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Is it true that every matching in the n-dimensional hyper-
cube Qn can be extended to a Gray code? More than two
decades have passed since Ruskey and Savage asked this
question and the problem still remains open. A solution is
known only in some special cases, including perfect match-
ings or matchings of linear size. This paper shows that the
answer to the Ruskey-Savage problem is affirmative for ev-
ery matching of size at most n216 +

n
4 . The proof is based on

an inductive construction which extends balanced match-
ings in the completion of the hypercube K (Qn ) by edges of
Qn into a Hamilton cycle of K (Qn ). On the other hand, we
show that for every n ≥ 9 there is a balanced matching in
K (Qn ) of size Θ(2n/

√
n) which cannot be extended in this

way.
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1 | INTRODUCTION

An n-bit cyclic Gray code is a cyclic ordering of all n-bit strings such that consecutive strings differ in exactly one bit. The
applications of Gray codes fall into such diverse areas as signal encoding, image processing, information retrieval or
data compression, and constructions of Gray codes satisfying various additional properties have been widely studied
[14].

It should be noted that in the literature, cyclic Gray codes are sometimes disguised as Hamilton cycles in a special
class of graphs called hypercubes. The n-dimensional hypercube Qn is the graph whose vertex set consists of all n-
bit strings, an edge joining two vertices whenever they differ in exactly one bit. An n-bit cyclic Gray code then
corresponds to a Hamilton cycle of Qn . It is therefore natural to describe properties of Gray codes in graph-theoretic
terms, referring to the class of hypercubes.
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2 Dvořák and Fink

There are several appealing problems related to Gray codes. Probably the most prominent of them was the
notorious Middle Levels Conjecture: despite the attention it has attracted, it took over three decades until Mütze
answered it affirmatively [15]. Another long-standing problem was formulated in 1993 by Ruskey and Savage [16]:
does every matching in a hypercube extend to a cyclic Gray code? The question still remains open, even though partial
results have been obtained in several special cases. There are also solutions to related problems, including necessary
and sufficient conditions for the existence of Gray codes avoiding given matchings [3] or a recent verification of the
Vandenbussche-West conjecture [17] saying that every matching in a hypercube extends to a 2-factor [10].

An affirmative answer to the Ruskey-Savage problem in the case of perfect matchings was provided by the second
author of this paper [8]. Note that this implies a positive solution e.g. for every induced matching, as it may always be
extended to a perfect one [17]. However, it does not settle the problem in general, as hypercubes contain matchings
that are maximal with respect to inclusion but still not perfect [11].

The simplicity of the method of [8] inspired several generalizations [1, 12], but none of them addresses the prob-
lem of imperfect matchings. As far as arbitrary matchings are concerned, a positive solution has been verified for n ≤ 5
by a computer search [22] and besides that, there are only partial results dealing with matchings of linear size [2, 4, 18]:
the most recent result for matchings of size at most 3n − 10 was obtained by Wang and Zhang [19]. Matchings of
quadratic size were studied by the first author of this paper in [5] where they were extended to a long cycle which not
necessarily visits all the vertices. The main result of this paper provides an affirmative answer to the Ruskey-Savage
question for matchings of quadratic size.

Theorem 1.1 Every matching in Qn , n ≥ 2, of size at most n
2

16 +
n
4 can be extended to a cyclic Gray code.

The proof of Theorem 1.1 generalizes the method pioneered in [8] which actually shows that every perfect matching
of the complete graphK (Qn ) built on the vertices ofQn can be extended to aHamilton cycle ofK (Qn ) using only edges
ofQn . Onemay ask whether such a statement can be generalized to an arbitrary matching of K (Qn ). If true, this would
imply a positive solution to the Ruskey-Savage problem. However, it is easy to see that such a generalization does not
hold since a single edge joining two vertices of the same bipartite class of Qn cannot be extended to a Hamilton cycle
of K (Qn ) by edges of Qn . More generally, every matching of K (Qn ) extendable in this way is balanced in the sense
that it is incident with the same number of vertices from both bipartite classes ofQn (Observation 4.1). Unfortunately,
this natural necessary condition is insufficient to guarantee the desired extendability, even for a proper subclass of
balanced matchings in K (Qn ) formed by the matchings in B(Qn ) which denotes the complete bipartite graph on the
vertices of Qn containing all edges of Qn .

Theorem 1.2 For every n ≥ 9 there is a matching of size 2
( n−1
b n−12 c

)
+ 1 = Θ(2n/

√
n) in B(Qn ) which cannot be extended to

a Hamilton cycle of B(Qn ) using edges of Qn .

The paper is organized as follows. The next section introduces concepts and notations, supplemented by an informal
outline of the proof of the main theorem. Section 3 describes basic tools that we use as building blocks for our
construction. Section 4 studies the problem in small dimensions while Section 5 describes the inductive construction
that settles the general case. The text is concluded with Section 6 which summarizes the main results of the paper,
both positive and negative.

2 | PRELIMINARIES

In this section we introduce terminology and notation used throughout the paper. In the rest of the text, n always
denotes a positive integer while [n] stands for the set {1, 2, . . . , n }. Vertex and edge sets of a graph G are denoted by



Dvořák and Fink 3

V (G ) and E (G ), respectively. Given a setV ⊆ V (G ), G [V ] denotes the subgraph ofG induced byV whileG −V stands
for the subgraph G [V (G ) \V ]. IfV = {v }, we simplify the notation by using G − v instead of G − {v }.

2.1 | Paths and cycles

Given a nonnegative integer m , a sequence (x1, x2, . . . , xm+1) of pairwise distinct vertices such that xi and xi+1 are
adjacent for all i ∈ [m] is a path between x1 and xm+1 of lengthm. We denote the vertex set {x1, x2, . . . , xm+1 } of such
a path P byV (P ). Note that the case that m = 0 is allowed, as P is then a path of length 0 consisting of a single vertex.
In the rest of this text we use the following convention: instead of “let Pab be a path between a and b” we only say
“let Pab be a path”, as the endvertices of Pab are specified by the subscripts a and b . Let Pab and Pbc be paths such
that V (Pab ) ∩V (Pbc ) = {b }. Then Pab + Pbc denotes the path between a and c, obtained as a concatenation of Pab
with Pbc (where b is taken only once). Observe that the operation + is associative. A collection {Pi }ki=1 of paths in a
graph G forms a disjoint path cover of G if {V (Pi )}ki=1 partitionsV (G ).

A cycle of length n is a path (x1, x2, . . . , xn ) where x1 is adjacent to xn . The sets of vertices {x1, x2, . . . , xn } and
edges {x1x2, x2x3, . . . , xnx1 } of a cycle C are denoted by V (C ) and E (C ), respectively. A Hamilton cycle (Hamilton
path) of a graph G is a cycle (path) that visits each vertex of G exactly once.

2.2 | Hypercubes

The n-dimensional hypercube Qn is a graph with all n-bit strings as vertices, an edge joining two vertices whenever
they differ in a single bit. The parity χ(v ) of a vertex v = v1v2 · · ·vn and the balance β (S ) of a set S ⊆ V (Qn ) are
defined by χ(v ) := ∏n

i=1(−1)
vi and β (S ) := ∑

v∈S χ(v ), respectively. Set S is called balanced if β (S ) = 0. The weight |v |
of v ∈ V (Qn ) is defined by |v | := | {i | vi = 1} |. We use d(u,v ) to denote the Hamming distance of u,v ∈ V (Qn ), i. e.
d(u,v ) := | {i | ui , vi } |. Vertices u,v of Qn are diametrical if d(u,v ) = n .

Let K (Qn ) denote the complete graph on the set of vertices of Qn . The set dim(uv ) of dimensions of an edge
uv ∈ E (K (Qn )), u = u1 · · ·un , v = v1 · · ·vn , is defined by dim(uv ) := {i ∈ [n] | ui , vi }. For a vertex v ∈ V (Qn )
let v d denote the vertex of Qn such that dim(vv d ) = {d }. The edge vv d is called a short edge of dimension d . Given
a subgraph G of K (Qn ), we say that a set of edges E ⊆ E (G ) is G -extendable if there is a Hamilton cycle C of G such
that E (C ) = E ∪ E ′ where E ′ ⊆ E (Qn ).

We use B(Qn ) to denote the spanning subgraph of K (Qn ) containing only edges uv ∈ E (K (Qn )) such that d(u,v )
is odd. While K (Qn ) is a completion of Qn , B(Qn ) may be viewed as a bipartite completion of Qn .

Given a string v = v1v2 · · ·vn and a set D ⊆ [n], we use vD to denote the string vj1vj2 · · ·vjd where j1, j2, . . . , jd is
an increasing sequence of all elements of D . Given a nonempty set D ⊆ [n] of size d ≥ 1 and a vertex u ∈ V (Qn−d ),
the subgraph of Qn induced by the set {v ∈ V (Qn ) | vD̄ = u } where D̄ := [n] \ D is denoted by QD (u) and called
a subcube of dimension d . Subcubes QD (v ) and QD (v i ) are called adjacent over dimension i ∈ D̄ . GivenV ⊆ V (Qn ) and
a set S of subcubes of Qn , we use

• VD (u) to denoteV ∩V (QD (u)),
• V (S) to denote ⋃

Q∈SV (Q ),
• K (S) to denote K (Qn ) [V (S)].

Note that in further text we consider only sets of subcubes that are pairwise vertex-disjoint.
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2.3 | Matchings

A matching is a set of edges such that no two of them have a vertex in common. A matching M in a graph G is called
a perfect matching of G if every vertex of G is incident with an edge of M . Given a matching M , we use V (M ) to
denote the set of all vertices incident with an edge of M .

LetM be a matching in K (Qn ). M is called balanced ifV (M ) is a balanced subset ofV (Qn ). Given subcubes Q ,Q ′

and a set S of subcubes of Qn ,

• M (Q ) denotes the matching {uv ∈ M | u,v ∈ V (Q )},
• M (S) denotes the matching {uv ∈ M | u,v ∈ V (S)},
• M (Q ,Q ′) denotes the matching {uv ∈ M | u ∈ V (Q ),v ∈ V (Q ′)},
• M (Q , S) denotes the matching {uv ∈ M | u ∈ V (Q ),v ∈ V (S)}.

Observe that removing all edges of some fixed dimension d splits Qn into two (n − 1)-dimensional subcubes Q 0 :=
Q[n]\{d }(0) and Q 1 := Q[n]\{d }(1). We use M i

d
to denote M ∩ E (K (Q i )) for both i ∈ {0, 1} and M 2

d
:= M \ (M 0

d
∪M 1

d
).

Recall that an n-bit cyclic Gray code may be viewed as a Hamilton cycle of Qn . In the rest of this paper we often
resort to this equivalent formulation and speak about Hamilton cycles rather than Gray codes as it allows to use
standard graph-theoretic terminology.

2.4 | Sketch of the proof of Theorem 1.1

Let M be an arbitrary matching in Qn of size at most n216 +
n
4 . If the dimension is sufficiently large, apply Theorem 3.2

due to Wiener [20, 21] to partition Qn into a set of 5-dimensional subcubes such that each of them contains at
most six vertices ofV (M ). Then apply Lemma 5.2 to form a matching M̄ ⊇ M such that the set of vertices ofV (M̄ )
in an arbitrary subcube is balanced while its size remains reasonably small and, moreover, a connectivity condition
is satisfied. Finally, apply Theorem 5.3 to extend M̄ to a Hamilton cycle. The proof of Theorem 5.3 is based on
Lemma 3.3 which is a refinement of a method originally devised to extend perfect matchings to Gray codes [9, 12].

In the case of small dimensions, the extendability of M follows from Corollary 4.6 which is built on our recent
results on disjoint path covers of hypercubes.

3 | TOOLS

Now we are ready to describe the tools that are necessary for our constructions of Hamilton cycles in Sections 4
and 5. First recall several well-known properties of hypercubes.

Proposition 3.1 Let n ≥ 2.

(1) [6, Proposition 3.1] If {Pui vi }mi=1 forms a disjoint path cover ofQn [V ] for someV ⊆ V (Qn ), then
1
2

∑m
i=1(χ(ui )+χ(vi )) =

β (V ).
(2) [13, Proposition 2.3] There is a Hamilton path Puv in Qn for every u,v ∈ V (Qn ) with χ(u) , χ(v ).
(3) [4, Lemma 3.3] There is a disjoint path cover {Puv , Px y } of Qn for every distinct u,v , x , y ∈ V (Qn ) with χ(u) , χ(v )

and χ(x ) , χ(y ).
(4) [7, Corollary 4.9] There is a disjoint path cover {Pui vi }ki=1 of Qn , n ≥ 5, for every k ∈ [n − 1] and distinct {ui ,vi }

k
i=1 ⊆

V (Qn ) with χ(ui ) , χ(vi ) for all i ∈ [k ].
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(5) [8, Theorem] Every perfect matching of K (Qn ) is K (Qn )-extendable.

The following result ofWiener [20, 21] is employed in Section 6 to partition a hypercube into 5-dimensional subcubes.

Theorem 3.2 ([20, Theorem 2.5]) Let S be a set of vertices of Qn of size s ≥ 2n and d = d n2

2s−n−2 e. Then there is a set
D ⊆ [n] such that |D | = d and |SD (u) | ≤ d + 1 for every u ∈ {0, 1}n−d .

The following lemma serves as a cornerstone for our inductive constructions in the next two sections. While in Sec-
tion 4 it is only applied in the special case when |S | = 2, the general formulation is needed in Section 5 (Theorem 5.3).
Note that it refines a method which was originally devised to extend perfect matchings to Gray codes [9, 12].

Q

u2

u3

u4

u1

v2

v3

v4

v1

R

S

T

(a) Matching M (red lines) in K (S), S = {Q , R , S ,T },
S′ = {R , S ,T }, N = {uivi }

4
i=1 .

Q

R

S

T
u2

u3

u4

u1

v2

v3

v4

v1

(b) Matchings P ′ = {v1v4,v2v3 } (blue lines) and M (S′) (red
lines) extended (blue paths) to a Hamilton cycle C ′ of K (S′).

Q

R

S

T
u2

u3

u4
u1

v2

v3

v4

v1

(c) Matchings P ′′ = {u1u2,u3u4 } (green lines) and M (Q )
(red line) extended (green paths) to a Hamilton cycle C ′′ of
K (Q ).

Q

R

S

T
u2

u3

u4

u1

v2

v3

v4

v1

(d) Replacing u1u2 with (u1,v1) + Pv1v2 + (v2,u2) and u3u4
with (u3,v3) + Pv3v4 + (v4,u4) extends C ′′ to a Hamilton
cycle C of K (S).

F IGURE 1 Illustration of the proof of Lemma 3.3. Black and white circles represent vertices of different parities.
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Lemma 3.3 Let S be a set of pairwise vertex-disjoint subcubes of Qn , n ≥ 2, Q ∈ S and M be a matching in K (S). Put
S′ := S \ {Q }, N := M (Q , S′) and let P ′ be a perfect matching of K (S′)[V (N ) ∩V (S′)]. If

(i) N , ∅,
(ii) V (M ) ∩V (Q ) is balanced,
(iii) M (S′) ∪ P ′ is K (S′)-extendable,
(iv) every balanced matching in K (Q ) of size |M (Q ) | + 1

2 |N | is K (Q )-extendable,

thenM is K (S)-extendable.

Proof Let u1v1,u2v2, . . . ,ukvk be all edges of N where ui ∈ V (Q ) and vi ∈ V (S′) for all i ∈ [k ]. Note that (i)-(ii) imply
that k is positive and even and therefore we can select a perfect matching P ′ of K (S′)[{v1,v2, . . . ,vk }]. By (iii), there
is a Hamilton cycle C ′ of K (S′) such that E (C ′) = M (S′) ∪ P ′ ∪ E ′ and all edges of E ′ are short, see Figure 1(b).

The removal of edges of P ′ splits C ′ into a disjoint path cover of K (S′) and we can without loss of generality
assume that it consists of paths Pv1v2 , Pv3v4 , . . . , Pvk−1vk . Put P ′′ := {u1u2,u3u4, . . . ,uk−1uk }. By (iv) there is a Hamilton
cycle C ′′ of K (Q ) such that C ′′ = M (Q ) ∪ P ′′ ∪ E ′′ where E ′′ ⊆ E (Q ), see Figure 1(c).

It remains to replace each edge uiui+1 ∈ P ′′ in C ′′ with the path (ui ,vi ) + Pvi vi+1 + (vi+1,ui+1). This extends C ′′ to
a Hamilton cycle C of K (S) such that E (C ) = M ∪ E ′ ∪ E ′′, see Figure 1(d). Since E ′ ∪ E ′′ ⊆ E (Qn ), it follows that M
is K (S)-extendable.

4 | SMALL DIMENSIONS

In this section we show that Fink’s result on extendability of perfect matchings in K (Qn ) — stated above as part
(5) of Proposition 3.1 — may be generalized to arbitrary matchings at least for small values of n . First observe that
balancedness is necessary for such an extension to exist.

Observation 4.1 If a matchingM in K (Qn ) is K (Qn )-extendable, thenM must be balanced.

Proof If C is a Hamilton cycle of K (Qn ) such that E (C ) \M ⊆ E (Qn ), then E (C ) \M forms a disjoint path cover of Qn
by paths with endvertices V (M ). Part (1) of Proposition 3.1 says that then 1

2 β (V (M )) = β (V (Qn )) = 0 which means
that the matching M is balanced.

We show that for small dimensions, this natural necessary condition is also sufficient. The next two lemmas settle the
cases n ∈ {3, 4}.

Lemma 4.2 Every balanced matchingM in K (Q3) is K (Q3)-extendable. Moreover, ifV (Q3) \V (M ) consists of diametrical
vertices u,v of Q3 and uu′ ∈ E (Q3) \M is a given short edge, thenM ∪ {uu′ } is K (Q3)-extendable too.

Proof Let M be a balanced matching in K (Q3). For |M | ∈ {1, 2, 4} the statement follows from parts (2),(3) and (5)
of Proposition 3.1, respectively. So assume that |M | = 3 and let u,v be the two vertices of Q3 not incident with any
edge of M . Note that as both V (Q3) and V (M ) are balanced, {u,v } must be balanced as well. If uv is a short edge,
then M ∪ {uv } is a balanced matching of size four which can be extended by the previous part of the proof. Hence it
remains to settle the case that u,v are diametrical vertices of Q3.

Since M = {ui ,vi }
3
i=1

is balanced, there are only two options to be considered (Figure 2):
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u

v

u1 u2 u3

v1 v2 v3

(a)

u

v

u1 v1 u3

u2 v2 v3

(b)

F IGURE 2 A special case in the proof of Lemma 4.2. Red and black lines depict edges of M and the remaining
(short) edges of the Hamilton cycle, respectively.

(a) either χ(ui ) , χ(vi ) for all i ∈ [3], then we can assume that uui and vvi are short edges for all i ∈ [3] and uu′ = uu1,
(b) or χ(u1) = χ(v1) = χ(u3) , χ(v3) = χ(u2) = χ(v2), then we can assume that uu1,uv1,uu3 as well as vu2,vv2 and vv3

are short edges and uu′ ∈ {uu1,uu3 }.

Note that there must be a short edge from v1 to u2 or u3 (in case (a)) and from v1 to u2 or v2 (in case (b)). In both cases
assuming without loss of generality the former,

u,u1,v1,u2,v2,v ,v3,u3

is the desired Hamilton cycle passing through uu′.

Building on the previous lemma supplemented with a necessary case analysis, we can derive a similar result for the
dimension n = 4.

Lemma 4.3 Every balanced matchingM in K (Q4) is K (Q4)-extendable.

Proof (A) Case |M | = 8 follows from part (5) of Proposition 3.1.
(B) If |M | = 7 thenV (Q4) \V (M ) = {u,v } and as both M andV (Qn ) are balanced, we have χ(u) , χ(v ). If uv is

a short edge, then M ∪ {uv } is a perfect matching and the statement follows from part (A). Otherwise it must be the
case that d(u,v ) = 3 and hence Q4 may be split by some dimension d into two 3-dimensional subcubes Q 0,Q 1 such
that u and v are diametrical vertices of Q 0. Note that thenV (M ) ∩V (Q 0) is balanced. Consequently, if M 2

d
, ∅, we

may apply Lemmas 3.3 and 4.2 and the statement follows. Otherwise M 1
d
is a balanced matching in Q 1 and hence

by Lemma 4.2 it may be extended by short edges to a Hamilton cycle C 1 of Q 1. Note that E (C 1) \M 1
d
must contain

a short edge udw d for some w ∈ V (Q 0). Apply Lemma 4.2 again to obtain a Hamilton cycle C 0 of Q 0 extending
M 0
d
∪ {uw } by short edges. Removing uw and udw d from C 0 and C 1, respectively, and adding uud andww d combines

both cycles into the desired Hamilton cycle of K (Q4) that extends M by short edges.
(C) If |M | = 6 then V (Q4) \ V (M ) is a balanced set {u,v ,w , x }. If two of these four vertices, say u and v , are

incident with a short edge, thenM ∪ {uv } is a balanced matching of size 7 and therefore extendable by part (B). If not,
then Q4 may be split into two subcubes such that u,v andw , x are diametrical vertices of Q 0 and Q 1, respectively. In
this case we may use the same construction as in part (B).
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(D) If |M | ≤ 5, then V (Q4) \V (M ) is a balanced set of at least six vertices. It is easy to see that at least two of
them must be adjacent and hence the extendability follows from part (C).

Before proceeding to higher dimensions, we need the following “balancing” lemma.

Lemma 4.4 For every balanced matchingM in K (Qn ) with |M | ≤ 2n−2 and d ∈ [n] there is a balanced matching M̄ ⊇ M
such that

(i) V (M̄ ) ∩V (Q i ) is a balanced set of at most 2 |M | vertices for both i ∈ {0, 1},
(ii) M̄ \M consists only of short edges of dimension d

where Q i := Q[n]\{d }(i ).

Proof For both i ∈ {0, 1} and p ∈ {−1, 1} put V ip := {v ∈ V (M ) ∩V (Q i ) | χ(v ) = p } and note that if |V i
−1 | = |V

i
1 |

for i = 0, then it holds also for i = 1 and it suffices to set M̄ := M . Hence we can without loss of generality assume
that |V 0

−1 | < |V
0
1 |. Put a := |V 0

−1 | and b := |V 1
1 |, then |V

0
1 | = a + c for some c > 0 and since M is balanced, we have

|V 1
−1 | = b + c. Note that |V (M ) | = 2(a + b + c) and therefore |M | = a + b + c. Then

| {v ∈ V (Q 0) | v ∈ V 0
−1 or v

d ∈ V 1
1 } | ≤ a + b ≤ 2

n−2 − c .

Since | {v ∈ V (Q 0) | χ(v ) = −1} | = 2n−2, it follows that we can select c vertices v1,v2, . . . ,vc from this set such that
{vi ,v

d
i
}c
i=1
∩V (M ) = ∅. Then M̄ := M ∪ {viv di }

c
i=1

is the balanced matching satisfying the statement of the lemma.

Armed with the previous lemma, we can show that small matchings are extendable also in larger dimensions. The
following proposition will serve later as the induction basis for the proof of Theorem 5.3.

Proposition 4.5 Every balanced matchingM in K (Qn ) such that n ≥ 2 and |M | ≤ 8 is K (Qn )-extendable.

Proof Case n = 2 may be verified by inspection, while cases n = 3, 4 are settled by Lemmas 4.2 and 4.3. If n ≥ 5,
select d ∈ [n] such thatM 2

d
, ∅. Then apply Lemma 4.4 to add a sufficient number of short edges of dimension d and

form a balanced matching M̄ ⊇ M such that

V (M̄ ) ∩V (Q i ) is a balanced set of at most 2 |M | ≤ 16 vertices for both i ∈ {0, 1} (∗)

where Q i := Q[n]\{d }(i ).
Next we apply Lemma 3.3 to show that M̄ is K (Qn )-extendable. To that end, put S := {Q 0,Q 1 }, N := M̄ (Q 0,Q 1)

and observe that (∗) implies that |V (N ) ∩V (Q 1) | is even and therefore there is a perfect matching P ′ of K (Q 1)[V (N ) ∩

V (Q 1)]. The assumptions (i)-(ii) of Lemma 3.3 hold by the choice of d and by (∗), respectively. To prove that M̄ is
K (Qn )-extendable, we argue by induction on n ≥ 5. If n = 5, the remaining assumptions (iii)-(iv) of Lemma 3.3 follow
from Lemma 4.3. If n > 5, (∗) implies that neither |M̄ (Q 1) ∪ P ′ | nor |M̄ (Q 0) | + 1

2 |N | exceeds 8 and therefore the
validity of (iii)-(iv) follows from the induction hypothesis. Hence in any case, M̄ is K (Qn )-extendable by Lemma 3.3.
As M̄ \M ⊆ E (Qn ) by Lemma 4.4 (ii), M is K (Qn )-extendable as well and the proof is complete.
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Employing our findings on disjoint path covers of hypercubes, we canmake the above proposition even a little stronger.
This will prove useful in the last section where the following corollary settles the case of small dimensions in the proof
of the main result (Theorem 1.1).

Corollary 4.6 Every balanced matchingM in K (Qn ) such that n ≥ 2 and |M | ≤ max(8, n − 1) is K (Qn )-extendable.

u1 v1 u3 v3 u5 v5 u7 u8

u2 v2 u4 v4 u6 v6 v7 v8

F IGURE 3 Illustration of the proof of Corollary 4.6 for m = 6 and k = 8.

Proof For n ≤ 9 the statement follows from Proposition 4.5. To settle the case that n ≥ 10, let M = {uivi }
k
i=1

where k ∈ [n − 1]. Since M is balanced, we can without loss of generality assume that there is even m ≥ 0 such that
χ(u1) = χ(u2i−1) = χ(v2i−1) , χ(u2i ) = χ(v2i ) for all i ∈ [m/2] while χ(u1) = χ(ui ) , χ(vi ) for all i ∈ [k ] \ [m]. Put

P := {v1u2,v2u3,v3u4,v4u5, . . . ,vm−1um ,vmum+1,vm+1um+2, . . . ,vk−1uk ,vk u1 }

and observe that by part (4) of Proposition 3.1, there is a disjoint path cover
{Puv }uv∈P of Qn , see Figure 3. Then ⋃

uv∈P E (Puv ) ∪ M is edge set of a Hamilton cycle C of K (Qn ) such that
E (C ) = M ∪ E where E ⊆ E (Qn ). Hence M is K (Qn )-extendable in this case, too.

Considering the results of this section, it is natural to ask: canwe generalize Proposition 3.1 (5) to an arbitrary balanced
matching in K (Qn )? In Section 6 we show that the answer to this question is negative.

5 | CONSTRUCTION

We start with a refinement of a “balancing” lemma whose goal is similar to that of Lemma 4.4, but the assumptions
are more specialized and formulated in much greater detail.

Lemma 5.1 Let M be a matching in B(Qn ), a, b, c, e, f ∈ Î, p ∈ {−1, 1} and Q , R be adjacent subcubes of dimension
m ∈ [n − 1] in Qn such that

• vertices of Q and R are incident with at most e and at most f edges ofM , respectively,
• V (M (Q , R )) ∩V (Q ) contains a and b vertices of parities p and −p , respectively,
• all edges ofM (Q , R ) are short.

If e + f − a − 2b + c ≤ 2m−1, then there is a matchingM ′ in Qn such that

(i) M ′ consists of c edges between Q and R ,
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(ii) V (M ′) ∩V (M ) = ∅,
(iii) V (M ′) ∩V (Q ) contains only vertices of parity p .

Proof Suppose that subcubes Q and R are adjacent over dimension d . Denote the set of all vertices of Q of parity p
byVp , then |Vp | = 2m−1 and

| {v ∈ Vp | v ∈ V (M )} | ≤ e − b

| {v ∈ Vp | v <V (M ) and v d ∈ V (M )} | ≤ f − (a + b).

Since e − b + f − (a + b) ≤ 2m−1 − c, there are vertices v1,v2, . . . ,vc ∈ Vp such that {vi ,v di } ∩V (M ) = ∅ for all i ∈ [c].
It remains to set M ′ = {v1v d1 ,v2v

d
2 , . . . ,vcv

d
c }.

Employing the previous result, we derive even more refined version of a “balancing” lemma which will be used in the
proof of the main theorem. This time we consider a more general situation when the hypercube is split into a set of
5-dimensional subcubes. However, to be able to formulate it, we need to introduce a new concept.

Let S be a set of pairwise vertex-disjoint subcubes of Qn and E ⊆ E (K (Qn )). We define the interconnection graph
I (S, E ) of S and E as the graph with vertices S and edges between two subcubes whenever E contains an edge
between a vertex of one subcube and a vertex of the other.

Lemma 5.2 LetM be a matching in Qn , n ≥ 5, and D ⊆ [n] such that |D | = 5 and S := {QD (u) | u ∈ {0, 1}n−5 } satisfies
|V (M ) ∩V (Q ) | ≤ 6 for every Q ∈ S. Then there is a matching M̄ ⊇ M in Qn such that

(i) I (S, M̄ ) is connected,
(ii) V (M̄ ) ∩V (Q ) is balanced,
(iii) |V (M̄ ) ∩V (Q ) | ≤ 14

for every subcube Q ∈ S.

Proof Let m := 2n−5 and u1,u2, . . . ,um be a Hamilton cycle in Qn−5 (which exists e.g. by Proposition 3.1 (2)). For
i ∈ [m] put Q i := QD (ui ), then Q 1,Q 2, . . . ,Qm is an ordering of all subcubes of S such that any two consecutive
subcubes are adjacent. We construct the desired matching M̄ in two passes through this sequence: the 1st pass adds
edges to make (ii) true while the 2nd one adds some more to guarantee (i).
(1st pass) Our goal is to construct matchings M (i ) ⊇ M and N (i ) for every i ∈ [m − 1] such that

(a) V (M (i )(Q j ,Q k )) ∩V (Q j ) is balanced for all j ∈ [i ] and k ∈ [m] such that Q j and Q k are adjacent,
(b) V (N (i )) =V (M (i )),
(c) | {e ∈ N (i ) | e ∩V (Q j ) , ∅} | = | {e ∈ M | e ∩V (Q j ) , ∅} | for all j ∈ [m].

Note that while M (i ) is used to set up the desired matching M̄ , N (i ) serves only as a tool to prove condition (iii): N (i )

is useful for this purpose because it satisfies the invariant (c) while preserving the same set of endvertices as M (i )

(property (b)).
To start the construction, putM (0) := N (0) := M and assume that we have already constructedmatchingsM (i−1) ⊇

M and N (i−1) satisfying (a)–(c). Put M (i ,0) := M (i−1), N (i ,0) := N (i−1) and let Q k be a subcube such that Q i and Q k are
adjacent over dimension d whileV (M (i ,0)(Q i ,Q k )) ∩V (Q i ) consists of a and b vertices of parities p and −p for some
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p ∈ {−1, 1}, respectively. We can without loss of generality assume that a < b . Note that condition (a) says that k > i
while (c) implies that both Q i and Q k are incident with at most 6 edges of N (i ,0). As b ≥ 1, we have

2 · 6 − a − 2b + (b − a) ≤ 11 < 25−1

and hence Lemma 5.1 guarantees the existence of b − a edges v1v d1 ,v2v
d
2 , . . . ,vb−av

d
b−a

joining vertices of Q i of parity
p with vertices of Q k of parity −p , having no vertex in common with V (N (i ,0)) = V (M (i ,0)). Put M (i ,1) := M (i ,0) ∪

{v1v
d
1 ,v2v

d
2 , . . . ,vb−av

d
b−a
} and observe that at this point, (a) holds for M (i ,1), Q i and Q k . To construct N (i ,1), select

b − a edges u1ud1 ,u2u
d
2 , . . . ,ub−au

d
b−a

of M (i ,0)(Q i ,Q k ) such that ui is a vertex of Q i of parity p for all i ∈ [b − a] and
set

N (i ,1) := (N (i ,0) \ {u1ud1 ,u2u
d
2 , . . . ,ub−au

d
b−a }) ∪ {u1v1,u

d
1 v

d
1 ,u2v2,u

d
2 v

d
2 , . . . ,ub−avb−a ,u

d
b−av

d
b−a }.

Note that both (b) and (c) hold for N (i ,1). Repeating this step for all, say r , subcubes adjacent toQ i , we finally construct
matchings M (i ,r ) and N (i ,r ). Set M (i ) := M (i ,r ) and note that now it satisfies (a) while (b)–(c) still hold for N (i ,r ).

Once we have constructed the final matchingsM (m−1) and N (m−1), note that condition (a) implies thatV (M (m−1))∩
V (Q j ) is balanced for all j ∈ [m − 1]. Since M (m−1) itself is a balanced matching (trivially, as it consists only of short
edges), it follows thatV (M (m−1)) ∩V (Qm ) must be balanced as well. Hence we can conclude that condition (ii) holds
for M (m−1). Moreover, conditions (b)–(c) imply that

(d) |V (M (m−1)) ∩V (Q j ) | ≤ 12 for all j ∈ [m].

Hence condition (iii) holds for M (m−1) even with a certain reserve. This may prove to be useful in the 2nd pass.
(2nd pass) First select p ∈ {−1, 1}, put M̄ (0) := M (m−1) and N̄ (0) := N (m−1). Then go through all i ∈ [m] and construct
matchings M̄ (i ), N̄ (i ) such that

M̄ (i ) := M̄ (i−1) ∪ {vv d }

N̄ (i ) := N̄ (i−1) ∪ {vv d }

where v is a vertex of Q i of parity p , d is the dimension over which Q i and Q i+1 (for i ∈ [m − 1]) or Qm and Q 1 (for
i = m) are adjacent, and {v ,v d } ∩V (M̄ (i−1)) = ∅. We claim that such a vertex v always exists: it suffices to apply
Lemma 5.1 to the matching N̄ (i−1), subcubes Q i ,Q i+1 (for i ∈ [m − 1]) or Qm ,Q 1 (for i = m), e = f = 7, c = 1 and
a, b unspecified. As 7 + 7 + 1 < 25−1, there is a vertex v ∈ V (Q i ) such that χ(v ) = p and {v ,v d } is disjoint with
V (N̄ (i−1)) =V (M̄ (i−1)).

Once we have constructed the final matching M̄ (m), it remains to set M̄ := M̄ (m−1). Note that the 2nd pass
guarantees the connectivity of I (S, M̄ ) which fulfills (i). Since condition (ii) holds for M (m−1) and

(e) (V (M̄ ) \V (M (m−1))) ∩V (Q i ) for each i ∈ [m] consists of two vertices of different parities,

it follows that (ii) holds for M̄ as well. Finally, the validity of condition (iii) follows from (d) and (e).

After the input matching was “balanced” by the previous lemma, the following theorem shows how to extend it to
a Hamilton cycle. Both statements form the cornerstone of the proof of the main theorem in the last section.
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Theorem 5.3 Let n ≥ 5, S be a set of pairwise vertex-disjoint 5-dimensional subcubes ofQn , andM be a matching in K (S)
such that

(i) I (S,M ) is connected,
(ii) for every subcube Q ∈ S,V (M ) ∩V (Q ) is a balanced set of at most 16 vertices.

ThenM is K (S)-extendable.

Proof We argue by induction on the size of S. If |S | = 1, condition (ii) says that M is a balanced matching in K (Q5)
of size at most 8 and therefore the statement follows from Proposition 4.5. So assume that |S | > 1 and select a
subcube Q ∈ S such that Q is a leaf of a spanning tree of I (S,M ). Note that then Q cannot be a cutvertex of
I (S,M ) and therefore I (S,M ) − Q remains connected. Put S′ := S \ {Q } and let v1,v2, . . . ,vk be all vertices of
V (S′) joined by an edge of M to a vertex of Q . Note that condition (ii) applied to Q guarantees that k is even. Put
M ′ := M (S′)∪ {v1v2,v3v4, . . . ,vk−1vk } and note thatV (M ′) =V (M )\V (Q ) and therefore condition (ii) still holds forM ′.
Moreover, observe that I (S,M ) − Q is a spanning subgraph of I (S′,M ′) and thus the connectedness of the former
implies the same for the latter, which means that condition (i) holds for S′ and M ′ as well. Hence by the induction
hypothesis, M ′ is K (S′)-extendable. This verifies condition (iii) of Lemma 3.3. Conditions (i)–(ii) of Lemma 3.3 follow
from our assumptions (i)–(ii), and the latter together with Proposition 4.5 implies validity of the last condition (iv) of
Lemma 3.3. Thus we can conclude that the K (S)-extendability of M follows from Lemma 3.3.

6 | RESULTS

At this point we are ready to provide an affirmative answer to the Ruskey-Savage problem for every matching of size
bounded by a quadratic function. Recall that both theorems of this section were already stated in the introduction.

Theorem 1.1 Every matching in Qn , n ≥ 2, of size at most n
2

16 +
n
4 can be extended to a cyclic Gray code.

Proof Let M be a arbitrary matching in Qn such that |M | ≤ n2

16 +
n
4 . For n ≤ 11 we have b n216 +

n
4 c ≤ n − 1 and

therefore in this case the statement of the theorem follows from Corollary 4.6. For n > 11 select a set S such that
V (M ) ⊆ S ⊆ V (Qn ) and |S | = 2 b n

2

16 +
n
4 c. Then |S | ≥ 2n while d

n2

2|S |−n−2 e = 5 and therefore by Theorem 3.2, there is
a set D ⊆ [n] such that |D | = 5 and |V (MD (u)) | ≤ |SD (u) | ≤ 6 for every u ∈ {0, 1}n−5. The statement of the theorem
now follows from Lemma 5.2 and Theorem 5.3.

Inspired by our results in the previous two sections, namely Corollary 4.6 and Theorem 5.3, we may be tempted to
propose a generalization of the original problem as follows: is it true that every balanced matching in K (Qn ) is K (Qn )-
extendable? The answer to this question is negative, not only for balanced matchings in K (Qn ), but also for matchings
in B(Qn ), as demonstrated by the last result of this paper.

Theorem 1.2 For every n ≥ 9 there is a matching of size 2
( n−1
b n−12 c

)
+1 = Θ(2n/

√
n) in B(Qn )which is not B(Qn )-extendable.

Proof Note that for m ≥ 8 we have

(
m

b m2 c

)
<

b m2 c−1∑
i=0

(
m

i

)
≤

m∑
i=b m2 c+1

(
m

i

)
. (∗)
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Put d := 1 and by removing all edges of dimension d , split Qn into subcubes Q 0 := Q[n]\{d }(0) and Q 1 := Q[n]\{d }(1).
Note that for every u ∈ V (Q 0), v ∈ V (Q 1) we have 0 ≤ |u | ≤ n − 1 while 1 ≤ |v | ≤ n . Put h := b n−12 c, k :=

(n−1
h

)
and

Low0 := {v ∈ V (Q 0) | |v | < h }, Low1 := {v d | v ∈ Low0 }

Mid0 := {v ∈ V (Q 0) | |v | = h }, Mid1 := {v d | v ∈ Mid0 }

Up0 := {v ∈ V (Q 0) | |v | > h }, Up1 := {v d | v ∈ Up0 }.

Let Mid0 = {x1, x2, . . . , xk }, χ(x1) = p and observe that Mid0 and Mid1 consist solely of vertices of parities p and −p ,
respectively. Put m = n − 1 and note that (∗) guarantees that

k =

(
m

b m2 c

)
< |Lowi | =

b m2 c−1∑
i=0

(
m

i

)
≤ |Upi | =

m∑
i=b m2 c+1

(
m

i

)

for both i ∈ {0, 1}. Since Low0 ∪ Low1 and Up0 ∪ Up1 are balanced, it follows that we can select distinct vertices
y1, y2, . . . , yk+1 ∈ Low0 ∪ Low1 and z1, z2, . . . , zk+1 ∈ Up0 ∪ Up1 such that χ(zi ) = p = −χ(yi ) for all i ∈ [k + 1]. Then

M := {xi yi }ki=1 ∪ {x
d
i zi }

k
i=1 ∪ {yk+1zk+1 }

is a matching in B(Qn ) and we claim that M is not B(Qn )-extendable.
To verify the claim, assume, byway of contradiction, that there is a Hamilton cycleC of B(Qn ) such that E (C ) ⊇ M

and E (C ) \ M ⊆ E (Qn ). Put LMn := Qn [Low0 ∪ Low1 ∪Mid0 ∪Mid1] and observe that (E (C ) \ M ) ∩ E (LMn ) forms
an edge set of a disjoint path cover P of LMn such that the endvertices of all paths of P are exactly the vertices of
V (M ) ∩V (LMn ). Since the vertex set of LMn is balanced and therefore β (V (LMn )) = 0, Proposition 3.1 (1) implies that

∑
Puv ∈P

(χ(u) + χ(v )) = 0

as well. Note that each endvertex v contributes to this sum either by 2χ(v ) (if Pvv ∈ P) or by χ(v ) (if Puv ∈ P or
Pvu ∈ P for some u , v ). Since the setV (M ) ∩V (LMn ) consists of k vertices of parity p and 2k + 1 vertices of parity
−p , it follows that |∑Puv ∈P (χ(u) + χ(v )) | > 0, which is a contradiction. This verifies the claim that the matching M is
not B(Qn )-extendable.
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