwise, we simply consider R := P . By Lemma 4.10 there exists S ∈ Z(d, k, α)
such that d(R,S) ≤ 3. By Corollary 4.12 it holds that d(S, Iα

d ) < ∞ and d(Iα
d , Iβ

d ) ≤ 6
by Lemma 4.7.

Corollary 4.14. The graph Md is connected for d ≥ 3.



Chapter 5

Conclusion

In this chapter we briefly present theorems which are built on results of this part of
the thesis.

For the study of properties of the matching graph M(Qd), one might ask which
additional requirements can we pose on the extending perfect matching R in The-
orem 3.1. For example, can we find R that satisfies Theorem 3.1 and contains only
edges from a given list of dimensions of hypercube? A natural necessary condition says
that the set D of allowed edges for R together with the prescribed matching P form
a connected subgraph. The following result due to Gregor [49] shows that this condi-
tion is also sufficient in the case when D is formed by disjoint subcubes of (possibly
different) dimensions. Let K(A) be the complete graph on a set of vertices A.

Theorem 5.1 (Gregor [49]). Let A1, . . . , Am ⊆ V (Qd), d ≥ 2, be pairwise disjoint
subcubes of nonzero dimension. Let A =

⋃

i∈[m] Ai, D =
⋃

i∈[m] E(Ai) and let P be a

perfect matching of K(A). There exists R ⊆ D such that P ∪ R forms a Hamiltonian
cycle of K(A) if and only if P ∪ D is connected.

Feder and Subi [33] consider another generalisation of Theorem 3.1. They ask
whether given perfect matching can be extended into a given number of disjoint cycles
that span all vertices. A weak cycle in a graph is either a cycle or two parallel copies
of a single edge, considered as a cycle of length two. A weak r-cycle decomposition of
a graph is a collection of disjoint r weak cycles that span all the vertices of the graph.

Theorem 5.2 (Feder and Subi [33]). Let P be a perfect matching of K(Qd) that has
at least s edges of Qd. Let r ≤

⌊

s
d

⌋

. Then Qd has a perfect matching R such that P ∪R
is a weak r-cycle decomposition of K(Qd).

Chen [16] consider any bipartite graph Wn obtained by adding some edges into Qn.
Note that Wn is a spanning subgraph of B(Qn) containing all edges of Qn. Let S and
T be two sets of k vertices in different color classes of Qn. A set of vertex-disjoint
paths P1, . . . , Pk of Wn covering all vertices of Qn are called (P, T )-paths if every path
Pi has one end-vertex in P and the other one in T .

Theorem 5.3 (Chen [16]). Let Wn be any bipartite graph obtained by adding some
edges into Qn and let S and T be two sets of k vertices in different color classes of Qn.
The graph Wn has (P, T )-paths if and only if k = 2n−1 or the graph Wn − (S ∪ T ) has
a perfect matching. Moreover, if the graph Wn − (S ∪ T ) has a perfect matching M ,
then Wn has (S, T )-paths containing M .

55
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The proof is straightforward. Given (S, T )-paths can be decomposed into a perfect
matching of Wn− (S∪T ) and a perfect matching of Wn. Given perfect matching M of
Wn − (S ∪T ) can be extended into a perfect matching M ′ of K(Qn). By Theorem 3.1
there exists a perfect matching R of Qn such that M ′ ∪ R forms a Hamiltonian cycle
of K(Qn). We observe that M ∪ R forms required (S, T )-paths of Wn.

Azarija, Gregor and Škrekovski [5] asked whether a perfect matching P of Qn can
be extended into a Hamiltonian path between given vertices x and y. Let weight
w(u) of a vertex u of Qn be the number of 1’s in u and weight w(uv) of edge uv be
min {w(u), w(v)}. A parity of vertex u is parity of w(u) and parity of edge is parity
of w(uv). A layer is a set of edges between two (n − 1)-dimensional subcubes of Qn.
An odd (even) half-layer is a set of all odd (even) edges of a layer. Note that edges
of Qn are partitioned into n layers and every layer is partitioned into odd and even
half-layer.

Theorem 5.4 (Azarija, Gregor and Škrekovski [5]). Let x, y be vertices of opposite
parity, n ≥ 5, and let P be a perfect matching of K(Qn−{x, y}). There exists a perfect
matching R of Qn−{x, y} such that P∪R forms a Hamiltonian cycle of K(Qn−{x, y})
if and only if P does not contain a half-layer of Qn.

The condition that P does not contain a half-layer is natural because if a Hamilto-
nian cycle contains 2n−2 edges of a half-layer, then it has to contain the same number
of edges of half-layer of the opposite parity of same layer, but Qn −{x, y} has at most
2n−1 − 1 edges of every layer.

Theorem 5.4 gives us a condition for our original question when a perfect matching
P of K(Qn) can be extended into a Hamiltonian path between given vertices x and y of
opposite parity. One condition is that xy is not an edge of P . Let xP and yP be vertices
of Qn such that xxP and yyP are edges of P . Let P ′ = P \

{

xxP , yyP
}

∪
{

xP yP
}

.
Note that P can be extended into a Hamiltonian path between x and y by edges of
Qn if and only if P ′ can be extended into a Hamiltonian cycle of K(Qn − {x, y}) by
edges of Qn. Therefore, the following theorem is equivalent to Theorem 5.4.

Theorem 5.5 (Azarija, Gregor and Škrekovski [5]). Let x, y be vertices of opposite
parity, n ≥ 5, and let P be a perfect matching of K(Qn) such that xy /∈ P . There
exists a perfect matching R of Qn − {x, y} such that P ∪R forms a Hamiltonian path
between x and y if and only if P \

{

xxP , yyP
}

∪
{

xP yP
}

does not contain a half-layer
of Qn.

We say that a graph G on even number of vertices is extendable if for every perfect
matching P of K(G) there exists a perfect matching R of G such that P ∪ R forms a
Hamiltonian cycle of K(G) where K(G) is the complete graph of vertices of G. It is
easy to observe that the complete graph K2n and the complete bipartite graph Kn,n

are extendable. Theorem 3.1 say that Qd is extendable for d ≥ 2.
Fon-Der-Flaass [44] studied minimal extendable graphs on given number of vertices.

Let E(n) be the minimal number of edges in an extendable graph on 2n vertices.

Theorem 5.6 (Fon-Der-Flaass [44]). E(1) = 1, E(2) = 4, E(3) = 8, E(4) = 12. For
n ≥ 4 it holds that 3n ≤ E(n) ≤ 4n − 4.

Fon-Der-Flaass [44] conjectured that the true value of E(n) is 4n − 4. He also
study which edges can be removed from Qn to remain extendable.
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Theorem 5.7 (Fon-Der-Flaass [44]). If F is a set of edges of Qn such that every
4-dimensional subcube of Qn has at most one edge in F , then Qn − F is extendable,
where n ≥ 4.
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Part IV

Long paths and cycles in faulty

hypercubes

59





Chapter 6

Introduction

The n-dimensional hypercube Qn is the (bipartite) graph with all binary vectors of
length n as vertices and edges joining every two vertices that differ in exactly one
coordinate. The bipartite classes of Qn consist of vertices with even, respectively odd,
weight, where the weight |u| of a vertex u ∈ V (Qn) = {0, 1}n is defined as the number
of 1’s in u. A set F ⊆ V (Qn) in which all vertices are from the same bipartite class,
is called a monopartite set.

Applications of the hypercube in the theory of interconnection networks inspired
many questions related to its robustness. In particular, if some faulty (or busy) vertices
F ⊆ V (Qn) and all incident edges are removed from Qn, is there a path or a cycle in
the remaining graph, denoted by Qn −F , which covers ‘almost’ all vertices? And how
many vertices in the worst-case can be removed?

Clearly, if F is monopartite, the length of any cycle in Qn − F cannot exceed
2n − 2|F |. This leads to the following definition. A cycle of length at least 2n − 2|F |
in Qn − F is called a long F -free cycle in Qn or long fault-free cycle. Let f(n) be the
maximum integer such that Qn −F has a long F -free cycle for every set F of at most
f(n) vertices in Qn.

The study of this parameter has a numerous literature. Firstly, Chan and Lee [13]
showed that f(n) ≥ (n−1)/2. Then, Yang et al. [91] improved it to f(n) ≥ n−2, and
Tseng et al. [83] to f(n) ≥ n−1. Next, Fu [45] significantly increased it to f(n) ≥ 2n−4
for n ≥ 3, and Castañeda and Gotchev [12] strengthened it further to f(n) ≥ 3n − 7
for n ≥ 5. We [41] obtained the first quadratic lower bound f(n) ≥ n2/10 + n/2 + 1
for n ≥ 15 which is presented in Chapter 8.

Theorem 6.1 ([41]). Let F be a set of at most n2

10
+ n

2
+ 1 faulty vertices of Qn where

n ≥ 15. Then Qn contains a long fault-free cycle.

On the other hand, Koubek [58] and independently Castañeda and Gotchev [12]
noticed that for every n ≥ 4 there is a set F of

(

n
2

)

− 1 vertices such that Qn − F
contains no cycle of length at least 2n −2|F |, so f(n) ≤

(

n
2

)

−2. An example of a such
set F consists of all but one vertex of weight 2. Indeed, since all vertices of F have
even weight, any long F -free cycle in Qn must visit all the remaining vertices of even
weight. Namely, it has to visit the vertex 0 = (0, . . . , 0) and some vertex of weight 4,
which is clearly impossible as they are in different 2-connected components of Qn −F .

From the previous results it follows that the above upper bound is sharp for
n = 4 [45] and for n = 5 [12]. It was conjectured [12] that it is sharp for all n ≥ 4, i.e.
f(n) =

(

n
2

)

− 2 for n ≥ 4. We [39] proved this conjecture and its proof is presented in
Chapter 12.
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Theorem 6.2 ([39]). For every set F of at most
(

n
2

)

− 2 vertices in Qn and n ≥ 4,
the graph Qn − F contains a cycle of length at least 2n − 2|F |.

To prove Theorem 6.2, we need to consider a modification of this problem for long
paths with prescribed endvertices. Similarly as above, a path in Qn − F between
vertices u and v, and of length at least 2n − 2|F | − 2 is called a long F -free uv-path
in Qn or shortly (F, u, v)-path. Note that in case u and v are from different bipartite
classes, the length of any long F -free uv-path is at least 2n − 2|F | − 1. Also note that
in the case when F ∪{u, v} is monopartite, the length of any uv-path in Qn−F cannot
exceed 2n − 2|F | − 2, and hence a long F -free uv-path has optimal length.

Fu [46] showed that Qn − F contains a long path between any two vertices if
|F | ≤ n−2 and n ≥ 3. To improve this result for larger sets F , one needs to introduce
additional conditions on the neighbors of prescribed endvertices. Kueng et al. [60]
strengthened the number of tolerable faults to |F | ≤ 2n − 5 under the condition that
the minimal degree of Qn − F is at least 2. We consider much weaker condition. A
vertex u is surrounded by F if F contains all neighbors of u. Clearly, there is no F -free
path of lenght at least 2 if

u is surrounded by F ∪ {v} in Qn or v is surrounded by F ∪ {u} in Qn; (6.1)

and such triple (F, u, v) is called blocked in Qn; otherwise (F, u, v) is free in Qn. Thus,
the triple (F, u, v) must be free for the existence of an (F, u, v)-path if 2n−2|F |−2 > 1.
We [41] proved that this necessary condition is also sufficient, up to one exception
in Q4, and this proof is presented in Chapter 7.

Theorem 6.3 ([41]). Let F be a set of at most 2n − 4 faulty vertices of Qn where
n ≥ 2. For every two fault-free vertices u and v, there exists a long fault-free path
between u and v in Qn if and only if both (6.1) and (6.2) does not hold.

Let d(u, v) be (Hamming) distance of vertices u and v. On Figure 6.1 we have the
following configuration for n = 4 and |F | = 2n − 4:

there are two vertices a and b with d(a, b) = 4 in Q4 such that

F ∪ {u, v, a, b} are the all 8 vertices of one bipartite class of Q4.
(6.2)

Observe in this configuration that every fault-free path between u and v has length
at most 4 because the graph Q4 \ (F ∪ {u, v}) has two components and no fault-free
path between u and v can visit both components. Hence, there is no (F, u, v)-path
although |F | ≤ 2n − 4 and (F, u, v) is free. Note that there are two non-isomorphic
exceptional configurations since d(u, v) can be 2 or 4.

Moreover, observe that the inequality |F | ≤ 2n − 4 in Theorem 6.3 is tight for
every n ≥ 4. On Figure 6.2 we can see three configurations of 2n − 3 faulty vertices
and two fault-free vertices u and v in Qn such that (F, u, v) is free. Clearly, in all these
configurations there is only one fault-free path between u and v of length 1 or 2, which
is not long.

Note that for |F | ≤ n−2, the right side of the equivalence in Theorem 6.3 is always
satisfied. Hence, we obtain the following direct corollary.

Corollary 6.4 (Fu [46]). For every set F of at most n − 2 vertices of Qn and n ≥ 2,
there is a long F -free uv-path in Qn between every two vertices u and v of Qn − F .
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u

a

b

v

Figure 6.1: The exceptional configuration (6.2) in Q4. The crossed points represent the
faulty vertices and u, v are the prescribed endvertices for a requested long fault-free
path.

We also consider a stronger condition on neighbors of endvertices to increase the
number of faulty vertices. We [39] proved that F can be as large as f(n+1)/2 if both
prescribed endvertices have only few neighbors in F which is presented in Chapter 11.

Theorem 6.5. For every set F of at most (n2 + n − 4)/4 vertices in Qn and n ≥ 5,
the graph Qn − F contains a path of length at least 2n − 2|F | − 2 between every two
vertices such that each of them has at most 3 neighbors in F .

The general difficulty with quadratic bounds on |F | in Theorems 6.2 and 6.5 is
that the hypercube cannot be always split into subcubes so that the bounds hold in
each subcube. Thus, the standard induction technique fails. We introduce up to our
knowledge a new technique of so called potentials which allows us to effectively deal
with such situations.

Furthermore, in the proof of Theorem 6.5 we need to consider the following exten-
sion of the studied problem for two paths. Assume that we have two different (but
not necessarily disjoint) sets A = {u, v} and B = {x, y} of vertices of Qn −F . A path
P between a vertex of A and a vertex of B is called an AB-path. Its length |P | is the
number of edges in P . A pair P1, P2 of vertex-disjoint AB-paths in Qn−F is called an
F -free AB-routing in Qn. Moreover, it is said to be long if |P1|+ |P2| ≥ 2n − 2|F | − 3.
Note that if A and B are not disjoint, say A ∩ B = {u = x}, then any long F -free
AB-routing consists of the uu-path of length 0 and an vy-path of length at least
2n − 2|F | − 3.

Although the problem of long F -free AB-routings is perhaps interesting itself, we
need only the following result, whose proof is presented in Chapter 9

Theorem 6.6 ([40]). For every set F of at most n − 3 vertices in Qn, there exists a
long F -free AB-routing in Qn between every two different sets A,B ⊆ V (Qn) \ F such
that |A| = |B| = 2 and A ∪ B is not monopartite, where n ≥ 4.

Note that by a simple parity argument it follows that the condition on A ∪ B not
being monopartite is necessary in Theorem 6.6. Furthermore, the bound |F | ≤ n − 3
is tight. Indeed, let F ∪ {b, c} be the set of neighbors of some vertex a ∈ V (Qn)
and |F | = n − 2. Clearly, for A = {a, b} and B = {b, c}, the only possible two
vertex-disjoint AB-paths in Qn − F are P1 = (a, c) and P2 = (b) of length 1 and 0,
respectively, but 2n − 2|F | − 3 ≥ 11 for n ≥ 4.
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u v

u

v

u

v

Figure 6.2: |F | = 2n − 3, n ≥ 4, and (F, u, v) is free, but there is no (F, u, v)-path.

As a consequence, if F ∪{u, v} is not monopartite, we obtain an uv-path in Qn−F
of length at least 2n − 2|F | − 1, which is more than is guaranteed by long paths.

Corollary 6.7 ([40]). For every set F of at most n− 2 vertices of Qn and n ≥ 4, the
graph Qn − F has an uv-path of length at least 2n − 2|F | − 1 for every two vertices
u, v ∈ V (Qn) \ F such that F ∪ {u, v} is not monopartite.

From Theorem 6.2 it follows that the decision problem whether the hypercube Qn

for the given set F of faulty vertices contains an F -free cycle has a trivial answer if
|F | ≤

(

n
2

)

−2. On the other hand, Dvořák and Koubek [26] showed that this problem is
NP-hard if |F | is unbounded. Moreover, they [26] presented a function φ(n) = Θ(n6)
such that the problem remains NP-hard even if |F | ≤ φ(n). Furthermore, Dvořák and
Koubek [25] described a polynomial algorithm for the similar decision problem of long
F -free paths between given vertices in Qn if |F | ≤ n2/10 + n/2 + 1.

Those problems of long fault-free paths and cycles are sometimes considered in a
more general setting also with faulty edges, not only vertices. Assume that we have fv

faulty vertices and fe faulty edges in Qn. A path or a cycle in Qn is said to be fault-free
if it contains no faulty vertex and no faulty edge. In this view, the problem of long
fault-free cycles and paths is a relaxation of a substantially more difficult problem of
Hamiltonian cycles and paths in hypercubes with balanced faulty vertices in the sense
that in the former problem we are allowed to choose another up to fv vertices that
will be avoided (see e.g. [24] for some references on the latter problem).

As far as we know, the problem of long fault-free cycles in hypercubes was first
studied by Tseng [83] who showed that such cycle in Qn exists if fv + fe ≤ n − 1,
fv ≤ n − 1, and fe ≤ n − 4. This bound was slightly improved by Sengupta [81] to
fv + fe ≤ n − 1, and fv > 0 or fe ≤ n − 2. Then it was substantially strengthened by
Fu [45] to fv ≤ 2n − 4 (and fe = 0), and further naturally generalized by Hsieh [52]
to fv + fe ≤ 2n − 4 and fe ≤ n − 2.

Let us also mention related results on bipancyclicity and bipanconnectivity.
Tsai [82] showed that every fault-free edge and every fault-free vertex of Qn lies on a
fault-free cycle of every even length from 4 to 2n − 2fv if fv ≤ n− 2 (and fe = 0). Ma,
Liu, and Pan [68] showed that if fv + fe ≤ n− 2, then Qn contains a fault-free path of
length l between every two fault-free vertices u and v for every l from d(u, v) + 2 to
2n−2fv −1 such that l−d(u, v) is even. There are also many results on long fault-free
cycles and paths in various modifications of hypercubes, which we do not list here; see
a survey of Xu and Ma [90] for further references.



Chapter 7

Long path in faulty hypercube

In this section we proof Theorem 6.3 which states that for every set F of at most 2n−4
faulty vertices of Qn and n ≥ 2, there exists a path between prescribed endvertices u
and v in Qn − F of length at least 2n − 2|F | − 2 (called (F, u, v)-path) if and only if
and only if N(u)  F ∪ {v} and N(v)  F ∪ {u} (i.e. condition (6.1) does not hold)
and the triple (F, u, v) does not form one forbiden configuration (6.2).

We prove Theorem 6.3 by induction on the dimension n. In section 7.1 we analyze
surrounded vertices. In Section 7.2 we prove the base of induction by a tedious case
analysis for n ≤ 4. In Section 7.3 we prove the induction step.

7.1 Preliminaries

The main obstacle in the proof of Theorem 6.3 are vertices surrounded by faulty
vertices. In the following auxiliary propositions we mainly show that there are only
few such obstacles.

Proposition 7.1. Let F be a set of at most 2n− 3 faulty vertices in Qn where n ≥ 2.
Then, at most one vertex of Qn is surrounded by F .

Proof. Suppose on the contrary that two vertices u and v of Qn are surrounded by F .
Since each of them has n faulty neighbors, and they have at most 2 faulty neighbors
in common, it follows that |F | ≥ 2n − 2, a contradiction.

In the following proposition we show that at most one triple (F, u, v) is blocked
when |F | ≤ 2n − 4 and the vertex u is fixed and not surrounded by F itself.

Proposition 7.2. Let F be a set of at most 2n− 4 faulty vertices in Qn where n ≥ 2,
and let u ∈ V (Qn) be not surrounded by F . Then, (F, u, v) is blocked for at most one
vertex v ∈ V (Qn).

Proof. First, assume that u has exactly one fault-free neighbor v. Thus, u is sur-
rounded by F ∪ {v} and not surrounded by F ∪ {w} for any other vertex w. By
Proposition 7.1, no other vertex than u is surrounded by F ∪ {v}. It follows that no
vertex is surrounded by F ∪ {u}, so v is the only vertex such that (F, u, v) is blocked.

Now assume that u has at least 2 fault-free neighbors. Thus, u is not surrounded
by F ∪ {w} for any vertex w. By Proposition 7.1, at most one vertex v is surrounded
by F ∪ {u}. Therefore, (F, u, v) is blocked for at most one vertex v.

65
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Next, we show that at most one triple (F, u, v) is blocked when |F | ≤ 2n − 5 and
uv is required to be a fault-free edge. We say that an edge uv is fault-free if neither u
nor v is faulty.

Proposition 7.3. Let F be a set of at most 2n− 5 faulty vertices in Qn where n ≥ 3.
Then, (F, u, v) is blocked for at most one fault-free edge uv ∈ E(Qn).

Proof. Suppose on the contrary that triples (F, u, v) and (F, u′, v′) are blocked for two
fault-free edges uv, u′v′ ∈ E(Qn). Assume that u is surrounded by F ∪ {v}, and u′ is
surrounded by F ∪ {v′}. Observe that u 6= u′ since v and v′ are fault-free. But then,
both u and u′ are surrounded by F ∪ {v, v′}, which contradicts Proposition 7.1.

The following proposition is useful in situations when we have a long fault-free path
P in QL and we need to find an edge aLbL on P such that there is a long fault-free
path between a and b in QR.

Proposition 7.4. Let F be a set of at most 2n− 4 faulty vertices in Qn where n ≥ 2.
For every path P in Qn, if P contains at least three fault-free edges uv such that
(F, u, v) is blocked, then it contains a fault-free edge ab such that (F, a, b) is free.

Proof. Let uv be a fault-free edge of P such that (F, u, v) is blocked, and both u and
v are inner vertices of P . Such edge exists since only two edges of P can contain an
endvertex. Assume that u is surrounded by F ∪ {v}, and let w be the other neighbor
of v on P . Furthermore, assume that u′ is surrounded by F ∪ {v′} for some other
fault-free edge u′v′ of P . We show that the edge vw of P is fault-free and (F, v, w) is
free.

Since both u and u′ have exactly n − 1 faulty neighbors and |F | ≤ 2n − 4, they
must have two faulty neighbors in common. Thus d(u, u′) = 2 and all faulty vertices
together with v (and v′) belong to the same bipartite class of Qn. Hence w is fault-free
and moreover, v is not surrounded by F ∪ {w}. Since u is surrounded by F ∪ {v}, it
follows from Proposition 7.1 that w is not surrounded by F ∪{v}. Therefore, (F, v, w)
is free for a fault-free edge vw of P .

In order to apply induction, we need to split the hypercube Qn with up to 2n − 4
faulty vertices into two (n−1)-dimensional subcubes QL and QR so that both QL and
QR contain at most 2n− 6 faulty vertices. This is obtained by fixing some coordinate
i ∈ [n] where [n] = {1, . . . , n}. Formally, we define the subcube Qi

L as the subgraph
of Qn induced by vertices that have 0 on the i-th coordinate. Similarly, the subcube
Qi

R is the subgraph of Qn induced by vertices that have 1 on the i-th coordinate. The
index i in Qi

L and Qi
R is omitted when it is clear or irrelevant. For x ∈ V (QL), let

xR be the (only) neighbor of x in QR. Similarly for x ∈ V (QR), let xL be the (only)
neighbor of x in QL.

Proposition 7.5. Let F be a set of at most 2n− 4 vertices in Qn where n ≥ 5. Then
Qn can be split into QL and QR such that both subcubes contain at most 2n− 6 faulty
vertices, unless n = 5, |F | = 6, and F consists of some vertex w ∈ V (Qn) and all his
neighbors.

Proof. If |F | ≤ 1, we may split Qn arbitrarily. If 2 ≤ |F | ≤ 2n − 5, we choose two
faulty vertices and split Qn so that they are in different subcubes. Clearly, in both
these cases both QL and QR contain at most 2n − 6 faulty vertices. Now we assume
that |F | = 2n − 4.
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Let A be the binary |F |×n matrix with faulty vertices in its rows. Assume that Qn

cannot be split into QL and QR such that both subcubes contain at most 2n−6 faulty
vertices. That is, each column of A contains at most one 1, or at most one 0. Without
loss of generality we may assume that each column contains at most one 1. Thus A
contains at most n 1’s. Hence A has at most n+1 rows as all rows are different. Since
n+1 < 2n−4 for n ≥ 6, it follows that n = 5 and F consists of the vertex (0, 0, . . . , 0)
and all his neighbors.

Let us recall that a path between u and v is long if it has length at least 2n−2|F |−2.
We represent paths by sequences of vertices, i.e. (u1, u2, . . . , uk) is a path P between
u1 and uk of length |E(P )| = k − 1 if all vertices u1, . . . , uk are distinct and uiui+1

is an edge for every i ∈ [k − 1]. This allows us to define concatenation of paths as
concatenation of their sequences. For example, if P1 is a path between u1 and v1 and
P2 is a path between u2 and v2 such that P1 and P2 are vertex-disjoint and v1u2 is an
edge, then (P1, P2) is a path between u1 and v2 of length |E(P1)| + |E(P2)| + 1.

7.2 Small dimension

In this section we present the base of induction for Theorem 6.3. The case n = 2 is
obvious since |F | ≤ 2n − 4 = 0. For n = 3 we even prove a stronger statement with
one additional faulty vertex than in Theorem 6.3. Namely, for |F | ≤ 2n − 3 = 3 and
every two fault-vertices u and v there exists an (F, u, v)-path if (F, u, v) is free. Note
that the opposite implication does not hold since the edge uv itself (if it exists) is an
(F, u, v)-path when |F | = 3.

Lemma 7.6. Let F be a set of at most 3 vertices of Q3, and let u and v be two
fault-free vertices. If (F, u, v) is free, then there exists an (F, u, v)-path.

Proof. Case 1: |F | = 3.

w

(a) (b) (c)

Figure 7.1: All configurations (up to isomorphism) of 3 faulty vertices in Q3.

We want to find a path of length at least 23 − 3 · 2 − 2 = 0, so it suffices to show
that u and v belong to the same component of Q3 \ F if (F, u, v) is free. There are
tree configurations (up to isomorphism) of F with |F | = 3; see Figure 7.1. Observe
that Q3 \ F on Figure 7.1(a,b) is connected. Also Q3 \ (F ∪ {w}) on Figure 7.1(c) is
connected and w is surrounded by F . Hence the statement holds.

Case 2: |F | = 2.
The graph Q3 \ F is connected because Q3 is 3-connected, so there exists a path

P between u and v in Q3 \ F . We want to find a fault-free path between u and v of
length at least 23 − 2 · 2 − 2 = 2. If d(u, v) ≥ 2, then P has this length.
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Now assume that d(u, v) = 1. There exist two disjoint edges xiyi such that uxi and
yiv are edges of Q3 for i ∈ {1, 2}. If xi, yi /∈ F for some i ∈ {1, 2}, then (u, xi, yi, v) is
a requested path. If x1, x2 ∈ F or y1, y2 ∈ F , then (F, u, v) is blocked. It remains to
find an (F, u, v)-path for the case where F = {x1, y2} (or isomorphically F = {x2, y1}).
See Figure 7.2 for such path.

u v

x1 y1

x2 y2

Figure 7.2: The (F, u, v)-path in Case 2 of Lemma 7.6.

Case 3: |F | ≤ 1.
This case follows from the previous result by Fu [46] for at most n − 2 faulty

vertices.

Assume that Qn is split into QL and QR. The sets of faulty vertices in QL and QR

are denoted by FL and FR, respectively.
In Q4 we are often in a situation when Q4 is split into QL and QR so that u ∈ V (QL)

and v ∈ v(QR). We would like to find a vertex x in QL such that there exist an
(FL, u, x)-path PL and an (FR, xR, v)-path PR and their concatenation P = (PL, PR) is
an (F, u, v)-path. Now, we present sufficient conditions on the vertex x to apply such
construction.

Lemma 7.7. Let Q4 be split into QL and QR so that u ∈ V (QL), v ∈ V (QR), |FL| ≤ 3,
|FR| ≤ 3 and there exists a fault-free vertex x in QL such that xR /∈ FR, (FR, v, xR) is
free in QR and at least one of the following conditions holds.

1. (FL, u, x) is free in QL, and d(u, x) or d(v, xR) is odd.

2. There exists a fault-free path PL between u and x in QL of length at least
23 − 2|FL| − 1.

3. d(u, v) is even, |FL| = 3, and x = u.

Then there exists an (F, u, v)-path in Q4.

Proof. There exists an (FR, xR, v)-path PR in QR by Lemma 7.6. In the first case,
there exists an (FL, u, x)-path PL by Lemma 7.6. In the third case, let PL be the
trivial path between u and x. We show that the path P = (PL, PR) has sufficient
length in all three cases.

1. Without lost of generality we assume that d(u, x) is odd. Then the length of P is
|E(P )| = |E(PL)|+1+|E(PR)| ≥ 23−2|FL|−1+1+23−2|FR|−2 = 24−2|F |−2.

2. |E(P )| = |E(PL)|+1+|E(PR)| ≥ 23−2|FL|−1+1+23−2|FR|−2 = 24−2|F |−2.

3. Since d(xR, v) is odd we have |E(P )| ≥ 1 + 23 − 2|FR| − 1 ≥ 24 − 2|F | − 2.
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Note that if d(u, v) is even, then one of d(u, x) and d(v, xR) is odd for every vertex
x in QL. Let N(u), NL(u) and NR(u) be the sets of neighbors of u in Qn, QL and
QR, respectively. We conclude this section with the following lemma that serves as
the basis for induction in the proof of Theorem 6.3 for n = 4.

Lemma 7.8. Let F be a set of at most 4 faulty vertices in Q4. For every two fault-free
vertices u and v, there is an (F, u, v)-path if and only if (F, u, v) is free and (6.2) does
not hold.

Proof. The necessity was discussed in Section 2.

Case 1: We can split Q4 so that |FL| = 4 or |FR| = 4.
Assume that |FL| = 4. Let u′ = u if u ∈ V (QR), otherwise u′ = uR. Similarly, let

v′ = v if v ∈ V (QR), otherwise v′ = vR. Clearly, there is an (FR, u′, v′)-path in QR

which is a long path in Q4. We prolong this path by the edge uuR if u ∈ V (QL) and
vvR if v ∈ V (QL) and we obtain an (F, u, v)-path in Q4.

For the rest of the proof, we assume that |FL| ≤ 3 and |FR| ≤ 3 for every splitting
of Q4 into QL and QR, which is one of the conditions of Lemma 7.7. Furthermore, we
assume that u ∈ V (QL) for every splitting of Q4, otherwise we exchange the roles of
QL and QR. We distinguish the following cases.

Case 2: We can split Q4 so that v ∈ V (QR), |FL| = 3 or |FR| = 3, and moreover,
if d(u, v) is odd, then u is not surrounded by FL in QL and v is not surrounded by FR

in QR.
Without lost of generality we assume that |FL| = 3. Since |FR| ≤ 1, (FR, z, v) is

free in QR for every vertex z in QR. If u is surrounded by FL in QL, then d(u, v) is
even and uR /∈ FR. This configuration satisfies conditions of Lemma 7.7(c) for x = u.
So we assume that u is not surrounded by FL in QL.

Observe on Figure 7.1 that there are at least 3 vertices different from u in the
component of QL \FL containing u. Since |FR ∪ {v}| ≤ 2, there is a vertex x ∈ V (QL)
satisfying the requirements of Lemma 7.7(b).

Case 3: We can split Q4 so that u, v ∈ V (QL), |FL| = 0 and |FR| ≤ 3.
Observe that for every edge ab in QL such that {a, b} 6= {u, v} there exists an

(FL, u, v)-path containing ab. Assume that |FR| = 3. There exists fault-free edge ab in
QR such that {a, b} 6= {uR, vR} because Q3 has 12 edges and one faulty vertex makes
only 3 edges faulty. Let PL be an (FL, u, v)-path in QL containing the edge aLbL. We
obtain an (F, u, v)-path from PL by replacing the edge aLbL with the path (aL, a, b, bL).

Now assume that |FR| ≤ 2. There exist at least 5 fault-free edges in QR different
from uRvR because Q3 has 12 edges and one faulty vertex makes only 3 edges faulty.
If (FR, x, y) is blocked in QR for some fault-free edge xy in QR, then there are 2 faulty
vertices in QR in distance 2 and there is only another one fault-free edge x′y′ such that
(FR, x′, y′) is blocked in QR. Hence, there exists a fault-free edge ab in QR different from
uRvR such that (FR, a, b) is free in QR. Let PR be an (FR, a, b)-path in QR and PL be an
(FL, u, v)-path in QL containing aLbL. Let P be obtained from PL by replacing the edge
aLbL with the path PR. Since the length of P is |E(PL)|−1+2+|E(PR)| ≥ 24−2|F |−1,
it follows that P is an (F, u, v)-path.

Case 4: d(u, v) is even.
We split Q4 so that u ∈ V (QL) and v ∈ V (QR). If there exists splitting such that

moreover uR ∈ F or vL ∈ F , then we apply it. If |FR| = 3 or |FL| = 3, then this
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configuration satisfies the requirements of Case 2. So, we assume that |FR| ≤ 2 and
|FL| ≤ 2.

By Proposition 7.2, there exists at most one vertex l in QL such that (FL, l, u) is
blocked in QL and at most one vertex r of QR such that (FR, r, v) is blocked in QR. If
there exists a vertex x ∈ V (QL) such that x, xR /∈ F ∪ {u, v, l, r}, then there exists an
(F, u, v)-path by Lemma 7.7(a). When there is no such vertex x?

Note that |F ∪ {u, v, r, l}| ≤ 8 and QL has 8 vertices. There is no requested vertex
x if and only if

for every vertex y of QL exactly one of y and yR belongs to F ∪ {u, v, l, r}. (7.1)

Our aim is to show that we have the exceptional configuration (6.2) if (7.1) holds.
So we assume for the rest of this case that (7.1) holds. Hence |FL| = |FR| = 2 and
vertices l and r exist.

We know that u is surrounded by FL ∪{l} in QL or l is surrounded by FL ∪{u} in
QL. Now, we show that u is not surrounded by FL∪{l} in QL. Suppose on the contrary
that u is surrounded by FL ∪ {l} in QL. If d(u, v) = 2, then vL ∈ NL(u) = FL ∪ {l}
which contradicts (7.1). Now, d(u, v) = 4. Let f be some faulty neighbor of u. It
follows from (7.1) that uR /∈ F and vL /∈ F which contradicts our requirements on
splitting because it is possible to split Q4 by the dimension in which f and u differ.
Similarly, r is not surrounded by FR ∪ {v}.

Since l is surrounded by FL∪{u}, vertices of FL∪{u} belong to the same bipartite
class A of Q4 and l belongs to the other bipartite class B of Q4. Let a be the only
vertex of QL in A that does not belong to FL ∪ {u}. Similarly, the three vertices of
FR ∪ {v} belong to the same bipartite class and let b be the fourth vertex of that
bipartite class in QR. Since u and v are in the same bipartite class A, the vertices of
F ∪{u, v, a, b} form the bipartite class A. It follows from (7.1) that aR = r and bL = l.
See Figure 7.3 for an illustration.

u

v

QRQL

l b

a r

Figure 7.3: Case 4 in Lemma 7.8: the exceptional configuration (6.2).

We have d(a, b) ≥ 3 because a ∈ V (QL), b ∈ V (QR), aR = r, NR(r) = FR ∪ {v}
and b /∈ FR ∪ {v}. Since a and b belong to the same bipartite class, it follows that
d(a, b) = 4. Hence, we conclude that if (7.1) holds, then we have the exceptional
configuration (6.2).

Case 5: d(u, v) is odd.
First, we show that we can split Q4 so that u ∈ V (QL), v ∈ V (QR), u is not

surrounded by FL in QL, v is not surrounded by FR in QR and uR ∈ FR ∪ {v}.
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If d(u, v) = 1 then we split Q4 by the dimension in which u and v differs. Then,
uR = v and the vertex u is not surrounded by FL in QL and v is not surrounded by
FR in QR, otherwise (F, u, v) would be blocked.

Now, we assume that d(u, v) = 3. Let QA be the smallest subcube of Q4 containing
u and v. Since d(u, v) = 3, the dimension of QA is 3 and let QB be the complementary
subcube. If there is no faulty vertex in QA, then we have the configuration of Case 3.
If there exists a faulty vertex f in QA, then f is a neighbor of u or v, say u, so we
split Q4 by the dimension in which f and u differs so u ∈ V (QL) and v ∈ V (QR).
Furthermore, u is not surrounded by FL in QL, because (F, u, v) is free and uR = f .
If v is surrounded by FR in QR, then uR = f is in NR(v) = FR as |FR| ≤ 3 which
contradicts the assumption that d(u, v) = 3.

Now, Q4 is split so that u ∈ V (QL), v ∈ V (QR), u is not surrounded by FL in QL,
v is not surrounded by FR in QR and uR ∈ FR ∪ {v}. If |FR| = 3 or |FL| = 3, then we
have Case 2. So we assume that |FR| ≤ 2 and |FL| ≤ 2.

First, we assume that u has only one fault-free neighbor u′ in QL. The triple
(F, u′, v) is free and all neighbors of u are in F ∪{u′, v}. Observe on Figure 6.2 that in
the exceptional configuration (6.2) there is no vertex surrounded by faulty vertices and
end-vertices. Hence, the triple (F, u′, v) does not form the exceptional configuration
(6.2). There exists an (F, u′, v)-path by Case 4 which we prolong by the edge uu′ to
obtain an (F, u, v)-path.

Next, we assume that v has only one fault-free neighbor in QR. Observe that
d(u, v) = 1, otherwise uR /∈ FR ∪ {v}. Thus, vL = u and by exchanging the roles of
QL and QR and the roles of u and v, we may proceed as in the previous paragraph.
Now, both u and v have at least two fault-free neighbors in their subcubes.

Note that there is at most one faulty vertex in NL(u) and at most one faulty vertex
in NR(uR) because uR ∈ F ∪ {v}. By Proposition 7.2, there exists at most one vertex
l in QL such that (FL, u, l) is blocked in QL. If a vertex l exists, then there is no
faulty vertex in NL(u). Hence, there is at most one vertex x in NL(u) such that x ∈ F
or (FL, u, x) is blocked. Similarly, there is at most one vertex x in NL(u) such that
xR ∈ F or (FR, v, xR) is blocked. Therefore, there exists a vertex x in NL(u) satisfying
the condition of Lemma 7.7(a).

7.3 General dimension

In this section we present the proof of our main result on long fault-free paths: Let F
be a set of at most 2n − 4 faulty vertices of Qn where n ≥ 2. For every two fault-free
vertices u and v, there exists an (F, u, v)-path in Qn if and only if (F, u, v) is free and
we do not have the exceptional configuration (6.2).

Proof of Theorem 6.3. The necessity was discussed in Section 2. We proceed by in-
duction on n. The statement holds for n ≤ 4 by the previous section. Now we assume
that n ≥ 5 and we have two fault-free vertices u and v in Qn such that (F, u, v) is free.

First, we consider the case when u or v has exactly one neighbor uncovered by
F ∪ {u, v}. Assume that u has the only neighbor u′ uncovered by F ∪ {v}. Clearly,
the vertex v is not surrounded by F ∪{u′}. Let v′ be the vertex v if v has at least two
neighbors uncovered by F ∪ {u′}, otherwise let v′ be the only neighbor of v uncovered
by F ∪{u′}. Since |F | ≤ 2n− 4, the vertex u′ has at least two neighbors uncovered by
F ∪ {v}. Moreover, if u′ has exactly two such neighbors, then all faulty vertices and



72 CHAPTER 7. LONG PATH IN FAULTY HYPERCUBE

the vertex v are neighbors of u or u′, so v has at most 3 vertices covered by F ∪ {u′},
and thus v′ = v. Hence, u′ and v′ have at least two neighbors uncovered by F ∪{u′, v′}.
Furthermore, every (F, u′, v′)-path avoids u (and v if v′ 6= v), so it can be prolonged
to an (F, u, v)-path. Therefore, in the following we assume that both u and v have at
least two neighbors uncovered by F ∪ {u, v}.

Our aim is to split Qn into QL and QR such that |FL| ≤ 2n− 6 and |FR| ≤ 2n− 6
where FL = F ∩ V (QL) and FR = F ∩ V (QR). By Proposition 7.5, this can be done
with the only exception when n = 5, |F | = 6, and F consists of some vertex w and all
his neighbors. But when this exception happens, we may remove the vertex w from
F since it cannot be visited by any path that is fault-free with respect to F \ {w}, so
we may assume that the requested split exists.

In what follows, note that whenever we apply induction for a free triple (F ′, a, b) in
QL or in QR, the configuration (6.2) cannot occur since d(a, b) is odd or |F ′| < 2n− 6.
We assume that u ∈ V (QL) and we distinguish the following cases.

Case 1: v ∈ V (QR).
We may assume that |FL| ≥ |FR|. Thus |FR| ≤ n − 2. See Figure 7.4 for an

illustration.

w

u

wR

v
QRQL

(1.1)

u

v
QRQL

(1.2)

v′

u′

P

R

Figure 7.4: The construction of an (F, u, v)-path in Case 1 of Theorem 6.3.

Subcase 1.1: Both vertices u and v have at least 2 fault-free neighbors in their
subcubes.

It follows for every w ∈ V (QL) that if (FL, u, w) is blocked in QL, then w is
surrounded by FL ∪ {u} in QL. Similarly for every wR ∈ V (QR), if (FR, v, wR) is
blocked in QR, then wR is surrounded by FR ∪ {v} in QR.

We claim that there is a vertex w ∈ V (QL) such that d(u,w) is odd, wR 6= v,
both w and wR are fault-free, (FL, u, w) is free in QL, and (FR, v, wR) is free in QR.
Let A = {w ∈ V (QL) | d(u,w) is odd}. We say that a vertex x ∈ V (Qn) eliminates
a vertex w ∈ A if w = x, or wR = x, or w is surrounded by FL ∪ {u} and x is a
neighbor of w, or wR is surrounded by FR ∪ {v} and x is a neighbor of wR. Thus,
every vertex w ∈ A that is not eliminated by any vertex from F ∪ {v} satisfies the
claim. By Proposition 7.1, at most one vertex in A is surrounded by FL ∪ {u} in QL,
and at most one vertex w ∈ A has the neighbor wR surrounded by FR ∪ {v} in QR.
Hence, every vertex from F ∪ {v} eliminates at most one vertex from A. Therefore
the claim holds as

|A| − |F | − 1 ≥ 2n−2 − 2n + 3 ≥ 1 for n ≥ 5.
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Let w ∈ V (QL) be a vertex satisfying the claim above. By induction, there is an
(FL, u, w)-path P in QL of length at least 2n−1 − 2|FL| − 1, and an (FR, wR, v)-path
R in QR. Therefore, by adding the edge wwR we obtain an (F, u, v)-path (P,R) of
length at least 2n−1 − 2|FL| − 1 + 2n−1 − 2|FR| − 2 + 1 = 2n − 2|F | − 2.

Subcase 1.2: Vertex u or v has only 1 fault-free neighbor in its subcube.
Assume that u has the only fault-free neighbor u′ in QL. Let v′ be the vertex v

if v has at least two fault-free neighbors in QR, otherwise let v′ be the only fault-free
neighbor of v in QR. Clearly, both u′ and v′ have at least two fault-free neighbors in
their subcubes. By the previous case, there is an (F, u′, v′)-path P . Then, (u, P ) if
v′ = v, or (u, P, v) if v′ 6= v, is an (F, u, v)-path.

Case 2: v ∈ V (QL).
Since both u and v have at least two neighbors uncovered by F ∪ {u, v}, it follows

that (FL, u, v) is free in QL. See Figure 7.5 for an illustration.
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Figure 7.5: The construction of an (F, u, v)-path in Case 2 of Theorem 6.3.

Subcase 2.1: We have the exceptional configuration (6.2) in QL.
Assume that a, b ∈ V (QL) are the vertices in the exceptional configuration (6.2).

Let w and w′ be some neighbors of a and b, respectively, such that wR and w′
R are

fault-free. Since |FR| ≤ 2, the triple (FR, wR, w′
R) is free in QR. Thus, by induction,

there is (FR, wR, w′
R) path R in QR. Furthermore, there are disjoint fault-free paths

P1 between u and w, and P2 between w′ and v, both of length 3. Therefore, by adding
the edges wwR and w′

Rw′ we obtain an (F, u, v)-path (P1, R, P2) of length at least
2n−1 − 2|FR| − 2 + 2 · 3 + 2 = 2n − 2|F | − 2.

Subcase 2.2: We do not have the exceptional configuration (6.2) in QL. Moreover,
at least one of uR and vR is faulty, or |FR| ≤ 2n − 7, or d(u, v) is odd.

Applying induction we obtain an (FL, u, v)-path P in QL. We claim that there is
an edge ab on P so that the edge aRbR ∈ E(QR) is fault-free and also (FR, aR, bR)
is free. At most 2|FR| edges aRbR ∈ E(QR) with ab on P are faulty. However, if
at least one of uR and vR is faulty, it is less than 2|FR| edges. Furthermore, by
Proposition 7.4, we may assume that (FR, aR, bR) is blocked for at most 2 fault-free
edges aRbR ∈ E(QR) with ab on P , otherwise we are done. However, if |FR| ≤ 2n− 7,
then by Proposition 7.3, (FR, aR, bR) is blocked only for at most 1 fault-free edge
aRbR ∈ E(QR) with ab ∈ E(P ). Thus, some edge ab on P satisfying the claim exists
as

E(P ) − 2|FR| − 1 for d(u, v) even

E(P ) − 2|FR| − 2 for d(u, v) odd

}

≥ 2n−1 − 2|F | − 3 ≥ 2n−1 − 4n + 5 ≥ 1 for n ≥ 5.
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Hence by induction, there is an (FR, aR, bR)-path R in QR of length at least
2n−1 − 2|FR| − 1. Therefore, by removing the edge ab and adding the edges aaL,
and bLb we obtain an (F, u, v)-path (P1, R, P2) of length at least

2n−1 − 2|FL| − 2 + 2n−1 − 2|FR| − 1 − 1 + 2 = 2n − 2|F | − 2

where P1 and P2 are the subpaths of P \ {ab}.

Subcase 2.3: Both uR and vR are fault-free, |FR| = 2n − 6, and d(u, v) is even.
By Proposition 7.1, at most one of uR and vR is surrounded by FR in QR. Assume

that uR is not surrounded by FR in QR. We put F ′
L = FL ∪{u}, so |F ′

L| ≤ 3 < 2n− 6.
Note that v has at least two neighbors in QL that are not in F ′

L since d(u, v) is even.
It follows for every w ∈ V (QL) that if (F ′

L, v, w) is blocked, then w is surrounded by
F ′

L ∪ {v}.
We claim that there is a vertex w ∈ V (QL) such that d(v, w) is odd, both w

and wR are fault-free, (F ′
L, v, w) is free in QL, and (FR, uR, wR) is free in QR. Let

A = {w ∈ V (QL) | d(u,w) is odd}. By Proposition 7.2, (FR, uR, w′
R) is blocked for at

most one vertex w′ ∈ A. If that happens for some w′ ∈ A, let A′ = A\{w′}, otherwise
let A′ = A.

We say that a vertex x ∈ V (Qn) eliminates a vertex w ∈ A′ if w = x, or wR = x,
or w is surrounded by F ′

L ∪ {v} and x is a neighbor of w. Thus, every vertex w ∈ A′

that is not eliminated by any vertex from F satisfies the claim. By Proposition 7.1, at
most one vertex in A is surrounded by F ′

L∪{v}. Hence every vertex from F eliminates
at most one vertex from A. Therefore the claim holds as

|A′| − |F | ≥ 2n−2 − 2n − 3 ≥ 1 for n ≥ 5.

Hence by induction, there is an (FR, uR, wR)-path P in QR of length at least
2n−1 − 2|FR| − 1. Furthermore, there is an (F ′

L, w, v)-path R in QL that avoids u
and has length at least 2n−1 − 2(|FL| + 1) − 1. Therefore, by adding the edges uuR

and wRw, we obtain an (F, u, v)-path (u, P,R) of length at least

2n−1 − 2|FR| − 1 + 2n−1 − 2|FL| − 1 − 2 + 2 = 2n − 2|F | − 2.



Chapter 8

Long cycles in faulty hypercubes

Let D ⊆ [n] be a set of d = |D| coordinates of Qn. We can consider every vertex x of
Qn as a pair x = (u, v)D where u ∈ {0, 1}n−d and v ∈ {0, 1}d are projections of x on
the coordinates of [n] \ D and D, respectively. For u ∈ {0, 1}n−d we denote by QD(u)
the d-dimensional subcube of Qn induced by vertices VD(u) = {(u, v)D | v ∈ {0, 1}d}.
In other words, QD(u) is the subcube of Qn with coordinates [n] \ D fixed by u. The
index D in (u, v)D is omitted whenever clear from the context.

Let F be a set of faulty vertices of Qn. Recall that a cycle in Qn is long if
it has length at least 2n − 2|F |. For a set D ⊆ [n] and u ∈ {0, 1}n−d we define
FD(u) = F ∩ VD(u). Assume that we want to find a long fault-free cycle in Qn.

Our approach is based on subcube partitioning similar as in the work of Bruck et al.
[11] where the hypercube is partitioned into subcubes so that each subcube contains a
large fault-free component. However, instead of using the same partitioning as in [11],
we apply recent results by Wiener [87] on edge multiplicity of traces in set systems
which gives better bounds. We proceed as follows.

First, we find a set D ⊆ [n] such that |FD(u)| ≤ 2d − 4 for every u ∈ {0, 1}n−d

where d = |D|. Then, for some Hamiltonian cycle (u1, u2, . . . , u2n−d

, u2n−d+1 = u1) of
Qn−d we choose in each subcube QD(ui) two appropriate vertices ai and bi such that
aibi+1 ∈ E(Qn) for every i ∈ [2n−d]. Next, applying Theorem 6.3 we find long fault-free
paths between ai and bi in each subcube QD(ui). Finally, we glue these paths together
and obtain a desired long fault-free cycle in Qn. See Figure 8.1 for an illustration.

The crucial step is the determination of the set D. Although the following theorem
by Wiener [87] was originally formulated for set systems, here we take the liberty to
formulate it for vertices of the hypercube.

Theorem 8.1 (Wiener [87]). Let F be a set of at least 2n vertices of Qn, and let

d =
⌈

n2

2|F |−n−2

⌉

. Then, there exists a set D ⊆ [n], |D| = d such that |FD(u)| ≤ d + 1

for every u ∈ {0, 1}n−d.

For the choice of vertices ai and bi we employ the following separate lemma. Recall
that a triple (F, u, v) is blocked for F ⊆ V (Qn) and u, v ∈ V (Qn) if u is surrounded
by F ∪ {v} or v is surrounded by F ∪ {u}, otherwise (F, u, v) is free.

Lemma 8.2. Let F be a set of faulty vertices of Qn where n ≥ 5, and let D ⊆ [n] be
such that d = |D| = 5 and |FD(u)| ≤ 6 for every u ∈ {0, 1}n−d. Let (u1, u2, . . . , u2n−d

,
u2n−d+1 = u1) be a Hamiltonian cycle of Qn−d. Then, there are fault-free vertices ai

and bi in each QD(ui) such that

75
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Figure 8.1: The construction of a long fault-free cycle in Theorem 6.1.

• d(ai, bi) is odd,

• (FD(ui), ai, bi) is free in QD(ui),

• aibi+1 ∈ E(Qn) where b2n−d+1 = b1,

for every i ∈ [2n−d].

Proof. We determine vertices ai and bi in this order: a1, b2, a2, . . . , b2n−d

, a2n−d

,
b2n−d+1 = b1. Since ui and ui+1 are neighbors in Qn−d, every vertex in QD(ui) has
one neighbor in QD(ui+1). Let A and B be the bipartite classes of Qn. We will choose
ai = (ui, vi) from A ∩ VD(ui) and obtain bi+1 = (ui+1, vi) from B ∩ VD(ui+1). Thus
d(ai, bi) is odd and aibi+1 ∈ E(Qn).

There are 16 vertices in Ai = A ∩ VD(ui) since QD(ui) is isomorphic to Q5. At
most 6 of them are faulty since |FD(ui)| ≤ 6. Furthermore, at most 6 of them have
faulty neighbor in QD(ui+1) since |FD(ui+1)| ≤ 6.

In each of the cases i = 1, 1 < i < 2n−d, and i = 2n−d, we show that amongst the
4 remaining vertices of Ai, there are at most two vertices, denoted by xi and yi, that
are not eligible for the choice of ai.

Case i = 1. By Proposition 7.1, at most one vertex x1 ∈ A1 is surrounded by
FD(u1) in QD(u1). Furthermore, at most one vertex y1 ∈ A1 has the neighbor in
QD(u2) surrounded by FD(u2) in QD(u2).

Case 1 < i < 2n−d. By Proposition 7.2, (FD(ui), xi, bi) is blocked in QD(ui) for
at most one vertex xi ∈ Ai. By Proposition 7.1, at most one vertex yi ∈ Ai has the
neighbor in QD(ui+1) surrounded by FD(ui+1) in QD(ui+1).

Case i = 2n−d. By Proposition 7.2, (FD(ui), xi, bi) is blocked in QD(ui) for at most
one vertex xi ∈ Ai. Furthermore, at most one vertex yi ∈ Ai has the neighbor z in
QD(u1) such that (FD(u1), a1, z) is blocked in QD(u1).
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Hence, by choosing vertices ai and bi for every i ∈ [2n−d] such that

ai = (ui, vi) ∈ Ai \ ({xi, yi} ∪ FD(ui) ∪ F ∗
D(ui+1)) for some vi ∈ {0, 1}d,

bi+1 = (ui+1, vi) and b1 = b2n−d+1,

where F ∗
D(ui+1) is the set of vertices of QD(ui) that have a faulty neighbor in QD(ui+1),

we obtain that both ai and bi are fault-free, and (FD(ui), ai, bi) is free in QD(ui) for
every i ∈ [2n−d].

Now we are ready to prove Theorem 6.1 which states that for every set F of at
most n2

10
+ n

2
+ 1 faulty vertices of Qn, where n ≥ 15, there exists contains a long

fault-free cycle in Qn

Proof of Theorem 6.1. Let F ′ ⊇ F be some set of exactly
⌊

n2

10
+ n

2
+ 1
⌋

vertices of Qn.

Thus |F ′| ≥ 2n as n ≥ 15 and by Theorem 8.1, there is a set D ⊆ [n] such that
d = |D| = 5 and |FD(u)| ≤ |F ′

D(u)| ≤ 6 for every u ∈ {0, 1}n−d. Let (u1, u2, . . . , u2n−d

,
u2n−d+1 = u1) be some Hamiltonian cycle of Qn−d.

By Lemma 8.2, there are fault-free vertices ai and bi in each QD(ui) such that
d(ai, bi) is odd, (FD(ui), ai, bi) is free in QD(ui), and aibi+1 ∈ E(Qn) for every i ∈ [2n−d]
where b2n−d+1 = b1.

Hence by Theorem 6.3, in each QD(ui) there is a fault-free path Pi between bi

and ai of length at least 2d − 2|FD(ui)| − 1. Concatenating these paths with edges
aibi+1 ∈ E(Qn) we obtain a fault-free cycle (P1, P2, . . . , P2n−d , b1) of length at least

2n−d · 2d −
∑

i∈[2n−d]

2|FD(ui)| − 2n−d + 2n−d = 2n − 2|F |.
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Chapter 9

Long routing in faulty hypercubes

In this chapter we prove Theorem 6.6 and its Corollary 6.7 about long F -free routings
and paths of length 2n − 2|F | − 1.

It is well known that Qn contains a Hamiltonian path between every two vertices
of the opposite parity. Lewinter and Widulski [62] studied the hypercube with one
faulty vertex.

Proposition 9.1 (Lewinter and Widulski [62]). Let n ≥ 2 and u, v, w be distinct
vertices in Qn such that u and v have the same parity opposite to the parity of w.
Then, Qn − {w} has a Hamiltonian uv-path.

If F is not monopartite, then we obtain F -free path of lenght 2 more than required
for long paths.

Proposition 9.2 (Hung et al. [53]). Let n ≥ 4, F ⊆ V (Qn) such that |F | ≤ n − 2
and F is not monopartite, and let u, v ∈ V (Qn) \F be distinct vertices. Then, Qn −F
has an uv-path of length at least 2n − 2|F |.

In order to apply induction, we need to split the hypercube Qn into two
(n − 1)-dimensional subcubes QL and QR. This is obtained by fixing some coordi-
nate i ∈ [n]. Formally, we define the subcube QL as the subgraph of Qn induced by
vertices that have 0 on the i-th coordinate. Similarly, the subcube QR is the subgraph
of Qn induced by vertices that have 1 on the i-th coordinate. For a vertex x of QL,
let xR be the (only) neighbor of x in QR. Similarly for a vertex x of QR, let xL be the
(only) neighbor of x in QL.

Assume that F is a given set of faulty vertices of Qn. The vertices of Qn which
are not in F are called F -free. For every i ∈ [n] we define FL and FR to be the sets of
faulty vertices in QL and QR, respectively.

In the following two lemmas we start with dimensions n = 3 and n = 4. Note
that Lemma 9.3 is needed for Lemma 9.4, whereas Lemma 9.4 serves us as a base of
induction for Theorem 6.6.

Lemma 9.3. For every set F of at most 1 vertex of Q3, there exists a long F -free
AB-routing in Q3 between every two disjoint sets A,B ⊆ V (Q3) \ F such that
|A| = |B| = 2 and A ∪ B is not monopartite.

Proof. It is trivial to verify the statement by inspection of all cases. First, consider
all possible sets A, B in case F = ∅ when we search for AB-routing P1, P2 in Q3 such
that |P1|+ |P2| ≥ 5. Then, consider the case |F | = 1 when we need |P1|+ |P2| ≥ 3.
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Note that the disjointness of the sets A and B is necessary in Lemma 9.3. Indeed,
for A = {001, 110}, B = {111, 110}, and F = {000}, observe that there is no path
between 001 and 111 in Q3−{000, 110} of length at least 3, and consequently, no long
F -free AB-routing in Q3.

Lemma 9.4. For every set F of at most 1 vertex of Q4, there exists a long F -free
AB-routing in Q4 between every two different sets A,B ⊆ V (Q4) \ F such that
|A| = |B| = 2 and A ∪ B is not monopartite.

Proof. Case 1: First, we consider the case when A = {u, v} and B = {x, v} intersect
at some vertex v. Then, we can treat v as a new faulty vertex in the set F ′ = F ∪{v},
so it suffices to find an ux-path in Q4 −F ′ of length at least 24 − 2|F ′| − 1. If u, x are
of opposite parity, such path exists by Corollary 6.4. Now u and x are of the same
parity.

If F ′ = {v}, then the requested ux-path exists by Proposition 9.1 since A ∪ B =
{u, x, v} is not monopartite. Now we have F ′ = {f, v}. If f and v have opposite
parity, then the requested path exists by Proposition 9.2.

Since A∪B is not monopartite, it remains to consider the case when f and v have
the same parity opposite to the parity of u and x. We split Q4 into QL and QR so that
f and v are in separate subcubes, say F ′

L = {f} and F ′
R = {v}, and we distinguish

two subcases.

Subcase (i): If vertices u, x are in the same subcube, say u, x ∈ V (QL), then from
Proposition 9.1 we obtain ux-path PL in QL − F ′

L of length 6. Let ab be an edge of
PL such that aR, bR 6= v. From Corollary 6.4 we obtain aRbR-path PR in QR − F ′

R of
length 5. After interconnecting PR and PL − ab by edges aaR, bbR we get the desired
ux-path in Q4 − F ′ of length 12 ≥ 24 − 2|F ′| − 1.

Subcase (ii): Now vertices u, x are in different subcubes, say x ∈ V (QL) and
u ∈ V (QR). We choose a vertex a ∈ V (QL) with the opposite parity than u, a 6= f ,
and aR 6= u. Note that a 6= x and aR 6= v. From Corollary 6.4 we obtain ax-path PL

in QL − F ′
L of length 5, and from Proposition 9.1 we obtain uaR-path PR in QR − F ′

R

of length 6. By interconnecting these paths with the edge aaR we obtain the desired
ux-path in Q4 − F ′ of length 12 ≥ 24 − 2|F ′| − 1.

Case 2: Second, we consider the case when A = {u, v} and B = {x, y} are disjoint.
Then, we split Q4 into QL and QR so that x, y are in different subcubes, say x ∈ V (QL)
and y ∈ V (QR), and we distinguish two subcases depending on the vertices of A.

Subcase (i): If vertices u, v are in the same subcube, say A ⊆ V (QL), we choose a
vertex a ∈ V (QL) \ FL with the same parity as y, aR /∈ FR, and a /∈ {u, v, x}. Note
that such vertex exists, since there are 4 candidate vertices in QL with the same parity
as y, the set F blocks at most one of them, and the set {u, v, x} blocks at most two
of them, otherwise A ∪ B would be monopartite. For a set B′ = {x, a} it follows
that A, B′ are disjoint and A ∪ B′ is not monopartite. Hence by Lemma 9.3, there
is an AB′-routing P ′

1, P
′
2 in QL − FL such that |P ′

1| + |P ′
2| ≥ 23 − 2|FL| − 3. Assume

that a is the endvertex of the path P ′
1. By Corollary 6.4, there is an aRy-path in

QR − FR of length at least 23 − 2|FR| − 1 since aR and y have opposite parity. By
interconnecting P ′

1 and PR with the edge aaR, we obtain AB-routing P1, P
′
2 in Q4 −F

such that |P1| + |P ′
2| = |P ′

1| + |PR| + 1 + |P ′
2| ≥ 24 − 2|F | − 3.

Subcase (ii): Now vertices u, v are in different subcubes, say u ∈ V (QL) and
v ∈ V (QR). If u and x, or v and y are of opposite parity, then from Corollary 6.4 we
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obtain a long FL-free ux-path PL in QL and a long FR-free vy-path PR in QR such
that |PL| + |PR| ≥ 24 − 2|F | − 3. Hence PL, PR is a long F -free AB-routing in Q4.

Since A ∪ B is not monopartite, it remains to consider the case when u and x
have the same parity opposite to the parity of v and y. We choose two vertices
a, b ∈ V (QL) \ FL with the same parity opposite to the parity of u, and aR, bR /∈ FR.
Note that such vertices exist since there are 4 candidate vertices in QL with the parity
opposite to u and the set F blocks at most one of them. It follows that AL = {u, x},
BL = {a, b} are disjoint and AL ∪BL is not monopartite. Hence, by Lemma 9.3 there
is a long FL-free ALBL-routing P ′

1, P
′
2 in QL. Moreover, since both paths P ′

1, P ′
2 have

odd length, we have |P ′
1|+ |P ′

2| ≥ 23 − 2|FL| − 2. Assume that the ALBL-routing joins
the vertex u with b, otherwise we switch the roles of a and b in what follows. By the
definition of a, b, the sets AR = {bR, v}, BR = {aR, y} are disjoint and AR ∪BR is not
monopartite. Hence, by Lemma 9.3 there is a long FR-free ARBR-routing P ′

3, P
′
4 in

QR. By interconnecting P ′
1, P

′
2 and P ′

3, P
′
4 with edges aaR, bbR we obtain AB-routing

P1, P2 in Q4−F such that |P1|+ |P2| = |P ′
1|+ |P ′

2|+ |P ′
3|+ |P ′

4|+2 ≥ 24−2|F |−2.

Now we are ready to prove Theorem 6.6, which says that for every set F of at most
n − 3 vertices in Qn and n ≥ 4, there exists a long F -free AB-routing in Qn between
every two different sets A,B ⊆ V (Qn) \ F such that |A| = |B| = 2 and A ∪ B is not
monopartite.

Proof of Theorem 6.6. We proceed by induction on the dimension n. For n = 4 we
apply Lemma 9.4. Now assume n ≥ 5.

First, we split Qn into QL and QR such that we separate two arbitrarily chosen
faulty vertices from F if |F | ≥ 2, otherwise we split Qn arbitrarily. It follows that
|FL|, |FR| ≤ n − 4. Thus, we may apply induction both in QL and QR. We consider
the following cases.

Case 1: If both A,B are in one subcube, say A,B ⊆ V (QL), then by induction,
there is a long FL-free AB-routing P ′

1, P ′
2 in QL. Let ab be an edge of P ′

1 or P ′
2, such that

aR, bR /∈ FR. Such edge exists, otherwise 2n−1 − 2|FL| − 3 ≤ |P ′
1|+ |P ′

2| ≤ 2|FR|, which
yields a contradiction 2n−1−3 ≤ 2|F | ≤ 2n−6 for n ≥ 5. From Corollary 6.4 we obtain
an aRbR-path PR in QR −FR of length 2n−1 − 2|FR| − 1 since aR and bR have different
parity. After interconnecting PR and P ′

1 or P ′
2 with the edges aaR, bbR we get the

AB-routing P1, P2 in Qn−F such that |P1|+|P2| = |P ′
1|+|P ′

2|+|PR|+1 ≥ 2n−2|F |−3.

Case 2: If A is in one subcube and B in the other subcube, say A = {u, v} ⊆ V (QL)
and B = {x, y} ⊆ V (QR), we distinguish two subcases.

Subcase (i): If u and v have different parity, then from Corollary 6.4 we obtain an
uv-path PL in QL − FL of length at least 2n−1 − 2|FL| − 1. Let ab be an edge of PL

such that A′ = {aR, bR} is disjoint with FR and A′ 6= B. Such edge exists, otherwise
|PR| ≤ 2|FR| + 1, which yields a contradiction 2n−1 − 2 ≤ 2|F | ≤ 2n − 6 for n ≥ 5.
Since A′ ∪B is not monopartite, there is a long FR-free A′B-routing P ′

1, P ′
2 in QR. By

interconnecting PL −ab and P ′
1, P ′

2 with the edges aaR, bbR, we get an AB-routing P1,
P2 in Qn − F such that |P1| + |P2| = |PL| + |P ′

1| + |P ′
2| + 1 ≥ 2n − 2|F | − 3.

Subcase (ii): Now u and v are of the same parity. We choose vertices B′ = {a, b} ⊆
V (QL) \ FL of the same parity opposite to the parity of u such that A′ = {aR, bR} is
disjoint with FR. Such vertices exists, since there are 2n−2 candidates in QL with parity
opposite to the parity of u, and at most n−3 of them are blocked by F . Clearly, A 6= B′

and A∪B′ is not monopartite. Thus, there is a long FL-free AB′-routing P ′
1, P ′

2 in QL.



82 CHAPTER 9. LONG ROUTING IN FAULTY HYPERCUBES

Moreover, since both P ′
1, P ′

2 have odd length, we have |P ′
1| + |P ′

2| ≥ 2n−1 − 2|FL| − 2.
In the other subcube QR, at least one vertex of B = {x, y} has the opposite parity to
the parity of aR, bR, u, and v. It follows that A′ 6= B and A′ ∪ B is not monopartite,
and hence, there is a long FR-free A′B-routing P ′

3, P ′
4 in QR. By interconnecting P ′

1,
P ′

2 and P ′
3, P ′

4 with edges aaR, bbR we get an AB-routing P1, P2 such that

|P1| + |P2| = |P ′
1| + |P ′

2| + |P ′
3| + |P ′

4| + 2 ≥ 2n − 2|F | − 3.

Case 3: If A is one subcube, and B in both subcubes, say A = {u, v} ⊆ V (QL),
x ∈ V (QL), y ∈ V (QR), then we proceed similarly as in Case 2, Subcase (i) of
Lemma 9.4. We choose a vertex a ∈ V (QL) \ FL with the same parity as y, aR /∈ FR,
and a /∈ {u, v, x}. Note that such vertex exists, since there are 2n−2 candidate ver-
tices in QL with the same parity as y, the faulty vertices block at most n − 3 of
them, the set {u, v, x} blocks at most 3 of them, and 2n−2 − (n − 3) − 3 ≥ 1 for
n ≥ 5. For a set B′ = {x, a} it follows that A, B′ are disjoint and A ∪ B′ is not
monopartite. Hence by induction, there is an AB′-routing P ′

1, P
′
2 in QL−FL such that

|P ′
1| + |P ′

2| ≥ 2n−1 − 2|FL| − 3. Assume that a is the endvertex of the path P ′
1. By

Corollary 6.4, there is an aRy-path in QR −FR of length at least 2n−1−2|FR|−1 since
aR and y have opposite parity. By interconnecting P ′

1 and PR with the edge aaR, we
obtain AB-routing P1, P

′
2 in Qn − F such that

|P1| + |P ′
2| = |P ′

1| + |PR| + 1 + |P ′
2| ≥ 2n − 2|F | − 3.

Case 4: If A, B are both subcubes, say u, x ∈ V (QL) and v, y ∈ V (QR), then we
proceed similarly as in Case 2, Subcase (ii) of Lemma 9.4. If u and x, or v and y are
of opposite parity, then from Corollary 6.4 we obtain a long FL-free ux-path PL in QL

and a long FR-free vy-path PR in QR such that |PL| + |PR| ≥ 2n − 2|F | − 3. Hence
PL, PR is a long F -free AB-routing in Qn.

Since A ∪ B is not monopartite, it remains to consider the case when u and x
have the same parity opposite to the parity of v and y. We choose two vertices
a, b ∈ V (QL) \ FL with the same parity opposite to the parity of u, and aR, bR /∈ FR.
Note that such vertices exist since there are 2n−2 candidate vertices in QL with the
parity opposite to the parity of u, the faulty vertices block at most n − 3 of them,
and 2n−2 − (n − 3) ≥ 2 for n ≥ 5. It follows that AL = {u, x}, BL = {a, b} are
disjoint and AL ∪ BL is not monopartite. Hence, by induction there is a long FL-free
ALBL-routing P ′

1, P
′
2 in QL. Moreover, since both paths P ′

1, P ′
2 have odd length,

we have |P ′
1| + |P ′

2| ≥ 2n−1 − 2|FL| − 2. Assume that the ALBL-routing joins the
vertex u with b, otherwise we switch the roles of a and b in what follows. By the
definition of a, b, the sets AR = {bR, v}, BR = {aR, y} are disjoint and AR ∪BR is not
monopartite. Hence, by induction there is a long FR-free ARBR-routing P ′

3, P
′
4 in QR.

By interconnecting P ′
1, P

′
2 and P ′

3, P
′
4 with edges aaR, bbR we obtain AB-routing P1, P2

in Qn − F such that |P1| + |P2| = |P ′
1| + |P ′

2| + |P ′
3| + |P ′

4| + 2 ≥ 2n − 2|F | − 2.

Finally, we prove Corollary 6.7 that says for every set F of at most n − 2 vertices
of Qn and n ≥ 4, the graph Qn −F has an uv-path of length at least 2n − 2|F | − 1 for
every two vertices u, v ∈ V (Qn) \ F such that F ∪ {u, v} is not monopartite.

Proof of Corollary 6.7. If F = ∅, then u and v have opposite parity, and the statement
follows from a well-known fact that Qn contains a Hamiltonian path between every
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two vertices of opposite parity. Otherwise, there exists f ∈ F such that {u, v, f} is
not monopartite. Applying Theorem 6.6 for A = {u, f}, B = {v, f}, F ′ = F \ {f} we
obtain vertex-disjoint paths P1, P2 such that P1 joins u and v, P2 contains only f , and
|P1|+ |P2| ≥ 2n−2|F ′|−3. Hence |P1| ≥ 2n−2|F |−1, and P1 is the desired path.
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Chapter 10

Potential – overview

In this chapter we give an overview of proofs of Theorems 6.5 and Theorem 6.2 and
explain the general ideas.

10.1 Preliminaries

The n-dimensional hypercube Qn is the (bipartite) graph with all binary vectors
of length n as vertices and edges joining every two vertices that differ in exactly
one coordinate. Let 0 denote the vertex of Qn consisting of all 0’s. For every
i ∈ [n] = {1, 2, . . . , n} let ei denote the vertex with 1 exactly in the i-th coordinate.
Furthermore, for every distinct i, j ∈ [n] let ei,j denote the vertex with 1 exactly in
the i-th and j-th coordinate.

Let d(u, v) be the (Hamming) distance of vertices u and v in Qn, i.e. the number of
coordinates where u and v differ. Recall that the weight |u| of a vertex u is the number
of 1’s in u, i.e. |u| = d(u,0). The vertices of even and odd weight, respectively, form
bipartite classes of Qn. The parity of a vertex u is the parity of its weight |u|. Hence,
two vertices have the same parity if and only if they are in the same bipartite class.
The k-th level of Qn is the set of vertices of weight k for 0 ≤ k ≤ n.

Clearly, Qn has a regular degree n. Let N(u) be the set of neighbors of a vertex u
in Qn, and let N+(u) and N−(u) be the sets neighbors of u with weight |u| + 1 and
|u|−1, respectively. It is well-known that every two vertices of Qn have 0 or 2 common
neighbors.

In order to apply induction, we need to split the hypercube Qn into two
(n − 1)-dimensional subcubes Qi:L and Qi:R. This is obtained by fixing some coor-
dinate i ∈ [n]. Formally, we define the subcube Qi:L as the subgraph of Qn induced by
vertices that have 0 on the i-th coordinate. Similarly, the subcube Qi:R is the subgraph
of Qn induced by vertices that have 1 on the i-th coordinate. For a vertex x of Qi:L,
let xR be the (only) neighbor of x in Qi:R. Similarly for a vertex x of Qi:R, let xL be
the (only) neighbor of x in Qi:L.

Assume that F is a given set of faulty vertices of Qn. The vertices of Qn which are
not in F are called F -free. For every i ∈ [n] we define Fi:L and Fi:R to be the sets of
faulty vertices in Qi:L and Qi:R, respectively. Let F k be the set of vertices of F from
level k (i.e. of weight k) for 0 ≤ k ≤ n. Similarly, let F≥k be the set of vertices of F
from level at least k. Furthermore, we define F k

i:L = F k ∩ Fi:L and F k
i:R = F k ∩ Fi:R.

For a vertex u of Qn let F (u) be the set of faulty neighbors of u, i.e. F (u) = F ∩N(u).
Let AF be the |F | × n matrix whose rows are the binary vectors representing the
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vertices of F . Let |AF | be the number of ones in AF . Clearly, |AF | is the sum of
|x| over all x ∈ F . Note that |Fi:L| and |Fi:R| are the numbers of zeros and ones,
respectively, in the i-th column of AF . By symmetry of Qn, we assume that

|Fi:L| ≥ |Fi:R| for every dimension i ∈ [n]. (10.1)

Indeed, by exchanging zeros and ones in those columns i ∈ [n] where |Fi:L| < |Fi:R|
we obtain an automorphism of Qn that maps the set F to a new set satisfying the
condition (10.1).

To apply Theorem 6.3 we need to bound the number α(F ) of vertices of Qn that
have at least 4 neighbors in F .

Proposition 10.1. For every set F ⊆ V (Qn) it holds that

α(F ) ≤ min

{

n|F |

4
,

(

|F |
2

)

3

}

.

Proof. Every vertex from F has n neighbors in Qn, but every vertex x with |F (x)| ≥ 4
has at least 4 neighbors in F . Hence, α(F ) ≤ n|F |/4.

In order to prove the second inequality of this proposition we compute the number
p of pairs of incident edges ux and vx of Qn where u, v ∈ F are distinct neighbors of x.
Since every two vertices u and v of Qn have at most 2 neighbors in common, we have
p ≤ 2

(

|F |
2

)

. On the other hand, every vertex x with |F (x)| ≥ 4 has at least
(

4
2

)

= 6

pairs of vertices from F in its neighborhood, so 6α(F ) ≤ p. Hence, α(F ) ≤
(

|F |
2

)

/3.

Proposition 10.2. For every set F ⊆ V (Qn) with |F | ≤ 6 it holds that α(F ) ≤ 2.

Proof. Suppose for a contradiction that there exist three vertices a, b and c in Qn

such that |F (a)|, |F (b)|, |F (c)| ≥ 4. Without lost of generality we assume that a = 0.
Hence, there are at least 4 faulty vertices in the first level. Since there remain at most
two vertices in F \F (a), the vertices b and c both share exactly 2 faulty neighbors with
the vertex a, so they are in the second level. Furthermore, it follows that the vertices
b and c share two neighbors x, y ∈ F 3, so (b, x, c, y) forms a cycle of length 4. But
this contradicts the structure of Qn since every cycle of length 4 in Qn is contained in
exactly 3 consecutive levels.

10.2 Overview of the proofs

The proofs of Theorems 6.2 and 6.5 have very similar structure. In both theorems we
are given a set of faulty vertices F in Qn, but the maximal cardinality of F differs. For
general purposes, let us denote the maximal cardinality of F by z(n). In Theorem 6.2

we have z(n) =
(

n
2

)

− 2, and in Theorem 6.5 we have z(n) =
⌊

n2+n−4
4

⌋

.

Both proofs proceed by induction on the dimension n. Fortunately, the base of
induction for n = 5 is already known in both cases. For Theorem 6.2 it directly
follows from the following result.

Theorem 10.3 (Castañeda and Gotchev [12]). For every set F of at most 3n − 7
vertices in Qn and n ≥ 5, the graph Qn−F contains a cycle of length at least 2n−2|F |.
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For Theorem 6.5, the base of induction for n = 5 follows from Theorem 6.3

since 2n − 4 =
⌊

n2+n−4
4

⌋

, and the condition that |F (u)|, |F (v)| ≤ 3 implies that

N(u) 6⊆ F ∪ {v} and N(v) 6⊆ F ∪ {u} for n = 5.

Hence, our task remains to prove the induction step for both Theorems 6.2 and
6.5. Although they are applied in the proofs of each other, note that it is done in a
correct way, since the induction steps proceed together. That is, the statements of
Theorem 6.2 and Theorem 6.5 for n requires only that

the statements of Theorem 6.2 and Theorem 6.5 hold for n − 1. (10.2)

In the first part of the induction steps we assume that

there exists a dimension i ∈ [n] such that |Fi:L|, |Fi:R| ≤ z(n − 1). (10.3)

In this case in Theorem 6.5 we proceed directly by applying induction (10.2) on both
Qi:L and Qi:R. In Theorem 6.2 we obtain from (10.1) that1

|Fi:R| ≤

⌊

|F |

2

⌋

≤

⌊

(

n
2

)

− 2

2

⌋

=

⌊

(n − 1)2 + (n − 1) − 4

4

⌋

.

Therefore, we may directly apply induction (10.2): Theorem 6.2 in Qi:L and Theorem
6.5 in Qi:R.

10.3 Potentials

In the second part of both proofs we assume that (10.3) does not hold. The assumption
(10.1) implies that

|Fi:L| > z(n − 1) for every dimension i ∈ [n]. (10.4)

Now we introduce up to our knowledge a new method of so called potentials which
is used in the both proofs of Theorems 6.2 and 6.5.

Let k(n) = z(n)−z(n−1)−1. Note that if (10.4) holds, then |Fi:R| = |F |−|Fi:L| ≤
k(n) for every dimension i ∈ [n]. We define the potentials of the set F as follows:

• φ0(F ) = 2(1 − |F 0|) =

{

0 if 0 ∈ F

2 if 0 /∈ F,

• φ1(F ) is the number of F -free vertices in the first level, i.e. φ1(F ) = n − |F 1|,

• φ≥3(F ) is the sum of |x| − 2 over all faulty vertices x in level at least 3,

• φdim(F ) is the sum of |Fi:L| − z(n − 1) − 1 over all dimensions i ∈ [n],

• φ(F ) = φ0(F ) + φ1(F ) + φ≥3(F ) + φdim(F ).

1This explains why we consider at most
⌊

n2
+n−4

4

⌋

faulty vertices in Theorem 6.5.
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Clearly, φ0(F ), φ1(F ), φ≥3(F ) are non-negative. Furthermore, it follows from (10.4)
that φdim(F ) is non-negative. Consequently, φ(F ) is non-negative.

Intuitively, the potential φ0(F ) + φ1(F ) + φ≥3(F ) determines how much the set F
differs from a set F ′ with a minimal number of ones in the matrix AF ′ . If 0 /∈ F , we
pay by φ0(F ) = 2; otherwise, φ0(F ) = 0. For every vertex of weight 1 which is not in
F , we pay by 1 in φ1(F ). For every vertex of F which has weight at least 3, we pay its
distance to the second level in φ≥3(F ). Finally, for every dimension i ∈ [n] we know
that |Fi:L| > z(n− 1) since we assume (10.4), therefore we pay in φdim(F ) the number
of vertices which could be moved from Fi:L to Fi:R so that (10.4) remains satisfied.

Observe that the definition of φdim(F ) and (10.4) implies that if φdim(F ) < n, then
there exists a dimension i ∈ [n] such that |Fi:L| = z(n− 1) + 1. Now, we compute the
potential φ(F ) of the set F . Note that the potential φ(F ) depends only on |F |, z(n)
and z(n − 1).

Proposition 10.4. If |F | ≤ z(n) and |Fi:L| > z(n − 1) for every dimension i ∈ [n],
then

φ(F ) = nk(n) − 2z(n) + n + 2 − (n − 2)(z(n) − |F |).

Proof. We prove the requested equality by double-counting the number of 1’s in the
matrix AF . First, we sum up 1’s by columns. Since

|Fi:R| = |F | − |Fi:L| = k(n) − (z(n) − |F |) − (|Fi:L| − z(n − 1) − 1),

we have
|AF | =

∑

i∈[n]

|Fi:R| = nk(n) − n(z(n) − |F |) − φdim(F ).

Now, we sum up 1’s by rows.

|AF | =
∑

x∈F

|x| = 0
∣

∣F 0
∣

∣+ 1
∣

∣F 1
∣

∣+ 2
∣

∣F 2
∣

∣+ 2
∣

∣F≥3
∣

∣+ φ≥3(F )

= φ0(F ) + φ1(F ) + φ≥3(F ) + 2|F | − n − 2.

The requested equality follows.

Let us explain informally how potentials are useful for us. Below in Proposition 11.2

we compute the particular value of φ(F ) for paths when z(n) =
⌊

n2+n−4
4

⌋

; and in

Proposition 12.2 we compute it for cycles when z(n) =
(

n
2

)

− 2. We will see that
φ(F ) is small in both cases. This allows us to split Qn into Qi:L and Qi:R so that
|Fi:L| = z(n − 1) + 1, i.e. there is one faulty vertex more in Fi:L than is allowed for
applying induction. In such situations we ignore one properly chosen vertex x ∈ Fi:L

and try to proceed directly. If the vertex x belongs to the obtained path (or cycle),
we attempt to detour it.

However, those detours may also fail because of another vertex y ∈ Fi:R. Never-
theless, if this happens, the vertex y must contribute into φ≥3(F ). By combination of
those methods we either find a long F -free path in Qn or obtain a contradiction with
a small potential φ(F ).



Chapter 11

Long paths in hypercubes with

quadratic number of faults

In this chapter we prove Theorem 6.5. In what follows assume that F is a set of at

most z(n) =
⌊

n2+n−4
4

⌋

vertices of Qn, n ≥ 5, and u, v are distinct vertices of Qn − F

with |F (u)|, |F (v)| ≤ 3. Recall that Theorem 6.5 says that Qn − F contains a path
between u and v of length at least 2n − 2|F | − 2. Such path is called a long F -free
uv-path.

The proof proceeds by induction on the dimension n. For n = 5 the statement
follows from Theorem 6.3 since |F | ≤ z(5) = 6. Now, we prove the induction step for
n ≥ 6. We divide the proof into two main parts.

11.1 Induction-friendly split

In the first part, we consider the case when Qn can be split into Qi:L and Qi:R by a
dimension i ∈ [n] such that |Fi:L|, |Fi:R| ≤ z(n − 1); see (10.3). In this case, we apply
induction directly.

Lemma 11.1. Let Qn be split into subcubes Qi:L and Qi:R so that |Fi:L|, |Fi:R| ≤
z(n−1). Then there exists a long F -free uv-path P in Qn. Moreover, if |F 1

i:L| ≥ n−2,
then 0 /∈ P .

Proof. Since the dimension i is fixed, in this proof we omit the index i to simplify the
notation. We distinguish two cases regarding the position of vertices u and v in QL

and QR.
Case 1 : If u, v are in different subcubes, say u ∈ V (QL) and v ∈ V (QR), then

our aim is to find a vertex x in QL of opposite parity to the parity of u such that
x /∈ FL, xR /∈ FR ∪ {v} and |FL(x)|, |FR(xR)| ≤ 3. If there is a such vertex x, then by
induction (10.2), QL has a long FL-free ux-path PL of length at least 2n−1 − 2|FL|− 1,
QR has a long FR-free xRv-path PR of length at least 2n−1 − 2|FR| − 2. Hence, their
concatenation by the edge xxR is the requested long F -free uv-path P in Qn since

|P | = |PL| + |PR| + 1 ≥ 2n−1 − 2|FL| − 1 + 2n−1 − 2|FR| − 2 + 1 = 2n − 2|F | − 2.

Let A be the set of 2n−2 vertices x in QL with the opposite parity to the parity of
u. We count for how many vertices x from A at least one of the following conditions
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fails: x /∈ FL, xR /∈ FR∪{v}, and |FL(x)|, |FR(xR)| ≤ 3. First, we find an upper bound
on the number of vertices from A such that x ∈ FL or |FL(x)| ≥ 4.

Every vertex of FL \ A has n − 1 neighbors in A, so there are at most n−1
4
|FL \ A|

vertices x of A such that |FL(x)| ≥ 4. Furthermore, we have |FL ∩ A| vertices in A
such that x ∈ FL. Thus, the number of vertices x of A such that x ∈ FL or |FL(x)| ≥ 4
is at most

n − 1

4
|FL \ A| + |FL ∩ A| ≤

n − 1

4
|FL|

since n ≥ 6.
Similarly, the number of vertices x of A such that xR ∈ FR or |FR(xR)| ≥ 4 is at

most n−1
4
|FR|. Finally, at most one vertex x of A has xR = v. Altogether, we have at

most n−1
4
|F | + 1 ≤ n−1

4
z(n) + 1 vertices x in A such that x /∈ FL, xR /∈ FR ∪ {v}, and

|FL(x)|, |FR(xR)| ≤ 3, which is less than |A| = 2n−2 for n ≥ 6. Therefore, the desired
vertex x exists.

Case 2 : If u, v are in the same subcube, say u, v ∈ V (QL), then by induction (10.2),
there exists a long FL-free uv-path PL in QL. Our aim is to find an edge xy of PL

such that xR, yR /∈ FR and |FR(xR)|, |FR(yR)| ≤ 3. If there is such edge xy, then by
induction, QR contains a long FR-free xRyR-path PR. By replacing the edge xy in PL

with the path (x, PR, y), we obtain the requested long F -free uv-path P in Qn since

|P | = |PL| + |PR| + 1 ≥ 2n−1 − 2|FL| − 2 + 2n−1 − 2|FR| − 1 + 1 = 2n − 2|F | − 2.

The path PL has at least 2n−1 − 2|FL| − 2 edges. Every vertex z in QR such that
z ∈ FR or |FR(z)| ≥ 4 can block at most two edges xy of PL. We find an upper bound
on the number of such vertices z.

By Proposition 10.1, there are α(FR) ≤ min
{

n−1
4
|FR|,

(

|FR|
2

)

/3
}

vertices z in QR

such that |FR(z)| ≥ 4. Hence, the number of edges xy of PL such that xR, yR /∈ FR

and |FR(xR)|, |FR(yR)| ≤ 3 is at least

|PL| − 2(|FR| + α(FR)) ≥ 2n−1 − 2|F | − 2α(FR) − 2 ≥
{

2n−1 − 2z(n) − 2
(

z(n−1)
2

)

/3 − 2

2n−1 − 2z(n) − n−1
2

z(n − 1) − 2,

which is positive for n = 6 in the first case, and for n ≥ 7 in the latter one. Therefore,
the desired edge xy exists.

It remains to prove the second part of the statement. Assume that |F 1
L| ≥ n − 2.

Since the vertex 0 has n − 1 neighbors in QL, at most one of them is FL-free. Recall
that each endvertex of the path PL has at most 3 neighbors in FL and n ≥ 6. Hence,
the path PL does not contain the vertex 0, and therefore also 0 /∈ P .

11.2 Potentials

In the second part of the proof of Theorem 6.5 we assume that (10.3) fails, i.e. (10.4)
holds.

By substituting z(n) =
⌊

n2+n−4
4

⌋

and k(n) = z(n) − z(n − 1) − 1 into Proposi-

tion 10.4 we immediatelly obtain the following table of values of the potential φ(F )
for n = 4m + (n mod 4) where m = ⌊m/4⌋. Note that k(n) ≤

⌊

n−1
2

⌋

in the all four
cases.
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n z(n) k(n) φ(F )

4m 4m2 + m − 1 2m − 1 4 − 2m − (n − 2)(z(n) − |F |)
4m + 1 4m2 + 3m − 1 2m − 1 4 − 4m − (n − 2)(z(n) − |F |)
4m + 2 4m2 + 5m 2m 4 − 2m − (n − 2)(z(n) − |F |)
4m + 3 4m2 + 7m + 2 2m + 1 4 − (n − 2)(z(n) − |F |)

Lemma 11.2. If |Fi:L| > z(n − 1) for every dimension i ∈ [n], then |F | = z(n).
Moreover, φ(F ) = 2 for n = 6 and φ(F ) ≤ 4 for n ≥ 7.

Proof. Since φ(F ) ≥ 0 and n ≥ 6, we have (n− 2)(z(n)− |F |) = 0 in the above table,
so |F | = z(n). The above table also implies the second part of this statement.

In the rest of the proof we proceed by contradiction, so let us suppose that F is a
set of at most z(n) vertices of Qn and u, v are distinct vertices with |F (u)|, |F (v)| ≤ 3
such that

Qn does not contain a long F -free uv-path. (11.1)

Recall that Lemma 11.1 implies that the assumption (10.3) fails. In the next lemma
we consider the configurations when faulty vertex 0 has at most two F -free neighbors
in Qn.

Lemma 11.3. 0 /∈ F or |F 1| ≤ n − 2.

Proof. For a contradiction, suppose 0 ∈ F and |F 1| ≥ n − 1. Since n ≥ 6 and
φdim(F ) ≤ 4 by Lemma 11.2, there exists i ∈ [n] such that |Fi:L| = z(n − 1) + 1. It
follows that (10.3) holds for the set F ′ = F \{0} as 0 ∈ Fi:L. Thus, there exists a long
F ′-free uv-path P in Qn by Lemma 11.1. Since |F 1

i:L| ≥ n − 2, Lemma 11.1 implies
that the path P does not contain the vertex 0. Therefore, P is also a long F -free
uv-path contrary to (11.1).

Corollary 11.4. φ≥3(F ) ≤ 2 for n ≥ 7, and φ≥3(F ) = 0 for n = 6.

Proof. Lemma 11.3 implies that φ0(F )+φ1(F ) ≥ 2. The rest follows from Lemma 11.2.

The following corollary shows that we can use Theorem 6.2 to find a long Fi:L-free
cycle in Qi:L for every dimension i ∈ [n].

Corollary 11.5. |Fi:L| ≤
(

n−1
2

)

− 2 for every i ∈ [n].

Proof. For a contradiction, suppose |Fi:L| >
(

n−1
2

)

− 2 for some i ∈ [n]. Since |Fi:L| ≤

|F | = z(n) =
⌊

n2+n−4
4

⌋

and n ≥ 6, the only possible values are n = 6 and |Fi:L| =

z(6) = 9. Thus |Fi:R| = 0, and consequently, φdim(F ) ≥ 2. But this contradicts
φ(F ) = 2 from Lemma 11.2 and φ0(F ) + φ1(F ) ≥ 2 from Lemma 11.3.

Lemma 11.6. If φ≥3(F ) ≥ 2 or n = 6, then |F 1| = n.

Proof. If φ≥3(F ) ≥ 2 or n = 6, then by Lemma 11.2,

φ0(F ) + φ1(F ) + φdim(F ) ≤ 2. (11.2)

Thus, if 0 /∈ F , then |F 1| = n by the definition of potentials φ0(F ) and φ1(F ).
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Now suppose that 0 ∈ F . Consequently, |F 1| = n − 2 by Lemma 11.3 and (11.2).
Let i ∈ [n] be such that ei /∈ F 1. Since φdim(F ) = 0 by (11.2), we have |Fi:L| =
z(n− 1) + 1. It follows that (10.3) holds for the set F ′ = F \ {0}. Hence, there exists
a long F ′-free uv-path P in Qn by Lemma 11.1. Moreover, since |F 1

i:L| = n − 2, the
path P does not contain the vertex 0 by the second part of Lemma 11.1. Therefore,
P is also a long F -free uv-path, which is contrary to (11.1).

In the next lemma we consider the configurations when u or v is 0 or there exists
a dimension i ∈ [n] such that u, v ∈ V (Qi:R).

Lemma 11.7. u, v 6= 0 and for every i ∈ [n] it holds that ui = 0 or vi = 0.

Proof. Without lost of generality, suppose for a contradiction that u = 0. Then
φ0(F ) + φ1(F ) ≥ n − 1 by the definition of potentials φ0(F ) and φ1(F ) since |F 1| =
|F (u)| ≤ 3, which contradicts Lemma 11.2. Thus, the first part holds.

For the second part, suppose that ui = vi = 1 for some i ∈ [n], so u, v ∈ V (Qi:R).
Since |Fi:L| ≤

(

n−1
2

)

− 2 by Corollary 11.5, there is a long Fi:L-free cycle CL in Qi:L

by induction (10.2). Let ab be an edge of CL such that aR, bR /∈ Fi:R and {aR, bR} 6=
{u, v}, and put A = {aR, bR}, B = {u, v}. Note that such edge ab exists since
|CL| ≥ 2n−1 − 2|Fi:L|, every vertex of Fi:R ∪ {u, v} blocks at most 2 edges of CL, and
2n−1 − 2|F | − 4 ≥ 1 for n ≥ 6. Since |Fi:R| ≤ k(n) ≤

⌊

n−1
2

⌋

≤ n − 3, by Theorem 6.6
there is a long Fi:R-free AB-routing P1, P2 in Qi:R. After interconnecting the path
CL − {ab} and P1, P2 with the edges aaR, bbR we obtain an uv-path in Qn − F of
length

|CL| + |P1| + |P2| + 1 ≥ 2n−1 − 2|Fi:L| + 2n−1 − 2|Fi:R| − 3 + 1 = 2n − 2|F | − 2,

which contradicts with (11.1).

Next, we describe a construction based on long Fi:L-free cycles in Qi:L. Without
loss of generality, we assume that

if |u| = 1 or |v| = 1, then |u| = 1; (11.3.1)

if |u|, |v| ≥ 2 and, |u| ≥ 3 or |v| ≥ 3, then |u| ≥ 3; (11.3.2)

if |u| = |v| = 2, then |F 1 ∩ N(u)| ≥ |F 1 ∩ N(v)|; (11.3.3)

otherwise, we switch the roles of u and v. The last condition says that the vertex u
has at least the same number of faulty neighbors in the first level as the vertex v.

By Lemma 11.7, there exists a dimension i ∈ [n] such that ui = 0 and vi = 1, so
u ∈ V (Qi:L) and v ∈ V (Qi:R). Since |Fi:L| ≤

(

n−1
2

)

− 2 by Corollary 11.5, there is an
Fi:L-free cycle CL in Qi:L by induction (10.2). For the rest of this section, this splitting
of Qn into Qi:L and Qi:R, and the cycle CL are fixed. For ease of notation, we omit
the index i in the rest of this section.

For a vertex z ∈ CL let c(z), a(z), z, b(z), d(z) be a subpath of CL, and let M(z) =
{a(z), b(z), c(z), d(z)}. For example, see the set M(u) on Figure 11.1(a). We say that
a vertex x of QL is blocked if xR ∈ FR ∪ {v}. Furthermore, we say that M(z) is
blocked if every vertex of M(z) is blocked. The following proposition gives a sufficient
condition which guarantees that the vertex x cannot be blocked by the vertex v.

Proposition 11.8. For every vertex x of QL, if |x| ≥ d(x, u), then xR 6= v.
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Figure 11.1: The construction in Lemma 11.9.

Proof. Recall that i ∈ [n] is the fixed splitting dimension of Qn into QL and QR, so
ui = xi = 0 and vi = 1. If |x| ≥ d(x, u), then there exists j ∈ [n] \ {i} such that
uj = xj = 1 since u 6= 0 by Lemma 11.7. Furthermore, vj = 0 by Lemma 11.7. Hence
d(x, v) ≥ 2.

The next construction gives us many blocked vertices. For a vertex x ∈ V (QL)\FL

and the cycle CL let S(x) denote the following statement:

S(x) :=

{

M(x) is blocked if x ∈ CL,

x is blocked if x /∈ CL.

Lemma 11.9. Let CL be a long FL-free cycle in QL, u ∈ V (QL), and v ∈ V (QR).
Then S(u) holds. Moreover, if u /∈ CL, then S(z) holds also for every neighbor z of u
in QL − FL.

Proof. Case 1: u ∈ CL.
First, suppose that a(u) or b(u) is not blocked, say a(u)R /∈ FR ∪ {v}. See Fig-
ure 11.1(a) for an illustration. Then QR contains a long FR-free a(u)Rv-path PR by
Corollary 6.4 since |FR| ≤ k(n) ≤

⌊

n−1
2

⌋

. By connecting PR and the path CL−{ua(u)}
with the edge a(u)a(u)R we obtain an uv-path in Qn − F of length

|CL| + |PR| ≥ 2n−1 − 2|FL| + 2n−1 − 2|FR| − 2 = 2n − 2|F | − 2,

which is a contradiction with (11.1).
Second, suppose that c(u) or d(u) is not blocked, say c(u)R /∈ FR ∪ {v}; see

Figure 11.1(b). Since a(u), b(u) are blocked, it follows that FR ∪ {c(u)R, v} is not
monopartite. Thus, by Corollary 6.7 there is an c(u)Rv-path PR in QR −FR of length
at least 2n−1 − 2|FR| − 1. By connecting PR and the path CL \ {ua(u), a(u)c(u)} with
the edge c(u)c(u)R we obtain an uv-path in Qn − F of length

|CL| + |PR| − 1 ≥ 2n−1 − 2|FL| + 2n−1 − 2|FR| − 2 = 2n − 2|F | − 2,

which is a contradiction with (11.1).

Case 2: u /∈ CL. Next, suppose that the vertex u is not blocked. Then, we
choose an edge xy on CL such that xR, yR /∈ FR. Note that such edge xy exists since
|CL| ≥ 2n−1−2|FL|, every vertex of FR blocks at most 2 edges of CL, and 2n−1−2|F | ≥ 1
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for n ≥ 6. See Figure 11.1(c) for an illustration. For sets A = {xR, yR}, B = {uR, v}
we have that A 6= B and A ∪ B is not monopartite. Hence, by Theorem 6.6 there is
a long FR-free AB-routing P1, P2 in QR. By connecting u, the path CL − {xy}, and
P1, P2 with the edges xxR, yyR, uuR, we obtain an uv-path in Qn − F of length

|CL| + |P1| + |P2| + 2 ≥ 2n−1 − 2|FL| + 2n−1 − 2|FR| − 1 = 2n − 2|F | − 1,

which is contradiction with (11.1). Therefore, the statement S(u) is established.
Finally, suppose that S(z) does not hold for some neighbor z ∈ V (QL) \ FL of u.

Then, by the same constructions as above, there is a long F -free zv-path P in Qn.
Note that u /∈ P . By prolonging P with the edge uz we obtain a long F -free uv-path
in Qn, contrary to (11.1).

In the next two lemmas we consider the configurations when the weight of the
vertex u or v is not 2.

Lemma 11.10. |u|, |v| ≥ 2.

Proof. Recall that |u|, |v| ≥ 1 by Lemma 11.7. Suppose that |u| = 1 or |v| = 1,
so |u| = 1 by the assumption (11.3.1). It follows that |F 1| ≤ n − 1, so n ≥ 7 by
Lemma 11.6. First, we assume that u ∈ CL. Then M(u) is blocked by Lemma 11.9.
Clearly, at least one of a(u) and b(u) has weight 2, say a(u), and b(u) has weight 0
or 2. If |b(u)| = 2, then a(u)R, b(u)R ∈ FR by Proposition 11.8 and consequently,
φ≥3(F ) ≥ 2 contrary to Lemma 11.6. Otherwise |b(u)| = 0 and consequently, 0 /∈ F ,
|F 1| ≤ n − 2, and φ≥3(F ) ≥ 1 since a(u)R ∈ FR by Proposition 11.8. Hence
φ0(F ) + φ1(F ) + φ≥3(F ) ≥ 5, which contradicts Lemma 11.2.

Now, we have u /∈ CL. If u has a neighbor z on CL with |z| = 2, then M(z) is
blocked by Lemma 11.9. Note that a(z) or b(z) belong to the third level, say |a(z)| = 3,
since z has exactly two neighbors in the first level and one of them is u /∈ CL. Hence, we
have a(z)R ∈ FR by Proposition 11.8 and consequently, φ≥3(F ) ≥ 2, which contradicts
Lemma 11.6.

Otherwise, no neighbor z of u in QL − FL with |z| = 2 belongs to CL. Since
|F (u)| ≤ 3, the vertex u has at least n − 5 neighbors z in QL − FL with |z| = 2. By
Lemma 11.9, they are all blocked, but by Proposition 11.8, they are not blocked by
the vertex v. Hence, φ≥3(F ) ≥ n − 5 ≥ 2 which contradicts Lemma 11.6.

Lemma 11.11. |u|, |v| ≤ 2.

Proof. Suppose that |u| ≥ 3 or |v| ≥ 3, so |u| ≥ 3 by the assumption (11.3.2). First,
we consider the case when u ∈ CL. Then M(u) is blocked by Lemma 11.9. Since a(u)
and b(u) belong to level at least 2, we have a(u)R, b(u)R ∈ FR by Proposition 11.8,
so we obtain that φ≥3(F ) ≥ 2. Thus, |F 1| = n by Lemma 11.6. Hence, the vertices
c(u) and d(u) have weight at least 2, and they are not blocked by the vertex v by
Proposition 11.8. Consequently φ≥3(F ) ≥ 4, which contradicts Corollary 11.4.

Now, we have u /∈ CL, so the vertex u is blocked by Lemma 11.9. Since uR ∈ FR

by Proposition 11.8, we have φ≥3(F ) ≥ 2 and consequently, |F 1| = n by Lemma 11.6.
Furthermore, for an arbitrary neighbor z ∈ V (QL)\FL of u we obtain from Lemma 11.9
that z is blocked if z /∈ CL, or a(z) is blocked if z ∈ CL. In both cases have another
blocked vertex at distance at most 2 from u and in level at least 2, so φ≥3(F ) ≥ 3 by
Proposition 11.8, which contradicts Corollary 11.4.
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By the previous two lemmas we have |u| = |v| = 2. Let u1, u2 and v1, v2 be the
neighbors of u and v of weight 1, respectively. Note that from Lemma 11.7 it follows
that these four vertices are distinct.

Lemma 11.12. u1 ∈ F or u2 ∈ F .

Proof. Suppose that u1, u2 /∈ F . From the assumption (11.3.3) it follows that also
v1, v2 /∈ F . Thus, φ1(F ) ≥ 4. If u ∈ CL, then M(u) is blocked by Lemma 11.9, and
c(u) or d(u) is in level at least 2, say |c(u)| ≥ 2, since they have the same parity as
u. By Proposition 11.8 we have c(u)R ∈ FR and consequently, φ≥3(F ) ≥ 1. Hence, we
obtain that φ1(F ) + φ≥3(F ) ≥ 5, a contradiction with Lemma 11.2.

If u /∈ CL, the vertex u is blocked by Lemma 11.9. By Proposition 11.8 we
have uR ∈ FR and consequently, φ≥3(F ) ≥ 1. Similarly as above, we obtain that
φ1(F ) + φ≥3(F ) ≥ 5, a contradiction with Lemma 11.2.

The end of the proof of Theorem 6.5. If u ∈ CL, then M(u) is blocked by Lemma 11.9.
From Lemma 11.12 it follows that a(u) or b(u) is in the third level, say |a(u)| = 3.
Furthermore, |c(u)| ≥ 2. Since a(u)R, c(u)R ∈ FR by Proposition 11.8, we have
φ≥3(F ) ≥ 3, which contradicts Corollary 11.4.

Finally, if u /∈ CL, then u is blocked by Lemma 11.9. Let z ∈ V (QL) \ FL be an
arbitrary neighbor of u with |z| = 3. Then by Lemma 11.9, z is blocked, or the vertices
a(z) and b(z) of weight at least 2 are blocked. By Proposition 11.8, uR, zR ∈ FR in
the first case, and uR, a(z)R, b(z)R ∈ FR in the latter case. Altogether, we obtain that
φ≥3(F ) ≥ 3, which is a final contradiction with Corollary 11.4.

Therefore, we conclude that the contradicted assumption (11.1) is false, i.e. the
statement of Theorem 6.5 holds.
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Chapter 12

Long cycles in hypercubes with

optimal number of faults

In this chapter we prove the main Theorem 6.2 which says that for every set of faulty
vertices F of Qn of size at most

(

n
2

)

− 2 there exists a cycle in Qn − F of length at
least 2n − 2|F |, where n ≥ 4. Such cycle is called a long F -free cycle.

Fu [45] proved that there exists a long F -free cycle if |F | ≤ 2n − 4, where n ≥ 3,
which implies that Theorem 6.2 holds for n = 4. Theorem 10.3 implies the base of
induction of Theorem 6.2 for n = 5.

In the induction step of the proof of Theorem 6.2 for n, we assume that both
Theorems 6.2 and 6.5 hold for n − 1; see (10.2). Let us consider a fixed set F of
at most

(

n
2

)

− 2 faulty vertices in Qn, where n ≥ 6. Furthermore, we assume that
|Fi:L| ≥ |Fi:R| for every dimension i ∈ [n]; see (10.1).

12.1 Induction-friendly split

In the first part of the proof of Theorem 6.2 we assume that there exists a dimension i ∈
[n] such that |Fi:L|, |Fi:R| ≤

(

n−1
2

)

−2; see (10.3). In this case we apply induction (10.2)
in both Qi:L and Qi:R to construct a long F -free cycle Qn. Moreover, the following
lemma also considers other conditions in which we can simply find a long F -free cycle
in the same way. Those conditions are useful later.

Lemma 12.1. If there exists a dimension i ∈ [n] such that at least one of the following
conditions holds, then there exists a long F -free cycle in Qn.

1. There exists a long Fi:L-free cycle CL in Qi:L;

2. |Fi:L| ≤
(

n−1
2

)

− 2;

3. |Fi:L| =
(

n−1
2

)

− 1 and there exists x ∈ Fi:L having at most one Fi:L-free neighbor
in Qi:L.

Proof. Our first aim is to find a long Fi:L-free cycle CL in Qi:L. If the condition (1) is
satisfied, then the cycle is given. If the condition (2) is satisfied, then the cycle exists
by induction (10.2).

Let us assume that the condition (3) is satisfied. Let F ′ = Fi:L \ {x}. By induc-
tion (10.2), there exists a long F ′-free cycle CL in Qi:L. Since no cycle of Qi:L − F ′

contains x, the cycle CL is also Fi:L-free.

97



98 CHAPTER 12. CYCLES AND OPTIMAL NUMBER OF FAULTS

Our next aim is to find an edge xy of CL such that

xR, yR 6∈ Fi:R and |Fi:R(xR)|, |Fi:R(yR)| ≤ 3. (12.1)

If there exists an edge xy satisfying (12.1), then by induction (10.2), there is a long

Fi:R-free xRyR-path PR in Qi:R since |Fi:R| ≤
⌊

|F |
2

⌋

≤
⌊

(n−1)2+(n−1)−4
4

⌋

. We replace

the edge xy in CL by a path (x, xR, PR, yR, y) and we obtain an F -free cycle in Qn of
length at least

(2n−1 − 2|Fi:L| − 1) + 2 + (2n−1 − 2|Fi:R| − 1) = 2n − 2|F |.

It remains to show that there exists an edge xy satisfying (12.1). Recall that
α(Fi:R) is the number of vertices z in Qi:R with |Fi:R(z)| ≥ 4. There are at most
|Fi:R|+ α(Fi:R) vertices that cannot be used as end-vertices of a long Fi:R-free path in
Qi:R. Since the length of CL is at least 2n−1−2|Fi:L|, the number of edges xy satisfying
(12.1) is at least

2n−1 − 2|Fi:L| − 2 (|Fi:R| + α(Fi:R)) ≥ 2n−1 − 2|F | − 2α(Fi:R) ≥ 1.

The last inequality follows from |Fi:R| ≤ |F |/2 and from

• Proposition 10.2 for n = 6;

• the inequality α(Fi:R) ≤
(

|Fi:R|
2

)

/3 by Proposition 10.1 for n = 7;

• the inequality α(Fi:R) ≤ (n−1)|Fi:R|
4

by Proposition 10.1 for n ≥ 8.

12.2 Potentials

In the second part of the proof of Theorem 6.2 we assume that (10.3) fails, i.e. (10.4)
holds.

Let us recall that we use the following potentials, where now we have z(n) =
(

n
2

)

−2.

φ(F ) = φ0(F ) + φ1(F ) + φ≥3(F ) + φdim(F ),

φ0(F ) = 2 − 2|F 0|, φ1(F ) = n − |F 1|,

φ≥3(F ) =
∑

x∈F≥3

(|x| − 2), φdim(F ) =
∑

i∈[n]

(|Fi:L| − z(n − 1) − 1).

By substituting z(n) =
(

n
2

)

− 2 and k(n) = z(n) − z(n − 1) − 1 = n − 2 into
Proposition 10.4, the next lemma follows immediately.

Lemma 12.2. Let F be a set of faulty vertices of Qn of size at most
(

n
2

)

− 2. If

|Fi:L| ≥
(

n−1
2

)

− 1 for every dimension i ∈ [n], then |F | ≥
(

n
2

)

− 3 and

φ(F ) =

{

6 if |F | =
(

n
2

)

− 2

8 − n if |F | =
(

n
2

)

− 3.
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In the rest of this section we proceed by contradiction. Therefore, we consider a
set of vertices F of Qn of size at most

(

n
2

)

− 2 such that

there is no long F -free cycle in Qn. (12.2)

From the assumption (2) of Lemma 12.1 it follows that |Fi:L| ≥
(

n−1
2

)

− 1 and
|Fi:R| ≤ n − 2 for every dimension i ∈ [n]; see (10.4).

It follows from Lemma 12.2 that there cannot be too many vertices in F≥3 and
they cannot be too far from 0. Now, we present a construction which gets a faulty
vertex a and gives us another faulty vertex bR in the level |a| or |a| + 2.

Lemma 12.3. Let i ∈ [n] be a dimenstion and let a be a given vertex of F k
i:L. Let one

of the two following conditions hold.

1. |Fi:L| =
(

n−1
2

)

− 1,

2. |Fi:L| =
(

n−1
2

)

, |F 1
i:L \ {a}| ≥ n − 2, 0 ∈ F and a 6= 0.

Then, there exists b ∈ V (Qi:L) ∩ N(a) such that bR ∈ Fi:R. Hence, |bR| ∈ {k, k + 2}.
Moreover, if at least one of the three following conditions holds, then |bR| = k + 2.

3. Every vertex x ∈ N−(a) is faulty,

4. for every x ∈ N−(a) the vertex xR is Fi:R-free,

5. |F 1
i:L| = n − 1 and k = 1.

Proof. Let

F ′ =

{

Fi:L \ {a} if (1) holds,

Fi:L \ {a,0} if (2) holds.

By induction (10.2), there exists a long F ′-free cycle CL in Qi:L. If (2) holds, then
0 /∈ CL because 0 has at most one F ′-free neighbor in Qi:L. Since there is no long
Fi:L-free cycle in Qi:L by the assumption (1) of Lemma 12.1 and by the contradicted
assumption (12.2), the vertex a is contained in CL.

Let b and c be two neighbors of a on CL. If bR, cR /∈ Fi:R, then by Theorem 6.3
there exists a long Fi:R-free bRcR-path PR in Qi:R since |Fi:R| ≤ n − 2 and bR, cR are
not adjacent. Hence, the length of an F -free cycle obtained from CL by removing
edges ba, ac and inserting a path (b, bR, PR, cR, c) is at least

(2n−1 − 2|F ′|) − 2 + 2 + (2n−1 − 2|Fi:R| − 2) ≥ 2n − 2|F |.

Therefore, at least one of bR and cR belongs into Fi:R, say bR ∈ Fi:R, which implies the
first part of the statement.

Now, we prove the second part. Note that

|bR| =

{

k if b ∈ N−(a),

k + 2 if b ∈ N+(a).

If b ∈ N−(a), then neither the condition (3) nor (4) is satisfied since b /∈ Fi:L and
bR ∈ Fi:R. If (5) holds, then b ∈ N+(a); otherwise, the vertex a is the only F ′-free
neighbor of b = 0 in Qi:L, and there is no cycle in Qi:L−F ′ containing 0, but b ∈ CL.
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This lemma is useful to find a faulty vertex in F≥3 which increases the potential
φ≥3(F ). We often combine this lemma with other observations to show that the
potential φ(F ) is greater than the value given by Lemma 12.2 which provides us
with a contradiction. One such example follows, compare it with Lemma 11.3 in the
previous section.

For practical purposes, we say that we use Lemma 12.3 with the assumption (1)
on a vertex x ∈ Fi:L to obtain a vertex y ∈ V (Qi:L). This only means that Qn is
split by the dimension i, and we apply Lemma 12.3 for the given vertex a = x such
that the assumption (1) is satisfied. Then, y is the vertex b obtained by Lemma 12.3.
Similarly, we say that we use Lemma 12.3 with the assumption (2) and (3) on a vertex
x ∈ Fi:L to obtain a vertex z ∈ Fi:R. This only means that the dimension i and the
vertex a = x satisfy both conditions (2) and (3) and z is the vertex bR ∈ Fi:R in level
|a| + 2 obtained by Lemma 12.3. Note that d(x, z) = 2.

Lemma 12.4. 0 /∈ F or |F 1| ≤ n − 2.

Proof. For a contradiction, let us suppose that 0 ∈ F and |F 1| ≥ n − 1.
If there exists a dimension i such that |Fi:L| =

(

n−1
2

)

−1, then by Lemma 12.1 with
the assumption (3) for x = 0 ∈ F , which has at most one Fi:L-free neighbor in Qi:L,
we obtain a long F -free cycle in Qn which is a contradiction with (12.2).

Now, we assume that there is no dimension i ∈ [n] such that |Fi:L| =
(

n−1
2

)

− 1, so
φdim(F ) ≥ n. This is possible, by Lemma 12.2, only if φdim(F ) = n = 6 = φ(F ) and
hence by the definition of φ(F ) we have that |F 1| = 6, 0 ∈ F and F≥3 = ∅. Note that
in this case |Fi:L| =

(

n−1
2

)

for every dimension i ∈ [n], so we use Lemma 12.3 with the
assumptions (2) and (3) on some vertex a ∈ F 1

i:L to obtain a vertex in F 3
i:R, which is a

contradiction with F≥3 = ∅.

Lemma 12.4 implies that φ0(F ) + φ1(F ) ≥ 2. Hence, φ≥3(F ) + φdim(F ) ≤ 4 by
Lemma 12.2 which implies that

there exists a dimension i ∈ [n] such that |Fi:L| =

(

n − 1

2

)

− 1, (12.3)

since n ≥ 6. Moreover, the definition of φdim(F ) implies for a given vertex x of Qn

that

if φdim(F ) + |x| < n, then ∃i ∈ [n] such that |Fi:L| =

(

n − 1

2

)

− 1 and x ∈ V (Qi:L),

(12.4)
because at least n− φdim(F ) dimensions i ∈ [n] satisfy |Fi:L| =

(

n−1
2

)

− 1, and at most
|x| of those dimensions volatile x ∈ V (Qi:L).

Our proof still proceeds by contradiction (12.2). In the following two lemmas we
prove that φ0(F ) + φ1(F ) ≥ 3. In the first one we consider the case when 0 /∈ F and
|F 1| = n; and in the second one, the case when 0 ∈ F and |F 1| = n − 2.

Lemma 12.5. |F 1| ≤ n − 1.

Proof. For a contradiction we suppose that |F 1| = n. Hence, 0 /∈ F by Lemma 12.4.
We proceeds in three steps. First, we prove that |F 3| ≥ 1. Next, we prove that
|F 4| ≥ 1, which we finally improve to |F 4| ≥ 2. This is a contradiction to Lemma 12.2.

By (12.3) we split Qn by such dimension i ∈ [n] that |Fi:L| =
(

n−1
2

)

− 1. We
use Lemma 12.3 with the assumptions (1) and (5) on some vertex of F 1

i:L to obtain
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|F 3
i:R| ≥ 1. By Lemma 12.2 we know that |F | =

(

n
2

)

− 2 since φ0(F ) + φ≥3(F ) ≥ 3 and
n ≥ 6.

We observe that F 2
i:L 6= ∅; otherwise

∣

∣F≥3
i:L

∣

∣ = |Fi:L|−|F 1
i:L| =

(

n−1
2

)

−1−(n−1) ≥ 4

which implies φ≥3(F ) ≥
∣

∣F≥3
i:L

∣

∣ + |F 3
i:R| ≥ 5, contrary to Lemma 12.2. Hence, we use

Lemma 12.3 with the assumptions (1) and (3) on some vertex of F 2
i:L to obtain a vertex

x ∈ F 4
i:R.

Now, we know that F 3, F 4 6= ∅ and 0 /∈ F which implies φdim(F ) ≤ 1 by Lemma
12.2. Therefore, there exists a dimension j such that |Fj:L| =

(

n−1
2

)

− 1 and x ∈
F 4

j:L by (12.4). We use Lemma 12.3 with the assumption (1) on the vertex x to

obtain a vertex in F≥4
j:R. Hence,

∣

∣F≥4
∣

∣ ≥ 2 and |F 3| ≥ 1, so φ≥3(F ) ≥ 5. It implies
φ(F ) ≥ φ0(F ) + φ≥3(F ) ≥ 7, which is a contradiction with Lemma 12.2.

Lemma 12.6. If 0 ∈ F , then |F 1| ≤ n − 3.

Proof. For a contradiction we suppose that 0 ∈ F and |F 1| = n − 2. First, we prove
that φdim(F ) ≥ 2. Next, we prove that there exist two vertices x and y in F 3

d:R for
some d ∈ [n]. Finally, we show that there exist 4 distinct dimensions d1, d2, d3, d4 ∈ [n],
satisfying x ∈ F 3

dl:R
for l ∈ [4] which implies that |x| ≥ 4, contrary to x ∈ F 3.

Let ei and ej be the (only) two F -free vertices in the first level. We observe that
|Fi:L|, |Fj:L| ≥

(

n−1
2

)

; otherwise we use Lemma 12.1 with the assumption (3) on the
vertex 0 to obtain a contradiction with (12.2). Therefore, φ1(F ) + φdim(F ) ≥ 4; and
consequently, φ≥3(F ) ≤ 2 by Lemma 12.2.

We split Qn by a dimension d ∈ [n] so that |Fd:L| =
(

n−1
2

)

− 1 by (12.3). Let
a1, a2, a3 be arbitrary distinct vertices of F 1

d:L. Note that such vertices exist since
|F 1

d:L| = n − 3 and n ≥ 6. We use Lemma 12.3 with the assumptions (1) and (3) for
every vertex am to obtain bm ∈ V (Qd:L) such that bm

R ∈ F 3
d:R, where m ∈ [3]. Note

that |{b1
R, b2

R, b3
R}| ≤ 2 since φ≥3(F ) ≤ 2. On the other hand, if b1

R = b2
R = b3

R, then
b1 = b2 = b3; so b1 ∈ N+(a1)∩N+(a2)∩N+(a3), but |N−(b1)| = 2. Hence, b1

R, b2
R and b3

R

are two different vertices; say xd and yd. Furthermore, |F 3| = φ≥3(F ) = φdim(F ) = 2.
Since φdim(F ) = 2 and n ≥ 6, there are at least 4 distinct dimensions dl ∈ [n],

l ∈ [4], such that |Fdl:L| =
(

n−1
2

)

− 1. For every dimension dl we obtain vertices
xdl

, ydl
∈ F 3

dl:R
in the same way as described in the previous paragraph. Since |F 3| = 2,

the pairs of vertices xdl
and ydl

are the same for all l ∈ [4]; say xd1 = xd2 = xd3 = xd4 .
But xd1 ∈ F 3

dl:R
for all l ∈ [4] implies |xd1 | ≥ 4 which contradicts xd1 ∈ F 3.

Note that from Lemmas 12.5 and 12.6 it follows that φ1(F )+φ0(F ) ≥ 3. Therefore,
Lemma 12.2 implies the following statement since n ≥ 6.

Corollary 12.7. φ≥3(F ) + φdim(F ) ≤ 3 and |F | =
(

n
2

)

− 2.

Consequently, from (12.4) we obtain that for every vertex a ∈ F

there exists a dimension i ∈ [n] such that a ∈ Fi:L and |Fi:L| =

(

n − 1

2

)

− 1. (12.5)

Let u ∨ v denote the vertex w = (w1, w2, . . . , wn) with wi = ui ∨ vi for all i ∈ [n],
where ∨ is the logical disjunction. Note that w ∈ Qi:L if and only if u, v ∈ Qi:L for
every dimension i ∈ [n].

Lemma 12.8. F≥3 = ∅.
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Proof. For a contradiction, let us suppose that there exists a vertex a ∈ F≥3. We
proceed in 4 steps. First, we prove that F≥4 = ∅. Each of next three steps splits
Qn and uses Lemma 12.3 to obtain a new vertex in F 3, which implies that |F 3| ≥ 4,
contrary to Corollary 12.7. Note that those three splits use different dimensions.

If |a| ≥ 4, then we split Qn so that a ∈ Fi:L and |Fi:L| =
(

n−1
2

)

− 1 by (12.5). Then
we use Lemma 12.3 with the assumption (1) on the vertex a to obtain another faulty
vertex in level at least 4, which is a contradiction with Corollary 12.7. Therefore, we
assume that F≥4 = ∅ and a ∈ F 3.

We split Qn so that a ∈ V (Qi:L) and |Fi:L| =
(

n−1
2

)

− 1 by (12.5). By Lemma 12.3
with the assumption (1), there exists b ∈ Fi:R such that |b| = 3 and d(a, b) = 2. Hence,
φ≥3(F ) ≥ 2.

Let x = a ∨ b. Since d(a, b) = 2 and |a| = |b| = 3, we have |x| = 4. Since
φdim(F ) ≤ 1 by Corollary 12.7, there exists a dimension j such that x ∈ V (Qj:L)
and |Fj:L| =

(

n−1
2

)

− 1 by (12.4). Hence a, b ∈ Fj:L. We use Lemma 12.3 with the
assumption (1) twice on both a and b to obtain c, d ∈ F 3

j:R such d(a, c) = d(b, d) = 2.
Since φ≥3(F ) ≤ 3 by Corollary 12.7, we have c = d. Hence, |a| = |b| = |c| = 3 and
d(a, b) = d(a, c) = d(b, c) = 2.

Let y = a ∨ b ∨ c. Similarly, we have |y| ≤ 5 and φdim(F ) = 0, so there exists a
dimension d such that y ∈ V (Qd:L) and |Fd:L| =

(

n−1
2

)

−1 by (12.4). Using Lemma 12.3
with the assumption (1) on the vertex a we obtain a faulty vertex in F 3

d:R; so |F 3| ≥ 4,
which is a contradiction with Corollary 12.7.

Lemma 12.9. 0 /∈ F .

Proof. For a contradiction we suppose that 0 ∈ F . Hence, |F 1| ≤ n−3 by Lemma 12.6.
We observe that F 1 = ∅, otherwise we choose x ∈ F 1, we split Qn so that x ∈ Fi:L

and |Fi:L| =
(

n−1
2

)

− 1 by (12.5), and by Lemma 12.3 with the assumptions (1) and
(3) we obtain F≥3 6= ∅, contrary to Lemma 12.8. Hence, φ1(F ) = n which is possible
only if n = 6, |F 1| = 0, |F 2| = 12 and φdim(F ) = 0.

Since φdim(F ) = 0, we have |Fi:R| = k(n) = n − 2 = 4 for every dimension i ∈ [n].
Since |F 1|,

∣

∣F≥3
∣

∣ = ∅, only one vertex of N+(ei) is F -free for every vertex ei of the first
level in Qn. Therefore, for every dimension j there exists exactly one other dimension
k such that ej,k /∈ F , so all dimensions are split into three pairs {j1, k1}, {j2, k2} and
{j3, k3} such that ej1,k1 , ej2,k2 , ej3,k3 /∈ F . This is satisfied up to isomorphism only by
one set of faulty vertices F : the set of all vertices of level 0 or 2 except the vertices e1,2,
e3,4 and e5,6. By Lemma 12.1 with the assumption (1), it suffices to find a long F6:L-free
cycle in Q6:L which is presented on Figure 12.1. Thus, we obtain a contradiction with
(12.2).

Finally, we prove the last simple lemma which leads to a contradiction with (12.2).

Lemma 12.10. For every dimension i ∈ [n], if ei /∈ F , then |Fi:L| ≥
(

n−1
2

)

.

Proof. Let us consider a vertex ei /∈ F such that |Fi:L| =
(

n−1
2

)

− 1. There exists
a vertex x ∈ F 1

i:L, because φ1(F ) ≤ 4 ≤ n − 2 by Lemmas 12.2 and 12.9. We use
Lemma 12.3 with the assumptions (1) and (4) on the vertex x to obtain |F 3| ≥ 1,
which is a contradiction to Lemma 12.8.

The end of the proof of Theorem 6.2. Let us recall that φ0(F ) = 2 by Lemma 12.9,
which implies that φdim(F ) + φ1(F ) ≤ 4 by Lemma 12.2. Lemma 12.10 says that
φdim(F ) ≥ φ1(F ) which implies that |F 1| ≥ n − 2. On the other hand, we know that
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e1,2

e3,4

e5

(0, 0, . . . , 0)

Figure 12.1: Bold points are faulty vertices and bold lines form a long F6:L-free cycle
in Q6:L for Lemma 12.9.

|F 1| ≤ n − 1 by Lemma 12.5. Moreover, |F | =
(

n
2

)

− 2 and every faulty vertex is in
the level 1 or 2 by Lemmas 12.8 and 12.9.

If there exists a vertex a ∈ F 2 such that both vertices in N−(a) are faulty, then we
split Qn so that a ∈ Fi:L and |Fi:L| =

(

n−1
2

)

− 1 by (12.5). Then, we use Lemma 12.3
with the assumptions (1) and (3) to obtain |F 4| ≥ 1, which is a contradiction to
Lemma 12.8. Hence, every vertex of F 2 is above some F -free vertex of level 1.

Lemma 12.10 also implies that there are at most n− 3 faulty vertices above every
F -free vertex in level 1. Since there are at most two F -free vertices in level 1, we have
|F 2| ≤ 2(n−3). This leads to the final contradiction 3n−7 ≥ |F 1|+|F 2| = |F | =

(

n
2

)

−2
since n ≥ 6, which finishes the proof of the main Theorem 6.2.
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