Problem 1 (2 points). Construct a Turing machine which recognizes language $L=\left\{0^{\left(2^{n}\right)} ; n \in \mathbb{N}\right\}$, i.e. words containing only zeros whose length is a power of two. Write precisely your Turing machine!

Problem 2 (4 points). - Prove that one-tape Turing machines which are allowed to write on every cell at most twice are equivalent to (standard) Turing machines.

- Prove that one-tape Turing machines which are allowed to write on every cell at most once are equivalent to (standard) Turing machines.

Problem 3 (3 points). For a deterministic finite automata A, let $L(A)$ denotes the set of all words accepted by A. Decide whether the language $\{A ; A$ is deterministic finite automata and $L(A)$ is an infinite language $\}$ is decidable.

Problem 4 (2 points). Consider the language L of all pairs (M, w) where a Turing machine M on an input w ever attempts to move its head left at any point during its computation on w. Determine whether L is decidable.

Problem 5 (2 points). Decide whether the Post correspondence problem is decidable over

1. the unary alphabet $\Sigma=\{1\}$,
2. the binary alphabet $\Sigma=\{0,1\}$.

Problem 6 (3 points). Consider a language $L=\{(M, N) ; M, N$ are Turing machines and $L(M) \backslash L(N) \neq \emptyset\}$. Are languages L and \bar{L} decidable or partially decidable?

Problem 7 (4 points). For each pair of complexity classes below try to decide if we can prove a relation between them (by using theorems and propositions from the lecture). That is, for every pair of classes A and B decides whether $A \subseteq B, B \subseteq A, A \backslash B=\emptyset$ and $B \backslash A=\emptyset$. Note that some relations may not be known.

1. $\operatorname{DSPACE}\left(n^{3}\right)$ and $\operatorname{DTIME}\left(2^{n^{3}}\right)$
2. $\operatorname{DTIME}\left(2^{n^{3}}\right)$ and $\operatorname{NSPACE}(n \log n)$
3. $\operatorname{NSPACE}(n \log n)$ and $\operatorname{NTIME}(n \log n)$
4. $\operatorname{NTIME}(n \log n)$ and $\operatorname{DSPACE}(n)$
5. $\operatorname{NTIME}(n \log n)$ and $\operatorname{DSPACE}\left(n^{3}\right)$

Problem 8 (1 point). Decide whether the following problem is polynomial or NP-complete.
Instance CNF formula ϕ
Question Are there two different assignments u, v of truth values to variables in ϕ which satisfy ϕ, i.e. $\phi(u)$ and $\phi(v)$ both evaluate to true.

Problem 9 (3 points). Consider the following parametrized problem.
Parameter: $k \in \mathbb{N}$
Instance: A set of n points in a plane.
Question: Are there k lines covering all points?
Construct FPT algorithm and kernelization.
Problem 10 (4 points). A path in an oriented graph $G=(V, E)$ is sequence v_{1}, \ldots, v_{k} of distinct vertices of V where $\left(v_{i}, v_{i+1}\right) \in E$ is an edge oriented from v_{i} to v_{i+1} for every $i=1, \ldots, k-1$. An oriented path v_{1}, \ldots, v_{k} forms a cycle if $\left(v_{k}, v_{1}\right) \in E$. Decide whether the following problems are NP-complete or coNP-complete or they belong to P .

1. Determine whether a given oriented graph G contains a cycle or a Hamiltonian path.
2. Determine whether a given oriented graph G contains a cycle and a Hamiltonian path.

Problem 11 (3 points). A factory has machines M which can produce products P. One machine can only work on one product and each product $p \in P$ has a subset $M_{p} \subseteq M$ machines that must be working on p to produce p. A management needs to decide whether the factory is able to be manufacturing at least k products. Does this problem belong to Por is it NP-complete.

