Introduction to Complexity and Computability NTINo90

Jirka Fink
https://ktiml.mff.cuni.cz/~fink
Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physic
Charles University in Prague

Winter semester 2017/18

License: Creative Commons BY-NC-SA 4.0

Content

Computability
Complexity

General information

E-mail fink@ktiml.mff.cuni.cz
Homepage https://ktiml.mff.cuni.cz/fink/
Consultations Thursday, 17:15, office S305

Examination

- Homeworks (theoretical)
- Pass the exam

Jirka Fink introducilon to Complexity and Computability
 .

Input

- Every domino contains two strings, one on each side; e.g. $\frac{\frac{a}{a b}}{}$
- An input to the problem is a collection of dominoes; e.g.

Match

A match a is a list of these dominoes (repetitions permitted) so that the string on the top is the same as the string on the bottom; e.g. $\frac{a}{a b}, \left.\frac{b}{c a}\left|\frac{c a}{a}\right| \frac{a}{a b} \right\rvert\, \frac{a b c}{c}$

Problem

Find an algorithm which determines whether for a given collection of dominoes there exists a match.

Jirka Fink Introduction to Complexity and Computability

Halting problem

Halting problem

Is there an algorithm which for a given program and its input determines whether the program on that input terminates?

Example of a program

int main(int argc, char *argv[l)

$$
\text { int } n, \text { total, } x, y, z \text {; }
$$

$$
\text { scanf }(" \% d ", \& n) \text {; }
$$

total=3;

$$
\text { for }(; ;) \text { i }
$$

 for (\(\mathrm{x}=1\); \(\mathrm{x}<=\) total-2; ++x) \{
 for (\(\mathrm{y}=1\); \(\mathrm{y}<=\) total \(-\mathrm{x}-1\); ++y) \{
 \(\mathrm{z}=\) total \(-\mathrm{x}-\mathrm{y}\);
 if \((\exp (x, n)+\exp (y, n)==\exp (z, n))\)
 return 0;
 \}
 \}
 ++total;
 \}

- Sipser, M. Introduction to the Theory of Computation. Vol. 2. Boston: Thomson Course Technology, 2006.
- Garey, Johnson: Computers and intractability - a guide to the theory of NP-completeness, W.H. Freeman 1978
- Soare R.I.: Recursively enumerable sets and degrees. Springer-Verlag, 1987
- Odifreddi P.: Classical recursion theory, North-Holland, 1989
- Arora S., Barak B.: Computational Complexity: A Modern Approach. Cambridge University Press 2009.

Reformulation
 Find an algorithm which for a given multi-variable polynomial with rational coefficients has integral root.

Computability

Jirka Fink introducition to Complexity and Computability

Hilbert's tenth problem (1900)

Original statement (translated from German)

Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

Example of an instance of the problem
Is there an intergral solution of equation $6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10=0$?

Components

- Memory divided into cells
- Cells are indexed by (positive) integers
- Every cell can store a integer
- Program composed of instructions
- Arithmetical instructions: additions, subtraction, multiplication, division, modulo
- Logical instructions: conjunction, disjunction, shift
- Control instructions: conditional and unconditional jump, halt
- Input and output
- Special instruction for reading and writing, or
- storing in memory in pre-defined cells
- Special registers (e.g. program counter)

Arguments of instructions and memory indexing

- Integer, e.g. 3
- Direct addressing, e.g. [4]
- Indirect addressing, e.g. [[5]]
- Example of instruction: [[5]] :=3+[4]
- Variables can be used to improve readability

Jirka Fink Introduction to Complexity and Computability
Memory without random access (Source: Wikipedia)

Turing machine
Configuration captures the full state of computation of a Turing machine
A configuration is triple (q, m, h) where

- $q \in Q$ is the current state,
- $m \in \Sigma^{\mathbb{Z}}$ are symbols in all cells of the tape and
- $h \in \mathbb{Z}$ is the index of the current cell (the position of head).

Initial configuration

The initial configuration is $\left(q_{0}, m, 0\right)$ where

- q_{0} is the initial state and
- m contains the input word surrounded by λ.

Jirka Fink Introduction to Complexity and Computability

 13Turing machine

Possible results of computations

For every Turing machine and its every input word, exactly one of the following statements holds:

- Computation terminates and uses finitely many cells of the type.
- Computation loops on finitely many configurations and finitely many cells are used.
- Computation never terminates, never reaches the same configuration twice and uses infinitely many cells.

Variants of Turing machine

- Tape potentially infinite only in one direction
- Multiple tapes
- Multiple heads on tapes
- Non-deterministic Turing machines

All variants are equivalent to the basic model.

Example: Factorial

Calculate factorial of the input stored at [1] and save the results in [2].
[2] := 1
loop:
[2] := [1] * [2]
[1] := [1] - 1
jump_if_positive [1], loop
halt

Variants of Random access machines

- Memory potentially infinite only in one direction
- Cells with bounded number of bits
- More instructions, e.g. function calls
- More indirections in memory accessing
- Etc.

Jirka Fink Introduction to Complexity and Computability

Turing machine (Alan Turing, 1936)

Definition

Turing machine is a quintuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states (internal memory)
- Σ is a finite tape alphabet
- i.e. every cell store one value from Σ
- $\lambda \in \Sigma$ represents an empty cell
- $\delta: Q \times \Sigma \rightarrow Q \times \Sigma \times\{R, N, L\} \cup\{\perp\}$ is a transition function which for every state of Q and every value in the current cell determines:
- new state of internal memory,
- new value to be stored in the current cell,
- whether the head determining the current cell should be moved to right (R), left (L) or stay (N)
- \perp represents termination
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is the set of accepting states

Turing machine

Single step of computation
Assume that the current configuration is (q, m, h) and $\delta\left(q, m_{h}\right)=\left(q^{\prime}, s, d\right)$ is result of the transition function. The new configuration after a single step of computation is ($q^{\prime}, m^{\prime}, h^{\prime}$) where

- $m_{i}^{\prime}= \begin{cases}m_{i} & \text { if } i \neq h \\ s & \text { if } i=h\end{cases}$
- $h^{\prime}= \begin{cases}h+1 & \text { if } d=R \\ h-1 & \text { if } d=L \\ h & \text { if } d=N\end{cases}$

Termination

The computation terminates if $\delta\left(q, m_{h}\right)=\perp$. The input word is accepted if $q \in F$; otherwise, the word is rejected.

Jirka Fink Introduction to Complexity and Computability

Turing machine \rightarrow Random access machine

Theorem
For every Turing machine there exists an equivalent RAM.

[^0]Random access machine \rightarrow Turing machine

Theorem

For every Random access machine (RAM) there exists an equivalent Turing machine (TM).

Proof

We construct 4-tape TM:

- Input tape: Sequence of numbers passed to RAM as the inpun written in binary and separated with \#
- Output tape: TM writes here the numbers output by RAM
- Memory of RAM: Content of memory of RAM
- The tape symbols are $\Sigma=\{0,1, \#, \mid, \lambda\}$

If the currently used cells are $c_{1}, c_{2}, \ldots, c_{m}$ then the tape contains string: $c_{1}\left|\left[c_{1}\right] \# c_{2}\right|\left[c_{2}\right] \# \cdots \# c_{m} \mid\left[c_{m}\right]$

- Auxiliary tape: For computing addition, subtraction, indirect indices, copying part of the memory tape, etc
TM simulates every instruction of RAM as follows: (1)
- Copy arguments from the memory tape to the auxiliary tape
- Evaluate the instruction on the auxiliary tape
- Copy results to the memory tape

\section*{| Jirka Fink | Introduction to Complexity and Computability | 17 |
| :--- | :--- | :--- | :--- | :--- |}

Words and languages

Terminology

- Alphabet Σ is a finite set of characters (symbols)
- Word is a finite sequece of characters over alphabet Σ
- Σ^{\star} denotes the set of all words
- Language $L \subseteq \Sigma^{\star}$ is a set of words over alphabet Σ

Decision problem

A decision problem is formalized as a question whether given word belongs to the language.

- The resulting integer is called Gödel number of a given Turing machine

Universal Turing machine

Goal
 Create a Turing machine which for a given pair (M, w) computes the output of a Turing machine M called on input w. (1)

Universal TM has three memory types

- 1st tape contains input, i.e. pair (M, w)
- 2nd tape contains binary encoded tape of M separated by |
- 3rd tape contains binary encoded current state of M

Computation of Universal Turing machine

- Copy the input word w on the working (2nd) tape and set the initial state of M on the 3rd tape
- Simulates steps of M
- Find the transition $\delta(q, s)=\left(q^{\prime}, s^{\prime}, d\right)$ on the 1 st tape where q is the current state of M stored on 3rd tape and s is the current symbol of M encoded on the current position on 2nd tape
- Store results q^{\prime} and s^{\prime} on the 3rd and 2nd tape and move 2nd head in direction d

Program of a RAM consists of finitely many instructions and arguments (indices of memory cells) are bounded numbers. Therefore, the program can be "stored" in a transition functions δ and a program counter can be stored as a part of state space Q.

Turing decidable languages

Terminology

- TM accept a word $w \in \Sigma^{\star}$, if computation of TM with input w terminates in an accepting state
- RAM accept a word $w \in \Sigma^{\star}$, if computation of RAM with input w outputs 1 and terminates
- TM reject a word $w \in \Sigma^{\star}$, if computation of TM with input w terminates in an non-accepting state
- RAM reject a word $w \in \Sigma^{\star}$, if computation of RAM with input w outputs 0 terminates
- The set of words accepted by TM M is a language denoted by $L(M)$
- We denote the fact that computation of TM M on w terminates as $M(w) \downarrow$ (computation converges)
- We denote the fact that computation of TM M on w does not terminate as $M(w) \uparrow$ (computation diverges)
- Language L is partially (Turing) decidable (also recursively enumerable), if there is a TM M such that $L=L(M)$
- Language L is (Turing) decidable (also recursive), if there is a TM M which always terminates and $L=L(M)$

Jirka Fink Introduction to Complexity and Computability
Existence of an undecidable problems

Notes

(1) Some integers may not encode a valid Turing machine
(2) If $M \in \mathbb{N}$ is not a valid Turing machine, $M(w)$ rejects every input w
(3) Integer representing a Turing machine is not unique
(9) For every decidable problem there exist infinitely many Turing machines deciding it
(6) There are only countably many Turing machines
(6) There are only countably many decidable languages

Corollary

There exists an undecidable language.
Furthermore, there are uncountably many undecidable languages.
(1) We already proved that for every for every Random access machine R we can construct a Turing machine M which gives the same output for every input. Now, we create one Turing machine which simulates any TM/RAM.

Halting problem

Theorem

Let HALT be the set of all pairs (M, w) such that Turing machine M terminates on its input w. The language HALT is partially decidable but it is not decidable.

Proof (undecidability)

For sake of a contradiction, assume that there exists a Turing machine
halt ing_solver (M, w) which for a Turing machine M and an input w determines whether M terminates on input w. (1) Consider the following adversary Turing
machine.
Program adversary (w)

$$
\begin{aligned}
& \text { if halting_solver (} w, w \text {) returns "Yes, it terminates" then } \\
& \text { Loop forever } \\
& \text { else }
\end{aligned}
$$

L Halt
The following statements are equivalent.

- adversary (adversary) terminates
- halting_solver (adversary, adversary) returns "Yes, it terminates" (2)
- adversary (adversary) loops forever (3)

This is a contradiction!

Undecidability of acceptance

Theorem

Let ACCEPT be the set of all pairs (M, w) such that Turing machine M terminates and accepts its input w. The language ACCEPT is partially decidable but it is not decidable

Proof (undecidability)

For sake of a contradiction, assume that there exists a Turing machine
accept_solver (M, w) which for a Turing machine M and an input w determines whether M terminates and accepts input w. Consider the following adversary Turing machine.
Program adversary (w)

```
if accept_solver (w,w) accepts then
return reject
else
L return accept
The following statements are equivalent.
    - adversary (adversary) accepts
    - accept_solver(adversary, adversary) accepts
    - adversary (adversary) rejects
This is a contradiction!
```

We prove that our accept_solver works properly. First, consider a Turing machine M which accept an input w which implies the following statements

- helper ${ }_{M}(M)$ accepts by definition of helper
- $L($ helper $M)$ is non-empty is Turing machine helper M_{M} accepts input M
- empty_solver (helper m) rejects
- accept_solver (M, w) accepts

Next, consider a Turing machine M which does not accept an input w which implies the following statements

- helper M does not accept any input
- L (helper M) is empty
- empty_solver (helper m) accept
- accept_solver (M, w) rejects

Complement of languages

Definition

The complement of a language $L \subseteq \Sigma^{\star}$ is the language $\bar{L}=\Sigma^{\star} \backslash L$.

Observation

A language L is decidable if and only if the complement \bar{L} is decidable.

Theorem (Post)

Language L is decidable if and only if languages L and \bar{L} are partially decidable.

Corollary

Languages $\overline{\text { ACCEPT, }} \overline{\text { HALT }}$ and EMPTY are not partially decidable.

Observation

If L_{1} and L_{2} are (partially) decidable languages, then the following languages are also (partially) decidable.

- $L_{1} \cup L_{2}$ (1)
- $L_{1} \cap L_{2}$
- $L_{1} \cdot L_{2}=\left\{a b ; a \in L_{1}, b \in L_{2}\right\}$, i.e. concatenation of words

Universal Turing machine, function, language

Universal Turing machine

Terminology

- If a Turing machine M terminates on an input w then the output (content of the tape after computation) is denoted by $f_{M}(w)$.
- Each Turing machine M with tape alphabet Σ computes some partial function $f_{m}: \Sigma^{*} \mapsto \Sigma^{*}$
- Function $f: \Sigma^{*} \mapsto \Sigma^{*}$ is Turing computable, if there is a Turing machine M which computes it.
- To each Turing computable function there is infinitely many Turing machines computing it!

Notes

- A program M (RAM/TM) which for an input x outputs y can be considered as a function $f_{M}: \Sigma^{*} \mapsto \Sigma^{*}$ such that $f_{M}(x)=y$.
- A function $f: \mathbb{N} \rightarrow \mathbb{N}$ composed from some elementary (Turing computable) operations is a program which for an integer (word) x computes $f(x)$.
- Decidability of a language $L \subseteq \Sigma^{\star}$ is a question whether the function $f: \Sigma^{\star} \rightarrow\{0,1\}$ is Turing computable where $f(w)=1$ if and only $w \in L$.

Jirka Fink Introduction to Complexity and Computability

Church-Turing thesis

Intuitively

An algorithm is a finite sequence of simple instructions which leads to a solution of given problem.

Church-Turing thesis

To every algorithm in intuitive sense we can construct a Turing machine which implements it.
Equivalent computation models
According to Church-Turing thesis, intuitive notion of algorithm is also equivalent with
description of a Turing machine,
program for RAM,
derivation of a partial recursive function,
derivation of a function in λ-calculus,
In all these models we can compute the same functions and solve the same problems.

Enumerator

Definition

An enumerator for a language L is a Turing machine E which

- ignores its input,
- during its computation writes words of L to a special output tape separated with ' $\#^{\prime}$, and
- each string $w \in L$ is eventually written by E.
- If L is infinite, then E never stops.

Universal Turing machine computes for a given pair (M, w) the output of a Turing machine M called on input w.

Universal function
A universal function ψ satisfies $\psi(f, x)=f(x)$ for every partially computable function f and every argument of x of the domain of f.

Universal language

A universal language L_{u} is the set of pairs (M, w) such that Turing machine M accepts w.

Observation
Universal function ψ is partially computable but it is not computable. Universal language L_{u} is partially decidable but it is not decidable.

Proof

Use universal Turing machine ..

Strings ordering

Defintion

Let Σ be an alphabet and let us assume that < is a strict order over characters in Σ. Let $u, v \in \Sigma^{\star}$ be two different strings. We say that u is lexicographically smaller than v if

- u is shorter than v, or
- u and v have the same length and if i is the first index with $u[i] \neq v[i]$, then $u[i]<v[i]$.
This fact is denoted with $u \prec v$. As usual we extend this notation to $u \preceq v, u \succ v$ and $u \succeq v$.

Note

Let u, v be words over $\{0,1\}$ and $u^{\prime}, v^{\prime} \in \mathbb{N}$ be the corresponding intergers (preceded by " 1 "). Then $u \prec v$ if and only $u^{\prime}<v^{\prime}$.

Ideas of proofs:

- Enumerator E for $L \Rightarrow L$ is partially decidable: Run the computation of enumerator E and if it outputs a given word, then accept.
- E enumerates in lexicographic order $\Rightarrow L$ is decidable: Run the computation of enumerator E and if it outputs a given word w, then accept. If E outputs a word lexicographically larger than w, then reject.
- L is decidable $\Rightarrow E$ enumerates in lexicographic order: Decide all words one by one in lexicographic order.
- L is partially decidable \Rightarrow enumerator E for L : Decide all words "in parallel".

Theorem

(1) A language L is partially decidable if and only if there is an enumerator E for L.
(c) An infinite language L is decidable if and only if there is an enumerator E for L which outputs elements of L in lexicographic order.

Reducibility

Definition

- A language $A \subseteq \Sigma^{\star}$ is m-reducible to a language $B \subseteq \Sigma^{\star}$ if there exists a computable function $f: \Sigma^{\star} \rightarrow \Sigma^{\star}$ such that $w \in A \Leftrightarrow f(w) \in B$ for every $w \in \Sigma^{\star}$.
- A language $A \subseteq \Sigma^{\star}$ is 1 -reducible to a language $B \subseteq \Sigma^{\star}$ if there exists a computable injection $f: \Sigma^{\star} \rightarrow \Sigma^{\star}$ such that $w \in A \Leftrightarrow f(w) \in B$ for every $w \in \Sigma^{\star}$.
- A language B is m-complete (1 -complete) if B is partially decidable and any partially decidable language A is m-reducible (1 -reducible) to B.

Example (ACCEPT is m-reducible to HALT)

For a Turing machine M and its input w, let $f(M)$ be a Turing machine which calls $M(w)$ and if M accepts w, then $f(M)$ accepts w, otherwise M loops forever. (1)

Theorem

If language A is m-reducible to a decidable language B, then A is decidable. (2)

Example

Since ACCEPT is reducible to HALT and ACCEPT is undecidable, HALT is also undecidable.
(1) Informally, f is a program which obtains a source code of M and returns a source code $f(M)$ which differs from M by adding one if-then-else statement. Therefore, f only trivially modify input source codes and it always terminates. The program $f(M)$ loops if M loops or rejects. Since f is an injection, this is an example of 1-reducibility.
(2) For a given $w \in \Sigma^{\star}$, we compute $f(w)$ and then use a Turing machine recognizing B to determine whether $f(w) \in B$.

S-m-n lemma

s-m-n lemma (computable function)

For any two natural numbers $m, n \geq 1$ there is a $1-1$ total computable function
$s_{n}^{m}: \mathbb{N}^{m+1} \mapsto \mathbb{N}$ such that for every $x, y_{1}, y_{2}, \ldots, y_{m}, z_{1}, \ldots, z_{n} \in \Sigma_{b}^{*}:$

$$
\varphi_{s_{n}^{(n)}\left(x, y_{1}, y_{2}, \ldots, y_{m}\right)}^{\left(z_{1}, \ldots, z_{n}\right) \simeq \varphi_{x}^{(m+n)}\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right)}
$$

s-m-n lemma (Informally)
For all $m, n \in N$ and every Turing machine M expecting input of length $m+n$ and every input y_{1}, \ldots, y_{m} there exists a Turing machine M^{\prime} expecting input of length n such that for every input z_{1}, \ldots, z_{n} computations $M\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right)$ and $M^{\prime}\left(z_{1}, \ldots, z_{n}\right)$ give the same output. Furthermore, there exists a Turing machine SMN which for every M and y_{1}, \ldots, y_{m} computes M^{\prime}.

```
Pseudocode of SMN
1 Program SMN (M, y },\ldots,\mp@subsup{y}{m}{}
    Program M'(z_ , , , , zn)
    Lreturn M(y, (y, , ym, z},\ldots,\mp@subsup{z}{n}{}
    return M'
```

Post correspondence problem (Post, 1946)

Input

- Every domino contains two strings, one on each side; e.g. $\frac{a}{a b}$
- An input to the problem is a collection of dominoes; e.g.
g. $\{$

Match

A match a is a list of these dominoes (repetitions permitted) so that the string on the

Theorem

A problem whether for a given collection of dominoes there exists a match is undecidable.

Proof

We m-reduce ACCEPT language to the Post correspondence problem (language) as follows.

Jika Fink introducition to Complexity and Computability

(Turing machine cleans up the tape before it terminates.
(2) We slightly modify few terms to simplify the proof.
(0) We assume that Q and Σ are disjoin. Formally, a configuration is a concatenation of the following words:

- the content of the tape before the head
- the current state
- the symbol on the current position of head
- the content of the tape after the head

Since $Q \cap \Sigma=\emptyset$, the current state also indicates the current position of head on tape.
(0) \# $q_{0} w_{1} w_{2} \cdots w_{n} \#$ is the initial configuration with separating symbols \#.

Reducibility

Observations

- The relation of m-reducibility is reflexive and transitive.
- If m -complete language A is m -reducible to a partially decidable language B, then B is m -complete.

Theorem

The following languages are m -complete.

- ACCEPT $=\{(M, w) ; M$ accepts $w\}$
- HALT $=\{(M, w) ; M$ terminates on input $w\}$
- DIAG $=\{M$; Turing machine M terminates input word $M\}$

Proof (ACCEPT is m-complete)

- ACCEPT is a partially decidable language
- We have to prove that for every Turing machine M there exists a computable function $f_{M}: \Sigma^{\star} \rightarrow \Sigma^{\star}$ such that for every input $w \in \Sigma^{\star}$ it holds that $w \in L(M)$ if and only if $f_{M}(w) \in$ ACCEPT
- We have to find a computable function f_{M} such that $f_{M}(w)=(M, w)$
- We use s-m-m lemma to "hard-code" M, so f_{M} is $\operatorname{SMN}(\Phi, M)$ where Φ is the universal TM.

Simplified Post correspondence problem
First, we consider the following simpler reduction

- Consider a one-directional Turing machine $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
- When M terminates, all cells of the tape store the empty symbol λ. (1)
- Assume that a match has to start with one given domino.

Terminology (3)

- A configuration of a M is a word over $Q \cup \Sigma$ obtained from the word stored on the tape by inserting the current state into the current position of head. (3)
- A history of computation is a concatenation all configurations separated with \# and preceded and superseded \#.
Our goal is to create a list of dominoes such that the matching word represents a history of computation.

The initial domino

```
##\mp@subsup{w}{0}{\prime}\mp@subsup{w}{1}{}\mp@subsup{w}{2}{}\cdots\mp@subsup{w}{n}{}#
```

Computation using Post correspondence problem

Dominoes representing the computation

(1) For every $s, s^{\prime} \in \Sigma$ and every $q, q^{\prime} \in Q$ satisfying $\delta(q, s)=\left(q^{\prime}, s^{\prime}, N\right)$ add $\frac{q s}{q^{\prime} s^{\prime}}$
(2) For every $s, s^{\prime} \in \Sigma$ and every $q, q^{\prime} \in Q$ satisfying $\delta(q, s)=\left(q^{\prime}, s^{\prime}, R\right)$ add
(0. For every $s, s^{\prime}, \bar{s} \in \Sigma$ and every $q, q^{\prime} \in Q$ satisfying $\delta(q, s)=\left(q^{\prime}, s^{\prime}, L\right)$ add $\frac{\bar{z} q s}{q^{\prime} s s^{\prime}}$
(-) For every $s \in \Sigma$ add $\frac{s}{s}$

- Add $\frac{\#,}{\#}, \frac{\#}{\lambda \#}$ and $\frac{\lambda \#}{\#}$
- For every $q \in F$ add $\frac{q \# \#}{\#}$

Reduction to the original Post corresponding problem

For a word $w=w_{1} w_{2} \cdots w_{n}$ let

- $\star w$ denotes $\star w_{1} \star w_{2} \star \cdots \star w_{n}$
- $w \star$ denotes $w_{1} \star w_{2} \star \cdots \star w_{n}$
- $\star W^{*}$ denotes $\star w_{1} \star w_{2} \star \cdots \star w_{n} \star$

We reduce an instance of the Simplified Post corresponding problem
$\left\{\frac{t_{1}}{b_{1}},, \frac{t_{2}}{b_{2}}, \ldots, \frac{t_{k}}{b_{k}},\right\}$ with the initial domino $\frac{t_{1}}{b_{1}}$
to an instance of the Post corresponding problem
$\left\{\frac{\star t_{1}}{\star b_{1} \star}, \frac{\star t_{1}}{b_{1} \star}, \frac{\star t_{2}}{b_{2} \star}, \ldots, \frac{\star t_{k}}{b_{k} \star}, \frac{\star \varrho}{\rho}\right\}$.

Rice's theorem

Rice's theorem (languages)

Let C be a class of partially decidable languages and let us define
$L_{C}=\{M ; L(M) \in C\}$. Then language L_{C} is decidable if and only if C is either empty or it contains all partially decidable languages.

Corollary

The following languages are undecidable

- Empty language: $L_{C}=\{M ; L(M)=\emptyset\}$ where $C=\{\emptyset\}$
- Finite languages: $L_{C}=\{M ; L(M)$ is finite $\}$ where C is the set of finite languages
- Regular languages: $L_{C}=\{M ; L(M)$ is regular $\}$ where C is the set of regular languages
- Decidable languages: $L_{C}=\{M ; L(M)$ is decidable $\}$ where C is the set of decidable languages

Rice's theorem (functions)

Let C be a class of computable functions and let us define $A_{C}=\left\{w_{e} ; \varphi_{e} \in C\right\}$. Then language A_{C} is decidable if and only if C is either empty or it contains all computable functions.

Rice's theorem

Rice's theorem (languages)

Let C be a class of partially decidable languages and let us define
$L_{C}=\{M ; L(M) \in C\}$. Then language L_{C} is decidable if and only if C is either empty or it contains all partially decidable languages.

Proof (\Rightarrow)

For sake of a contradiction, assume that C is decidable by a Turing machine C-solver. WLOG: Turing machine $M_{\text {reject }}$ rejecting all inputs does not belong to C and C contains a Turing machine $M_{i n}$. We construct Turing machine accept_solver which is a contradiction.
Program accept_solver (M, w)
Program helper $M, w(X)$

if $M(w)$ accepts then

Run $M_{i n}(x)$ and return its output
else
$\left\lfloor\right.$ Run $M_{\text {reject }}(x)$ and return its output
Run C_solver (helper M, w) and return its output

Outline

(2) Complexity

Time and space complexity of a Turing machine

Definition

Let M be (deterministic) Turing machine which halts on every input and let $f: \mathbb{N} \mapsto \mathbb{N}$ be a function.

- We say that M runs in time $f(n)$ if for any string x of length $|x|=n$ the computation of M over x finishes within $f(n)$ steps.
- We say that M works in space $f(n)$ if for any string x of length $|x|=n$ the computation of M over x uses at most $f(n)$ tape cells.

Definition
 Let $f: \mathbb{N} \mapsto \mathbb{N}$ be a function, then we define classes:
 $\operatorname{DTIME}(f(n))$ - class of languages which can be accepted by deterministic Turing machines running in time $O(f(n))$.
 $\operatorname{DSPACE}(f(n))$ - class of languages which can be accepted by deterministic Turing machines working in space $O(f(n))$.

Observation

$\operatorname{DTIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n))$ for any function $f: \mathbb{N} \mapsto \mathbb{N}$.
Jirka Fink Introduction to Complexity and Computability

Strong Church-Turing thesis

Strong Church-Turing thesis

Real computation models can by simulated on TM with polynomial delay/space increase.

Notes

- Polynomials are closed under composition.
- Polynomial time algorithms are (usually) efficient in practice.
- Definition of P does not depend on particular computational model we use (as far as it can be polynomially simulated on a TM).
Jirka Fink Introduction to Complexity and Computability
Time and space complexity of a Turing machine
Definition
Let M be (deterministic) Turing machine which halts on every input and let $f: \mathbb{N} \mapsto \mathbb{N}$
be a function.
- We say that M runs in time $f(n)$ if for any string x of length $|x|=n$ the computation
of M over x finishes within $f(n)$ steps.
- We say that M works in space $f(n)$ if for any string x of length $|x|=n$ the
computation of M over x uses at most $f(n)$ tape cells.

Note that C is decidable if and only if \bar{C} is decidable. So, if $M_{\text {reject }} \in C$, we can consider \bar{C} instead of C. We prove that our accept_solver works properly. First, consider a Turing machine M which accept an input w which implies the following statements

- helper $M, W(x)$ and $M_{i n}(x)$ give the same output for all inputs x
- $L\left(\right.$ helper $\left._{M, w}\right)=L\left(M_{i n}\right)$
- C_solver accepts both $M_{i n}$ and helper ${ }_{M, w}$
- accept_solver (M, W) accepts

Next, consider a Turing machine M which does not accept an input w which implies the following statements

- both helper $M_{, w}$ and $M_{\text {reject }}$ do not accect any word
- $L\left(\right.$ helper $\left._{M, w}\right)=L\left(M_{\text {reject }}\right)$
- C_solver rejects both $M_{\text {reject }}$ and helper ${ }_{M, w}$
- accept_solver (M, w) rejects

Decision, search and optimization problem
Decision problem

- In a decision problem we want to decide whether a given instance x satisfies a specified condition.
- Formalized as a language $L \subseteq \Sigma^{*}$ of positive instances and a decision whether $x \in L$.

Search problem

- In a search problem we aim to find for a given instance x an output y which satisfies a specified condition or information that no suitable y exists.
- Formalized as a relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ which contains all pairs (x, y) satisfying a specified condition.

Optimization problem

- In an optimization problem we moreover require the output y to be maximal or minimal with respect to some measure.
- Formalizad as a problem arg $\max _{y \in \Sigma^{*}}\{f(x, y) ;(x, y) \in R\}$ where f is a (partial) ordering of all pairs (x, y).

Jirka Fink Introduction to Complexity and Computability
Important deterministic complexity classes

Definition

- Class of problems solvable in polynomial time:

$$
\mathrm{P}=\bigcup_{k \in \mathbb{N}} \operatorname{DTIME}\left(n^{k}\right)
$$

- Class of problems solvable in polynomial space:

$$
\operatorname{PSPACE}=\bigcup_{k \in \mathbb{N}} \operatorname{DSPACE}\left(n^{k}\right)
$$

- Class of problems solvable in exponential time:

$$
E X P=\bigcup_{k \in \mathbb{N}} \operatorname{DTIME}\left(2^{n^{k}}\right)
$$

Definition
A verifier for a language A is a Turing machine M, where
$A=\{x ; \exists y: M$ accepts $(x, y)\}$.

Notes

- A string y is called a certificate of x if M accepts (x, y).
- Time and space complexities of a verifier is measured only in terms of $|x|$.
- Hence, if time or space complexity of a verifier is $f(n)$, then the length of y is at most $f(n)$.
- A polynomial time verifier runs in time polynomial in $|x|$.

```
Nondeterministic Turing machine
```


Definition

```
Nondeterministic Turing machine is a quintuple \(\left(Q, \Sigma, \delta, q_{0}, F\right)\) where
- \(Q\) is a finite set of states (internal memory)
- \(\Sigma\) is a finite tape alphabet
- \(q_{0} \in Q\) is the initial state
- \(F \subseteq Q\) is the set of accepting states
- \(\delta: Q \times \Sigma \rightarrow 2^{Q \times \Sigma \times\{R, N, L\} \cup\{\perp\}}\) is a transition function which for every state of \(Q\) and every value in the current cell determines a set of possible transitions (a new state, a symbol written on type and a movement of the head).
```


Idea of computation

- In every step of a computation, nondeterministic TM chooses a transition which leads to an accepting state if such a choice exists.
- Nondeterministic TM looks as a parallel computer which in every step "forks" to evaluate all possible transitions and it accepts a given input if at least one "thread" terminates in an accepting state.
- Nondeterministic Turing machine is not a real computation model in the sense of strong Church-Turing thesis.

Jirka Fink introduction to Complexty and Computability
Nondeterministic Turing machine vs. verifier

Definition

NP is the class of languages that have polynomial time verifiers.

Notes

- NP stands for Nondeterministically Polynomial
- Nondeterminism corresponds to "guessing" the right certificate y of x.
- Corresponds to a class of search problems where we can check if a given string is a solution to our problem.
- Languages in NP are exactly those which are accepted by nondeterministic polynomial time Turing machines.

Definition

 configurations $C_{0}, C_{1}, C_{2}, \ldots$, where- C_{0} is the initial configuration and configuration.

Definition

 length $|x|=n$ terminates within $f(n)$ steps. length $|x|=n$ uses at most $f(n)$ cells of work tape.Basic nondeterministic complexity classes

Definition

Let $f: \mathbb{N} \mapsto \mathbb{N}$ be a function, then we define classes: $O(f(n))$. space $O(f(n))$.

Theorem

 working in polynomial time, that is
Theorem

For any function $f: \mathbb{N} \mapsto \mathbb{N}$ we have that

- Computation of Nondeterministic TM M over string x is a sequence of
- C_{i+1} is obtained from C_{i} by applying one of possible transition defined by δ.
- Computation is accepting if it is finite and M is in an accepting state in the last
- String x is accepted by NTM M if there is an accepting computation of M over x.
- Language of string accepted by Nondeterministic TM M is denoted as $L(M)$.

Let M be a nondeterministic Turing machine and let $f: \mathbb{N} \mapsto \mathbb{N}$ be a function.

- We say that M works in time $f(n)$ if every computation of M over any input x of
- We say that M works in space $f(n)$ if every computation of M over any input x of

NTIME $(f(n))$ - class of languages accepted by nondeterministic TMs working in time
$\operatorname{NSPACE}(f(n))$ - class of languages accepted by nondeterministic TMs working in

Class NP consists of languages accepted by nondeterministic Turing machines

$$
\mathrm{NP}=\bigcup_{k \in \mathbb{N}} \operatorname{NTIME}\left(n^{k}\right)
$$

$\operatorname{DTIME}(f(n)) \subseteq \operatorname{NTIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$.

Relations between classes

Notation

Let $f, g: \mathbb{N} \mapsto \mathbb{N}$. We say that $f(n)=o(g(n))$ if for every $\epsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ it holds that $f(n)<\epsilon g(n)$.
Equivalently, $f(n)=o(g(n))$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.

Lemma

Let M be a deterministic or nondeterministic Turing machine working in space $f(n)$,
Then, there exists a constant c_{M} such that the number all configurations of M is at most

$$
\begin{cases}2^{c_{M}{ }^{f(n)}} & \text { if } f(n)=\Omega(n) \\ n 2^{c_{M^{f(n)}}} & \text { if } f(n)=o(n) \text { using TM with sublinear space complexity. }\end{cases}
$$

Theorem
Let $f(n)$ be a function satisfying $f(n) \geq \log _{2} n$. For any language $\mathrm{L} \in \operatorname{NSPACE}(f(n))$ there is a constant c_{L} so that $L \in \operatorname{TIME}\left(2^{c^{L_{L}+(n)}}\right)$. (2)

Theorem

The following chain of inclusions holds:
$\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{NPSPACE} \subseteq \mathrm{EXP}$.

Savitch's theorem

Theorem

For any function $f(n) \geq \log _{2} n$ it holds that $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)$.

Proof (using yieldability problem)

Given a NTM M working in space $f(n)$, its two configuration C_{1} and C_{2} and $t \in \mathbb{N}$, can
M switch from the configuration C_{1} to C_{2} in at most t steps? (1)

Program yield (C_{1}, C_{2}, t)

if $t=1$ then

return accept if M can switch from C_{1} to C_{2} in a single step, otherwise reject else
foreach configuration C^{\prime} do
if both yield ($C_{1}, C^{\prime},\lfloor t / 2\rfloor$) and yield ($C^{\prime}, C_{2},\lceil t / 2\rceil$) accept then
L return accept
return reject
(1) The initial configuration is known and the accepting configuration can be fixed by modifying M so that tape is clear when M accepts

- The running time of M is $2^{\mathcal{O}(f(n))}$, so DTM accepts if yield ($C_{\text {init }}, C_{\text {accept }}, 2^{\mathcal{O}(f(n))}$ accepts.
- Depth of the recursion is $\log 2^{\mathcal{O}(f(n))}=\mathcal{O}(f(n))$
- One configuration can be stored in $\mathcal{O}(f(n))$ cells, so space complexity is $\mathcal{O}\left(f^{2}(n)\right)$.

Space hierarchy theorem

Definition

A function $f: \mathbb{N} \mapsto \mathbb{N}$, where $f(n) \geq \log n$, is called space constructible if the function that maps 1^{n} to the binary representation of $f(n)$ is computable in space $O(f(n))$.

Deterministic Space Hierarchy Theorem

For any space constructible function $f: \mathbb{N} \mapsto \mathbb{N}$, there exists a language A that is decidable in space $\mathcal{O}(f(n))$ but not in space $o(f(n))$.

Corollary

(1) For any two functions $f_{1}, f_{2}: \mathbb{N} \mapsto \mathbb{N}$, where $f_{1}(n) \in O\left(f_{2}(n)\right)$ and f_{2} is space constructible,

$$
\operatorname{DSPACE}\left(f_{1}(n)\right) \subsetneq \operatorname{DSPACE}\left(f_{2}(n)\right)
$$

(2) For any two real numbers $0 \leq a<b$,

$$
\operatorname{DSPACE}\left(n^{a}\right) \subsetneq \operatorname{DSPACE}\left(n^{b}\right)
$$

(3) $\mathrm{NL} \subsetneq \operatorname{PSPACE} \subsetneq \operatorname{EXPSPACE}=\bigcup_{k \in \mathbb{N}} \operatorname{DSPACE}\left(2^{n^{k}}\right)$

Jirka Fink Introduction to Complexity and Computability

Space hierarchy theorem

Deterministic Space Hierarchy Theorem

For any space constructible function $f: \mathbb{N} \mapsto \mathbb{N}$, there exists a language A that is decidable in space $\mathcal{O}(f(n))$ but not in space $o(f(n))$.

Idea of the proof

- Create a TM D working in space $\mathcal{O}(f(n))$ deciding a language denoted by A - Input is a word w of length n encoding a TM M
- Mark space of length $f(n)$ for simulation $M(w)$
- If simulation $M(w)$ uses more that $f(n)$ cells or loops, D rejects
- D accepts w if and only if M rejects w
- No TM M working in space $o(f(n))$ decides A
- For constradiction, M decides A in space $o(f(n))$ and consider input w encoding M - Assume D has enough space to simulate $M(w)$
- Then, M accepts $w \Leftrightarrow D$ accepts $w \Leftrightarrow M$ rejects w
- Ensure that M has enough space to simulate $M(w)$
- D has a fixed tape alphabet simulating M with arbitrary tape alphabet
- If M runs in space $g(n)$, then D uses $d g(n)$ space
- From $g(n) \in o\left(f(n)\right.$ it follows that $\exists n_{0} \forall n \geq n_{0}: d g(n)<f(n)$
- Let input word w be $\langle M\rangle 10^{n_{0}}$ where $\langle M\rangle$ is the code of M
- Then $|w|=n \geq n_{0}$ and D can simulates $M(w)$ in space $f(n)$
- D must always terminate but M may loop
- If M uses $o(f(n))$ space, then M uses $2^{o(f(n))}$ time or loops

Time hierarchy theorem

Definition

A function $f: \mathbb{N} \mapsto \mathbb{N}$, where $f(n) \geq n \log n$, is called time constructible if the function that maps 1^{n} to the binary representation of $f(n)$ is computable in time $O(f(n))$.

Deterministic Time Hierarchy Theorem

For any time constructible function $f: \mathbb{N} \mapsto \mathbb{N}$, there exists a language A that is decidable in time $\mathcal{O}(f(n))$ but not in time $o(f(n) / \log f(n))$.

Corollary

(1) For any two functions $f_{1}, f_{2}: \mathbb{N} \mapsto \mathbb{N}$, where $f_{1}(n) \in o\left(f_{2}(n) / \log f_{2}(n)\right)$ and f_{2} is time constructible,
$\operatorname{DTIME}\left(f_{1}(n)\right) \subsetneq \operatorname{DTIME}\left(f_{2}(n)\right)$.
(2) For any two real numbers $0 \leq a<b$,
$\operatorname{DTIME}\left(n^{a}\right) \subsetneq \operatorname{DTIME}\left(n^{b}\right)$.
($\mathrm{P} \subsetneq \mathrm{EXP}$

Polynomial reducibility

Definition

Language A is polynomially reducible to language B, denoted by $A \leq_{m}^{p} B$, if there exists a polynomial time computable function $f: \Sigma^{*} \mapsto \Sigma^{*}$ satisfying

$$
\left(\forall w \in \Sigma^{*}\right)[w \in A \Longleftrightarrow f(w) \in B] .
$$

Jirka Fink Introduction to Complexity and Computability

Space hierarchy theorem

Deterministic Space Hierarchy Theorem

For any space constructible function $f: \mathbb{N} \mapsto \mathbb{N}$, there exists a language A that is decidable in space $\mathcal{O}(f(n))$ but not in space $o(f(n))$.

Algorithm D deciding some language A

Program $D(W)$

Let n denotes the length of w
Compute $f(n)$ using space constructibility and mark off this much space
if w is not of the form $\langle M\rangle 10^{n_{0}}$ for some TM M then
Reject
Simulates M on w :
Count the number of steps and reject if the counter excedeeds $2^{f(n)}$
Reject if the simulation attempts to use more than $f(n)$ space
if M accepts w then
Reject
else
\lfloor Accept

Time hierarchy theorem

Deterministic Time Hierarchy Theorem

For any time constructible function $f: \mathbb{N} \mapsto \mathbb{N}$, there exists a language A that is decidable in time $\mathcal{O}(f(n))$ but not in time $o(f(n) / \log f(n))$.

Algorithm D deciding some language A

1 Program D(W)
Let n denotes the length of w
Compute $f(n)$ using time constructibility and store it as a binary counter
if w is not of the form $\langle M\rangle 10^{n_{0}}$ for some TM M then
Reject
Simulates M on w :
Decrease the counter of steps and reject if the counter reaches 0
if M accepts w then
| Reject
else
\lfloor Accept

NP-completeness

Definition

- Language B is NP-hard, if any language $A \in N P$ is polynomially reducible to B.
- Language B is NP-complete if $B \in \mathrm{NP}$ and B is NP-hard.

Observation

- If arbitrary NP-complete problem has polynomial time algorithm then $\mathrm{P}=\mathrm{NP}$.
- If for language B it exists NP-complete problem A polynomially reducible to B (i.e.
$\left.A \leq_{m}^{P} B\right)$, then B is NP-hard.

Triling
Instance: Set of colors B, natural number s, square grid S of size $s \times s$, in which border cells have outer edges colored by colors in B. Set of tile types K, every tile is a square with edges colored by colors in B.
Question: Is there a valid tiling of S with tiles from K ? By a valid tiling we mean placing tiles to cells of S without rotation, so that the tiles sharing a border have matching color and the tiles placed in a border cell have the colors matching outer edge colors of S.

Theorem

Tiling is NP-complete problem.
Observation
Tiling is belongs to NP.
Satisfiability (SAT)
Terminology
Literal: Variable (e.g. x) or its negation (e.g. $\bar{x})$.
Clause: Disjunction of literals.
Conjunctive normal form (CNF): a formula is in CNF if it is a conjunction to complexity and computabiliy of clauses.

Satisfiability (SAT)

Instance: A formula φ in CNF.
Question: Is there an assignment v of truth values to variables so that $\varphi(v)$ is satisfied?

Cook-Levin theorem

SAT is NP-complete problem.

3-Satisfiability

Definition

A formula φ is in k-CNF if it is in CNF and every clause consists of exactly k literals where $k \in \mathbb{N}$.

k-SAT

Instance: A formula φ in k-CNF
Question: Is there an assignment v of truth values to variables so that $\varphi(v)$ is satisfied?

Theorem

3-SAT is NP-complete problem. (1)

Note
 2-SAT is polynomially solvable.

Vertex Cover

Vertex Cover problem

Instance: An undirected graph $G=(V, E)$ and an integer $k \geq 0$.
Question: Is there a set of vertices $S \subseteq V$ of size at most k so that each edge $\{u, v\} \in E$ has one of its endpoints in S (that is $\{u, v\} \cap S \neq \emptyset$)?

Vertex cover problem is NP-complete

We construct a graph G for a given 3-SAT formula φ.

- For every variable x in φ, add two vertices v_{x} and $v_{\bar{x}}$ joined by an edge.
- For every clause (e.g. $x \vee \bar{y} \vee z$) in φ, add
- three vertices c_{x}, c_{y}, and c_{z} and
- edges $c_{x} c_{y}, c_{x} c_{z}$ and $c_{y} c_{z}$ (forming a triangle on c_{x}, c_{y}, and c_{z}) and
\bullet edges $c_{x} v_{x}, c_{y} v_{\bar{y}}$ and $c_{z} v_{z}$.
- Let $k=v+2 c$ where v and c is the number of variables and clauses, resp.
- Observe that G has no vertex cover smaller than k.
- G has a vertex cover of size k if and only if φ is satisfiable.

Every language $A \in N P$ is polynomially reducible to Tiling

- There exists NTM M deciding A in polynomial time $p(n)$.
- For simplification we assume:
(1) $F=\left\{q_{1}\right\}$ where $q_{1} \neq q_{0}$, and $\delta\left(q_{1}, a\right)=\emptyset$ for every $a \in \Sigma$.

2. Computation of M terminates with an empty tape (accepting configuration is unique).

- Tape is one-directional.
- Let x be an instance of A and $s=p(|x|)$.
- Rows encode configurations of computation of M :
- The set of colors is $\Sigma \cup Q \times(\Sigma \cup\{L, R\})$.
- Upper and bottom edges of the grid are colored by the initial and accepting configuration, resp.
- Left and right edges of the grid are colored by λ.
- Types of tiles are defined by the transition function of M.
- For every valid tiling there exists a computation of M.
- The sequence of colors between i-th and ($i+1$)-th rows there exists exactly one color from $Q \times \Sigma$ and other colors are from Q.

Satisfiability (SAT)

SAT is NP-hard problem

(1) Given a set of colors B and types of tiles K and a grid $s \times s$.
(2) Variables are $x_{i, j, k}$ for $i, j=1, \ldots, s$ and $k \in K$.
(0) Assignment $x_{i, j, k}=1$ means that tiles of type K is places on position (i, j).
(1) Every position (i, j) has exactly one tile:

- $\bigvee_{k \in K} x_{i, j, k}$
$\bar{x}_{i, j, k} \vee \bar{x}_{i, j, k^{\prime}}$ for every color $k \neq k^{\prime}$.
- Colors are compatible between positions (i, j) a $(i, j+1)$:
- $\bar{x}_{i, j, k} \vee \bar{x}_{i, j+1, k^{\prime}}$ whenever the right edge of the tile k on position (i, j) differs from the left edge of the tile k^{\prime} on position $(i, j+1)$.
- Color of upper edge of the grid is compatible with the first row:
- $V_{k \in U_{j}} x_{1, j, k}$ where U_{j} is the set of tiles with upper edge colored by the same color as j-th column of the upper edge of the grid.
(1) Similar clauses ensuring compatibility between position (i, j) and $(i+1, j)$ and all edge of the grid.
($\operatorname{CNF} \varphi$ is the conjunction of all presented clauses.
(1) Too short clauses can be prolonged using additional variables, e.g. $x_{1} \vee \bar{x}_{2}$ can be replaced by $\left(x_{1} \vee \bar{x}_{2} \vee y\right) \&\left(x_{1} \vee \bar{x}_{2} \vee \bar{y}\right)$. Too long clause $\bar{x}_{1} \vee x_{2} \vee x_{3} \vee \cdots \vee x_{k}$ can be shortened by ($\left.\bar{x}_{1} \vee x_{2} \vee y\right) \&\left(\bar{y} \vee x_{3} \vee \cdots \vee x_{k}\right)$ using additional variables.

Jirka Fink Introduction to Complexity and Computability

 66NP-complete problems related to Vertex Cover

Clique

Instance: An undirected graph $G=(V, E)$ and an integer $k \geq 0$.
Question: Does G contain k vertices S such that every pair of vertices in S is connected by an edge in G ?

Independent set

Instance: An undirected graph $G=(V, E)$ and an integer $k \geq 0$.
Question: Does G contain k vertices S such that every pair of vertices in S is not connected by an edge in G ?

Hamiltonian cycle

Instance: An undirected graph $G=(V, E)$.
Question: Does G contain a cycle throught all vertices?

Travelling salesman problem, TSP

Instance: A complete graph $G=(V, E)$ with weights on edges $w: E(G) \rightarrow \mathbb{N}$ and a limit d.
Question: Does G contain a Hamiltonian cycle with total weight at most d.

Theorem

Both Hamiltonain cycle and TSP are NP-complete problems.

Jirka Fink introducition to Complexity and Computability

Subset-Sum

Subset-Sum

Instance: Positive integers a_{1}, \ldots, a_{k} and s which are binary coded.
Question: Is there a subset $A \subseteq\left\{a_{1}, \ldots, a_{k}\right\}$ such that $\sum_{a \in A} a=s$?

Subset-Sum is NP-complete problem (reduction from 3-SAT)

- For a given 3-SAT φ on variables x_{1}, \ldots, x_{v} and clauses c_{1}, \ldots, c_{d}, we construct $2(v+d)+1$ integers $y_{1}, \ldots, y_{v}, z_{1}, \ldots, z_{v}, g_{1}, \ldots, g_{d}, h_{1}, \ldots, h_{d}, s$, each one is $2(v+d)+1$ integers $y_{1}, \ldots, y_{v}, z_{1}, \ldots, z_{v}, g$
$v+d$ decimal integer of base 10 as follows.
(c) Let $y_{i}[j]$ denotes j-th digit of integer y_{i}.
(2) For a positive literal x_{i} in a clause c_{j} we set $y_{i}[j]=1$.
(3) For a negative literal \bar{x}_{i} in a clause c_{j} we set $z_{i}[j]=1$.
(9) Let $y_{i}[d+i]=z_{i}[d+i]=1$ for $i=1, \ldots, v$.
(6) Let $y_{j}[j]=z_{j}[j]=1$ for $j=1, \ldots, d$.
(6) All other digits are 0 .
(7) Let $s[j]=3$ for $j=1, \ldots, d$ and $s[d+i]=1$ for $i=1, \ldots, v$.
- There is no carry in the sum of all integers y_{1}, \ldots, h_{d} in decimal representation.
- In the subset A, we have to choose either y_{i} or z_{i} for every variable $x_{i} \Rightarrow y_{i} \in A$ for positive assignment of x_{i}.
- For every clause c_{j}, at least one integer of $y_{1}, \ldots, y_{v}, z_{1}, \ldots, z_{v}$ has to contribute by 1 in the j-th digit to the sum $\sum_{a \in A} a \Rightarrow$ at least one satisfied linteral in clause c_{j}. (1)

| Jirka Fink | Introduction to Complexity and Computability | 71 |
| :--- | :--- | :--- | :--- |

Subset-Sum

Subset-Sum

Instance: Positive integers a_{1}, \ldots, a_{k} and s which are binary coded.
Question: Is there a subset $A \subseteq\left\{a_{1}, \ldots, a_{k}\right\}$ such that $\sum_{a \in A} a=s$?
Subset-Sum is NP-complete if integers a_{1}, \ldots, a_{k} and s are binary coded, but it is
polynomial if integers are unary coded.

Dynamic programming algorithm for Subset-Sum

(1) Consider logical variables $z_{i, j}$ which is true if there exists $A \subseteq\left\{a_{1}, \ldots, a_{i}\right\}$ such that $\sum_{a \in A}=j$ for $j=0, \ldots, s$.
(2) Clearly, $z_{0,0}$ is true and $z_{0, j}$ is false for $j>0$.
(3) Observe that $z_{i, j}=z_{i-1, j} \vee z_{i-1, j-a_{i}}$ for $i=1, \ldots, k$ and $j=0, \ldots, s$.
(9) Time complexity is $\mathcal{O}(\mathrm{ks})$ which is polynomial in the length of the input if all integers a_{1}, \ldots, a_{k} and s are unary coded.

3-partition is NP-complete even if integers are unary coded
Instance: Positive integers $a_{1}, \ldots, a_{3 k}$.
Question: Can integers $a_{1}, \ldots, a_{3 k}$ be split into k groups, each with 3 elements, so that the sum of integers in each group is the same (i.e. $\frac{1}{k} \sum_{i=1}^{3 k} a_{i}$)?

Number problem

Definition

Let A be a decision problem and let I be an instance of A. Then
len (I) denotes the length (=number of bits) of encoding of $/$ when using binary encoding of numbers.
$\max (I)$ denotes the value of a maximum number parameter in I. We say that A is a number problem, if for any polynomial p there is an instance I of A with $\max (I)>p(\operatorname{len}(I))$.

Examples

Number problems : Subset-Sum, 3-partition, TSP
Non-number problems : Hamiltonicity, SAT

3-Dimensional Matching

Instance: Set $M \subseteq W \times X \times Y$, where W, X, and Y are sets of size q
Question: Can we find a perfect matching in M ? In particular, is there a set $M^{\prime} \subseteq M$ of size q so that all triples in M^{\prime} are pairwise disjoint?

Theorem

3-Dimensional Matching is an NP-complete problem.

Theorem
 Existence of a perfect matching in an undirected graph is polynomial problem.

(1) Observe that there a subset A of integers y_{1}, \ldots, h_{d} with $\sum_{a \in A} a=s$ if and only if φ is satisfiable.

Scheduling

Scheduling

Instance: A set of tasks U, processing time $d(u) \in \mathbb{N}$ associated with every task $u \in U$, number of processors m, deadline $D \in \mathbb{N}$
Question: Is it possible to assign all tasks to processors so that the (parallel) processing time is at most D ?

Theorem
Scheduling is an NP-complete problem.

Pseudopolynomial algorithm

Definition

We say that an algorithm which solves problem A is pseudopolynomial if its running time is bounded by a polynomial in two variables len (I) and $\max (I)$.

Notes

- We usually measure complexity of an algorithm only with respect to len($I)$.
- If for some polynomial p and for every instance I of A we have that $\max (I) \leq p(\operatorname{len}(I))$ then a pseudopolynomial algorithm is actually polynomial.
- Also, if the numbers in / would be encoded in unary, a pseudopolynomial algorithm would run in polynomial time.
- For example, dynamic programming algorithm for Subset-Sum problem is a pseudopolynomial.

Factorization
Strong NP-completeness
Trivial algorithm for factorization
Input: An integer n
$1 i:=2$
while $i \cdot i \leq n$ do
if i divides n then Output: i
$n:=n / i$
else
$\lfloor i:=i+1$
if $n>1$ then
L Output: n

Complexity
 - Complexity of the algorithm is $\mathcal{O}(\sqrt{n})$.
 - If a given integer n is encoded in unary, then \sqrt{n} is a polynomial function, so the algorithm is pseudopolynomial.
 - If a given integer n is encoded in binary using $k=\lceil\log n\rceil$ bits, complexity is $\mathcal{O}\left(2^{k / 2}\right)$ which is exponential.

Strong NP-completeness of number problems

"Weighted" versions of NP-complete problems

"Weighted" versions of strongly NP-complete problems usually remain strongly NP-complete, e.g.

- Hamiltonicity \rightarrow Travelling Salesman problem
- Vertex cover \rightarrow weighted vertex cover

Number problems

- 3-partition: strongly NP-complete
- Subset-Sum: NP-complete, pseudopolynomial algorithm
- Factorization: pseudopolynomial algorithm
- Prime testing: polynomial algorithm

Jirka Fink Introduction to Complexity and Computability ${ }^{8}$

Approximation algorithm for Vertex cover

Minimal vertex cover problem

Instance: An undirected graph $G=(V, E)$.
Output: Find a vertex cover (i.e. $S \subseteq V$ so that each edge $\{u, v\} \in E$ has one of its endpoints in S) with minimal size.

Observation

If there exists a polynomial algorithm for minimal vertex cover problem, then $P=N P$.

Approximation algorithm

Input: Graph G
1 Let M be a maximal matching of G
2 Let S be the set of both endpoints of all edges of M
Output: S

Approximation algorithm

Definition

Algorithm R is called approximation algorithm for optimization problem A, if for each instance $I \in A$ the output of $R(I)$ is a feasible solution $\sigma \in S_{A}(I)$ (if there is any).

- If A is a maximization problem, then $c \geq 1$ is an approximation ratio of algorithm R, if for all instances $I \in D_{A}$ we have that opt $(I) \leq c \cdot \mu_{A}(I, R(I))$.
- If A is a minimization problem, then $c \geq 1$ is an approximation ratio of algorithm R, if for all instances $I \in D_{A}$ we have that $\mu_{A}(I, R(I)) \leq c \cdot \operatorname{opt}(I)$.

Example: Vertex cover

- The algorithm finds a vertex cover S of size at most $2\left|S^{\prime}\right|$ where S^{\prime} is the minimal vertex cover.
- Therefore, the approximation ratio is 2.

Inapproximability of maximal independent set

If there exists a polynomial algorithm for maximal independent set with approximation error c for some $c>1$, then $P=N P$.

Definition

- Let A be a decision problem and let p be a polynomial. Then $A(p)$ denotes the restriction of problem A to instances $/$ which satisfy $\max (I) \leq p(\operatorname{len}(I))$.
- We say that problem A is strongly NP-complete, if there is a polynomial p for which $A(p)$ is NP-complete.

Notes

- Any NP-complete problem which is not a number problem is strongly NP-complete.
- If there is a strongly NP-complete problem which can be solved by a pseudopolynomial algorithm then $\mathrm{P}=\mathrm{NP}$.

Unary coding

- Pseudopolynomial = polynomial when considering unary encoding.
- Strongly NP-complete = NP-complete even when considering unary encoding.

Optimization problem

Definition

We define optimization problem as a triple $A=\left(D_{A}, S_{A}, \mu_{A}\right)$, where

- $D_{A} \subseteq \Sigma^{*}$ is a set of instances,
- $S_{A}(I)$ assigns a set of feasible solutions to each $I \in D_{A}$
- $\mu_{A}(I, \sigma)$ assigns a positive rational value to every $I \in D_{A}$ and every feasible solution $\sigma \in S_{A}(I)$.

Optimum solution

- If A is a maximization problem, then an optimum solution to instance I is a feasible solution $\sigma \in S_{A}(I)$, which has the maximum value $\mu_{A}(I, \sigma)$.
- If A is a minimization problem, then an optimum solution to instance l is a feasible solution $\sigma \in S_{A}(I)$, which has the minimum value $\mu_{A}(I, \sigma)$.
- The value of an optimum solution is denoted opt (I).

Approximation algorithm for Vertex cover

Approximation algorithm

Input: Graph G
1 Let M be a maximal matching of G
2 Let S be the set of both endpoints of all edges of M
Output: S

Analysis

- The running time is polynomial
- The algorithm outputs a vertex cover
- If there is an edge $u v$ uncovered by S, then $M \cup\{u v\}$ is a matching, so M is not a maximal matching
- If S^{\prime} is the minimal vertex cover, then $|S| \leq 2\left|S^{\prime}\right|$
- For every $u v \in M$, vertex u or v is covered by S^{\prime}
- Hence, $|S|=2|M| \leq 2\left|S^{\prime}\right|$

Jirka Fink Introduction to Complexity and Computability
Travelling Salesman problem

TSP with triangular inequality
TSP is NP-complete even if weights of edges satisfies the triangular inequality.

Inapproximability of TSP (without triangular inequality)
If for some $c>1$ there exists a polynomial algorithm for TSP with approximation error c, then $\mathrm{P}=\mathrm{NP}$.

Approximation of TSP with triangular inequality
For TSP with triangular inequality there exists a polynomial algorithm with approximation error $3 / 2$.

Bin packing
 Instance: Set of k items of rational sizes $a_{1}, \ldots, a_{k} \in[0,1]$.
 Constrain: Splitting of items to pairwise disjoint bins B_{1}, \ldots, B_{m}, which satisfy that the sum of sizes of items in every bin is at most 1 .
 Objective: Minimize the number of bins m.

Any-Fit algorithm

Take items as they come and for each item try to find a bin in which it fits. If no such bin exists, add a new bin with the item in it.
Any-Fit algorithm has approximation error 2

- The optimal number of bins m^{\prime} is at least $\sum_{i=1}^{k} a_{i}$.
- For every pair of different bins B_{i} and B_{j} it holds that $\sum_{l \in B_{i}} a_{l}+\sum_{l \in B_{j}} a_{l}>1$.
- By summing last inequality for pairs $(1,2),(2,3), \ldots,(m-1, m),(m, 1)$ we obtain
$2 \sum_{i=1}^{m} \sum_{l \in B_{i}} I>m$.
- Hence, $m<2 \sum_{i=1}^{m} \sum_{l \in B_{i}} I=2 \sum_{i=1}^{k} a_{i} \leq 2 m^{\prime}$.

Jirka Fink Introduction to Complexty and Computability

Fully polynomial time approximation scheme

Definitions

- Algorithm ALG is an approximation scheme for an optimization problem A, if on the input instance $I \in D_{A}$ and a rational number ϵ it returns a solution $\sigma \in S_{A}(I)$ with approximation ratio $1+\epsilon$.
- If ALG works in polynomial time with respect to len (I), then it is a polynomial time approximation scheme.
- If ALG works in polynomial time with respect to both len (I) and $\frac{1}{\epsilon}$, it is a fully polynomial time approximation schema (FPTAS).

Jirka Fink Introduction to Complexity and Computability

 ${ }^{86}$
Unsatisfiability

Unsatisfiability (UNSAT)
 Instance: Formula φ in CNF
 Question: Is it true, that for any assignment v of values to variables $\varphi(v)=0$ (i.e. φ is unsatisfiable)?
 Notes
 - We do not know a polynomial time verifier for problem UNSAT, this problem most probably does not belong to class NP.
 - Language UNSAT is (more or less) the complement of language SAT, because for any formula φ in CNF we have $\varphi \in$ UNSAT $\Longleftrightarrow \varphi \notin$ SAT.

Similar "complementary" problems

- Does a given graph contain no Hamiltonian cycle?
- Given a finite set of integers, does every non-empty subset have a non-zero sum?
- Given a graph G and $k \in \mathbb{N}$, is the size of maximal clique in G at most k ?

coNP-completeness

Definition

Problem A is coNP-complete, if
(i) A belongs to class coNP and
(ii) every problem B in coNP is polynomially reducible to A.

Noles

- Language A is coNP-complete, if and only if complement \bar{A} is NP-complete.
- For example UNSAT is an coNP-complete problem.
- If there is an NP-complete language A, which belongs to coNP, then NP $=$ coNP.

Integer factorization

Instance: Positive integers m and n.
Question: Is there an integer k dividing m and satisfying $1<k<n$.

- Clearly, Integer factorization belongs to NP.
- Agrawal-Kayal-Saxena primality test implies that Integer factorization belongs to coNP.
- It is not known whether there exists a polynomial algorithm for Integer factorization.

Sorted-Any-Fit algorithm
Sort the items by their value decreasing. Take items from the biggest to smallest and for each item try to find a bin in which it fits. If no such bin exists, add a new bin with the item in it.

Best-fit algorithm

Take items as they come and for each item try to find the most full bin in which it fits. If no such bin exists, add a new bin with the item in it.

Notes

- Best-fit algorithm has approximation error 1.7.
- If m^{\prime} is the optimal number of bins and m is the number of bins found by Sorted-Any-Fit algorithm, then $m \leq \frac{11}{9} m^{\prime}+4$.
- There is no polynomial algorithm with approximation error smaller than $3 / 2$.

Fully polynomial time approximation scheme

Optimization version of Subset-Sum problem

Instance: Positive integers a_{1}, \ldots, a_{k} and s which are binary coded
Feasible solution: A subset $A \subseteq\left\{a_{1}, \ldots, a_{k}\right\}$ such that $\sum_{a \in A} a \leq s$.
Objective: Maximize $\sum_{a \in A} a$.

Algorithm for the optimization version of Subset-sum

Input: Numbers $a_{1}, \ldots, a_{k}, s \in \mathbb{N}$ and $\epsilon>0$
$1 \delta=\sqrt[k-1]{\frac{1}{1+\epsilon}}$
2 $A_{0}=\{0\}$
for $i=1$ to k do
$A_{i}=A_{i-1}$
for $t \in A_{i-1}$ do
$t^{\prime}=t+a_{i}$
if $t^{\prime} \leq s$ and A_{i} does not contain an integer between δt^{\prime} and t^{\prime} then $\left\lfloor\right.$ Insert t^{\prime} into A_{i}
return $\max A_{k}$

Class coNP

Definition

We say that language A belongs to the class coNP if and only if its complement \bar{A} belongs to the class NP.

Notes

- For instance UNSAT belongs to coNP. (It is easy to recognize instances which do not encode a formula.)
- Language L belongs to coNP, iff there is a polynomial time verifier V which satisfies that $L=\{x ;(\forall y) V(x, y)$ accepts $\}$
- Clearly, $\mathrm{P} \subseteq \mathrm{NP} \cap$ coNP.
- It is not known whether NP = coNP.
- Clearly, if $\mathrm{P}=\mathrm{NP}$, then $\mathrm{NP}=\mathrm{coNP}$.
- A problem A is polynomially reducible to a problem B if and only if the complementary problem \bar{A} is polynomially reducible to the complementary problem \bar{B}.

Class \#P

Motivation

How hard it is to determine the number of

- Hamiltonian cycles in a given graph?
- satisfied assignments of given CNF/DNF formula?
- perfect matchings of a given graph?

These counting problems can be solved in polynomial space.
Are there polynomial time algorithms?

Definition

Function $f: \Sigma^{*} \mapsto \mathbb{N}$ belongs to class \#P, if there is a polynomial time verifier V such that each $x \in \Sigma^{*}$ satisfies $f(x)=\mid\{y ; V(x, y)$ accepts $\} \mid$.

Notes

- We can associate a function \#A in \#P with every problem $A \in N P$ (given by the "natural" polynomial time verifier for A).
- Natural verifier verifies that y is a solution to the search problem corresponding to A.
- For example the natural verifier for SAT accepts a pair (φ, v), if φ is a CNF and v is a satisfying assignment for φ.
- Then \#SAT $(\varphi)=|\{v ; \varphi(v)=1\}|$.

```
Nonzero value of f\in#P
    Instance: }x\in\mp@subsup{\Sigma}{}{*
    Question: f(x)>0?
```


Notes

- Nonzero Value of $f \in$ \# P belongs to NP.
- Value of $f \in$ \#P can be obtained by using polynomial number of queries about an element belonging to the set $\{(x, N) ; f(x) \geq N\}$.
- Value of $f \in$ \#P can be computed in polynomial space.

Jirka Fink introducition to Complexity and Computability

 92
\#P-completeness

Definition
 We say that function $f: \Sigma^{*} \mapsto \mathbb{N}$ is \#P-complete, if
 (i) $f \in \# P$ and
 (ii) every function $g \in \# \mathrm{P}$ is polynomially reducible to f.

```
Notes
- For example \#SAT, \#Vertex Cover and other counting versions of NP-complete problems are \#P-complete.
- There are problems in P such that their counting versions are \#P-complete.
```


Perfect matching in a bipartite graphs

The following problem is in P but it is \#P-complete.
Instance: $G=(A \cup B, E)$ where $E \subseteq A \times B$ and $A \cap B=\emptyset$ and $|A|=|B|$.
Question: Is there a matching in G of size $|A|=|B|$?

\#DNF-SAT

\#DNF-SAT

- Term is a conjunction of literals.
- Disjunctive normal form (DNF) is a disjunction of terms.

Instance: Formula φ in DNF.
Question: Is there an assignment v such that $\varphi(v)$ is satisfied?
This problem is in \#P while it is decidable in polynomial time.

Jirka Fink Introduction to Complexity and Computability

Fix-parameter tractability

Goa

- Complexity of brutal-force algorithm for k-vertex cover problem is $\mathcal{O}\left(|V|^{k}|E|\right)$.
- We would prefer a polynomial time algorithm for k-vertex cover such that the polynomial is independent on k.
- But there is no algorithm polynomial in both k and the size of input (unless $P=N P$).
- We describe an algorithm running in time $\mathcal{O}(p(|V|) f(k))$ where p is a polynomial function and f is an arbitrary function.

Definition

Function $f: \Sigma^{*} \mapsto \mathbb{N}$ is polynomial reducible to function $g: \Sigma^{*} \mapsto \mathbb{N}$ if there are functions $\alpha: \Sigma^{*} \times \mathbb{N} \mapsto \mathbb{N}$ and $\beta: \Sigma^{*} \mapsto \Sigma^{*}$, which can be computed in polynomial time and

$$
\forall x \in \Sigma^{*}: f(x)=\alpha(x, g(\beta(x)))
$$

Note
This corresponds to the fact that f can be computed in polynomial time with one call of function g (if this call is a constant time operation).

Permanent of a matrix

Definition
Let A be a matrix of type $n \times n$. Then we define permanent of A as

$$
\operatorname{perm}(A)=\sum_{\pi \in S(n)} \prod_{i=1}^{n} a_{i, \pi(i)},
$$

where $S(n)$ is a set of permutations over set $\{1, \ldots, n\}$.

Notes

- Like "determinant" without a sign of permutation.
- If A is a adjacency matrix of a bipartite graph G, then $\operatorname{perm}(A)$ computes the number of perfect matchings of G.
- Function perm is \#P-complete.

Sirka Fink Introduction to Complexity and Computability

Parametrized version of Vertex Cover problem

Vertex Cover problem

Instance: An undirected graph $G=(V, E)$ and an integer $k \geq 0$.
Question: Is there a set of vertices $S \subseteq V$ of size at most k so that each edge $\{u, v\} \in E$ has one of its endpoints in S ?
This problem is strongly NP-complete. How the complexity depends on k ?

Vertex Cover problem parametrized by the size k of a cover

Instance: An undirected graph $G=(V, E)$.
Question: Is there a set of vertices $S \subseteq V$ of size at most k so that each edge $\{u, v\} \in E$ has one of its endpoints in S ?

- Solvable by a brutal-force algorithm in time $\mathcal{O}\left(|V|^{k}|E|\right)$
- For every $k \in \mathbb{N}$, this algorithm is polynomial although the degree of the polynomial depends on k

| Jirka Fink | Introctuction to Complexity and Computablily | 97 |
| :--- | :--- | :--- | :--- | :--- |

Fix-parameter tractability: Vertex Cover

Algorithm

Program Has_Cover (Graph G, size of a vertex cover k)
if G has no edge then
return Accept
if $k=0$ then
\lfloor return Reject
$u v \leftarrow$ an arbitrary edge of G
if Has_Cover $(G \backslash u, k-1)$ or Has_Cover ($G \backslash v, k-1$) accepts then | return Accept
else
\lfloor return Reject

Observations

- Let G be a graph and $u v$ its edge and $k \geq 1$. Then, G has a vertex cover of size k if and only if $G \backslash u$ or $G \backslash v$ has a vertex cover of size $k-1$.
- Time complexity is $\mathcal{O}\left(2^{k}|V|\right)$.

Fix-parameter tractability: Definitions

Definitions

- A parameter of a language L is a function $k: \Sigma^{*} \rightarrow \mathbb{N}$.
- A parametrized language is a language with a parameter.
- A parameterized language is fix-parameter tractable (FPT) if there exists an algorithm A deciding L, a function $f: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial function $p: \mathbb{N} \rightarrow \mathbb{N}$ such that A decides every instance x in time $\mathcal{O}(p(|x|) \cdot f(k(x)))$.

Notes

- Usually, the parameter is a natural property of the problem and it may be a part of the input.
- A language may have many interesting parametrizations.

Observation

A language L with a parameter k is fix-parameter tractable if and only if there exists an algorithm A^{\prime} deciding L, a function $f^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial function $p^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ such that A decides every instance x in time $\mathcal{O}\left(p^{\prime}(|x|)+f^{\prime}(k(x))\right)$. (1)

- In proves of both implications, we can use the same algorithm and only determine functions giving complexity.
\Rightarrow Since $a b \leq a^{2} b^{2}$ for $a, b \geq 0$, it follows that $p(|x|) \cdot f(k(x)) \leq p^{2}(|x|)+f^{2}(k(x))$.
$\Leftarrow p^{\prime}(|x|)+\overline{f^{\prime}}(k(x)) \leq 2 p^{\prime}\left(|\overline{|x|}| \cdot f^{\prime}(k(x))\right.$ assuming $p^{\prime}(|x|), f^{\prime}(\bar{k}(x)) \geq 1$.

Vertex Cover: Kernelization

Algorithm

Input: Graph G, size of a vertex cover k
1 for every vertex v in G do
if $\operatorname{deg}(v)>k$ then
$G \leftarrow G \backslash v$
$k \leftarrow k-1$
5 Remove all isolated vertices from G
6 if $k<0$ or $|E|>k^{2}$ then
$7\lfloor$ return A canonical negative instance
8 return G, k

Observations

- Let v be a vertex of G of degree larger than k. Then G contains a vertex cover of size k if and only if $G \backslash v$ contains a vertex cover of size $k-1$.
- If a graph of maximal degree k has a vertex cover of size k, then it has at most k^{2} edges.
- The resulting graph contains at most k^{2} edges and $2 k^{2}$ vertices.
- Complexity is $\mathcal{O}(|V|+|E|)$ and vertex cover can be found in $\mathcal{O}\left(|V|+|E|+k^{2} 2^{k}\right)$.

Kernelization

Definition

A kernelization of a language L with a parameter k is a function $g: \Sigma^{*} \rightarrow \Sigma^{*}$ if
(1) g computable in polynomial time and
(2) $x \in L \Leftrightarrow g(x) \in L$ for every $x \in \Sigma^{*}$ and
(3) there exists a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in \Sigma^{*}$ it holds that $|g(x)| \leq f(k(x))$

Theorem

A decidable parametrized language has a fix-parameter tractable if and only if it has kernelization.

Proof

$\Leftarrow:$ Run the kernelization and then the decider.
\Rightarrow : Let A be an algorithm of running time $\mathcal{O}(p(|x|) \cdot f(k(x)))$ and x be an instance.

- If $|x| \leq f(k(x))$, then x is already kernelized.

If $f(k(x)) \leq|x|$, then run A and return a canonical positive or negative instance depending on whether $x \in L$. Running time is $p(|x|) \cdot f(k(x)) \leq|x| \cdot p(|x|)$.

[^0]: Proof

 - For simplicity, consider one directional memory and tape
 - Represent states Q and tape alphabet Σ by integers
 - Memory of RAM is organized as follows:

 $$
 \begin{aligned}
 & \text { [0] : Position of head } \\
 & {[1]: \text { State } q} \\
 & {[2] \text { and more : Conter }}
 \end{aligned}
 $$

 - Rewrite the transition function δ into instructions using "if-then-else" statements
 - Simulate the Turing machine on RAM

